
ACS – THE ADVANCED CONTROL SYSTEM

Mark Plesko*, Klemen Zagar, Matej Sekoranja, Janez Dovc, Miha Kadunc, Igor Kriznar, Ales
Pucelj, Gasper Tkacik, Igor Verstovsek, Dragan Vitas, J. Stefan Institute and Cosylab Ltd., Slovenia

Gianluca Chiozzi, Birger Gustafsson, Bogdan Jeram, European Southern Observatory, Germany

Abstract
The ACS is a CORBA-based control system framework

with all features expected from a modern control system.
It has been recently installed at the ANKA light source in
Karlsruhe, Germany and is being used to develop the
ALMA control system. ALMA is a joint project between
astronomical organisations in Europe, USA and Japan and
will consist of 64 12-meter sub-millimetre radio
telescopes. ACS provides a powerful XML-based
configuration database, synchronous and asynchronous
communication, configurable monitors and alarms that
automatically reconnect after a server crash, run-time
name/location resolution, archiving, error system and
logging system. Furthermore, ACS has built-in
management, which allows centralized control over
processes with commands such as start/stop/reload, send
message, disconnect client, etc. and is fine-grained to the
level of single devices. ACS comes with all necessary
generic GUI applications and tools for management,
display of logs and alarms and a generic object explorer,
which discovers all CORBA objects, their attributes and
commands at run-time and allows the user to invoke any
command. A Visual configuration database editor is under
development. An XML/XSLT generator creates an
Abeans plug for each controlled object, giving access to
all Abeans applications such as snapshot, table, GUI
panels, and allowing one to use the CosyBeans GUI
components for creating Java applications. For those that
write their own control system, ACS allows to define own
types of controlled data and own models of
communication, yet use powerful support libraries as long
as one adheres to some rules in the form of programming
patterns. ACS users several standard CORBA services
such as notification service, naming service, interface
repository and implementation repository. ACS hides all
details of the underlying mechanisms, which use many
complex features of CORBA, queuing, asynchronous
communication, thread pooling, life-cycle management,
etc. Written in C++ and using the free ORB TAO, which
is based on the operating system abstraction platform
ACE, ACS has been ported to Windows, Linux, Solaris
and VxWorks. The applications are written in Java and
run on any JVM -enabled platform. ACS is based on the
experience accumulated with similar projects in the
astronomical and particle accelerator communities,
reusing and extending concepts and components of
implementation. Although designed for ALMA, ACS has
the potential for being reused in other new control
systems, as proven by the nearly seamless installation at
the ANKA this spring.

1 INTRODUCTION
When developing control systems for different kinds of
applications, we [1] have found that some of the issues we
needed to resolve were present in all of them. Apart from
this, we identified many best practices that contribute to
the resulting control system’s usability and quality.
We have decided to collect the solutions to the ubiquitous
issues in a framework, which would allow control system
developers to focus on their concrete application, and not
have to resolve the same problems over and over again.
The result of our work is a framework called the
Advanced Control System (ACS). The requirements that
the ACS was designed to fulfil are:

Strong type checking to avoid most common errors at
compile time.
Use of Common Object Request Broker Architecture
(CORBA) as the middle-ware that handles
complexities of network communication.
Support for object-oriented modelling of the control
system’s devices to aid developers and operators
alike in taming the inherent complexity of the
system. Thus, all devices are represented as
distributed (CORBA) objects.
Support for the pull model of control, where the user
initiates queries for values of monitor points.
Support for the push model of control, where the
monitor points notify the user of changes (monitors,
alarms).
Support for handling errors in the control system,
ranging from hardware failures, via control system
malfunction, to networking problems.
A well-defined interface to a configuration database,
and a default implementation of this interface based
on XML [2].
The component-container model for managing
deployment and interactions of distributed objects.
Support for basic services such as logging, archiving,
security, etc.

2 HIGH-LEVEL ARCHITECTURE
From the high-level point-of-view, ACS fits well in a
multi-tier architecture of a control system (see Figure 1):

The data-access tier for working with the data in the
configuration database and other databases (e.g., the
archive database with historical values of control
point values).

*mark.plesko@cosylab.com

•

•

•

•

•

•

•

•

The hardware-access tier (device drivers) for
retrieving the data from monitor points implemented
in hardware, as well as sending commands to control
points.
The middle tier (also called business logic tier) where
the devices and their interactions with the rest of the
system are modelled using Device Objects (DO), and
through which they can be monitored and controlled.
The presentation tier that exposes the control system
to the human (GUI) or machine (API) user.

The architecture is such that only the following
interactions of tiers come into play:

Business-logic tier uses the services of the data-
access and the hardware-access tiers.
Presentation tier uses the services of the middle tier.

The ACS framework focuses on the data-access and
middle tiers.

2.1 Enforcing Architecture through Generators
Adding a new type of devices to a control system, or
modification of an existing device type, requires
modification of all tiers. However, the modification is
often trivial (e.g., adding a property to a class, or adding a
new field to a configuration database). We decided to
automate some of these tasks, because manual
modifications tend to produce unnecessary errors.

To that end, we only modify the business-logic tier, then
extract information about modified device types using
CORBA introspection (the Interface Repository service)
and encode it in XML format [2]. Then, we use XSL/T
transforms [3] to generate Abeans plugs from XML
device descriptions.
We are in the process of introducing a more powerful
source code generator, which uses a specialized language
for describing source code templates (the Extensible
Program Generator Language [4]). We anticipate to use
this generator for producing other artefacts as well, such
as BACI-compliant Device Objects that model the
devices and schemas for the configuration database.

3 MIDDLEWARE
Middleware is the cornerstone of distributed computer
systems, as it enables the interaction of distributed
components, residing on different hosts. There are several
middleware implementations available, ranging from the
OMG’s Common Object Request Broker Architecture
(CORBA), through the business-centric Simple Object
Access Protocol (SOAP) to Microsoft’s proprietary
Distributed Component Object Model (DCOM), .NET
Remoting, and Sun’s Java Remote Method Invocation
(RMI).
3.1 CORBA
In ACS, we have decided to use CORBA [5] as the
middleware. In particular, we have chosen to use the TAO
implementation of CORBA [6]. Our choice is based on
the following facts:

CORBA is platform independent.
CORBA provides many pre-implemented services,
such as the naming, logging and notification services.
In our benchmarks, TAO CORBA has been found to
offer superior performance to other alternatives. It
also supplies all the additional CORBA services that
we need.
TAO CORBA is built atop ACE (Adaptive
Communication Environment [7]), which is a highly
portable collection of operating system wrappers and
common design pattern implementations.
Consequentially, ACS is portable to most platforms
that ACE is portable to (e.g., Windows, Linux,
Solaris and VxWorks).

4 MANAGEMENT SUBSYSTEM
Management services are essential in all of today’s
distributed computer systems. The role of the
management subsystem is to provide management
services to the rest of the control system. Management
services facilitate deployment of control system building
blocks on host computers, and enable them to find each
other. In addition, it enables human operators to view and
manage the state of the control system through a generic
user interface.
4.1 MACI

GUI Application

Abeans

CosyBeans . . .

Manager BACI
(base classes)

Device Object
(component)

Configuration
Database

Activator
(container)

P
re

se
nt

at
io

n
 T

ie
r

M
id

d
le

 T
ie

r
D

a
ta

 a
n

d
H

a
rd

w
ar

e
A

cc
e

ss
 T

ie
r

Device Drivers

Figure 1: High-level architecture of the control
system. Parts written in bold and underlined are part of
the ACS framework implementation. Arrows indicate
the uses relationship (e.g., a Device Object uses a
Device Driver). Shaded boxes denote standalone
processes.

•
•

•

•
•

•

•

•

•

Management and Access Control Interface (MACI)
implements the container part of the component-container
model. It is a service that knows about all the Device
Objects that together compose the control system and
manages their interconnections and lifecycle. MACI has
two major elements:

Activators are the C++ containers. They are deployed
locally on all hosts involved in the control system,
ranging from real-time local control units to high-
performance workstations. Their primary task is
preparing the local environment in which DOs (the
components) are created, giving them all the
resources they need to perform their tasks, such as
CORBA connectivity, connection establishment with
other DOs and Configuration Database access.
The Manager, which is set up at one central location
that is widely known across the entire system. The
Manager is acquainted with all the Distributed
Objects and Activators in the system, as well as other
resources, such as configuration database and
CORBA services. In particular, the Manager closely
cooperates with the CORBA Naming Service, in
which it publishes all of its acquaintances, making
them accessible to non-MACI-aware CORBA
software.

Within the scope of MACI, a component is the
Distributed Object (DO). It is given a unique, non-volatile
identification, called Component Unique Resource
Locator (CURL). CURL does not directly specify the host
on which the DO resides: instead, it serves as a handle
through which the designated DO can be accessed.
4.2 Object Explorer
Object Explorer is a GUI application that allows the user
to find and view all objects in a system. Every object can
be introspected, which is a process through which the
object’s methods and properties are identified and
presented to the user. Furthermore, the user is able to
query a property, set a property’s value, or to invoke a
method on the object, without Object Explorer’s compile-
time knowledge of the target object.
4.3 Administration Client
Administration Client is a GUI application that allows the
user to view the state of the management subsystem. The
client is capable of contacting the Manager and the
Activators, and querying them for their internal state,
which is then presented to the user. The user can also
influence the Activator’s and Manager’s state, for
example by instructing the Activator to bring a Device
Object off-line, or to restart/switch off the Activator itself.

5 DATA AND HARDWARE ACCESS TIERS
In the three-tier architecture, Data Access Tier is the
lower-most layer in a sense that it ultimately handles all
requests to read and write data to a physical medium. In
control systems, the reading and writing to a physical
medium should also be understood to cover the accessing
and controlling of physical devices (the hardware-access
tier). The purpose of this tier is to decouple access to the

data from the logic that actually handles the data (the
middle tier). A well-designed data access tier makes it
possible to switch physical sources of data (e.g., SQL
databases, devices, device simulations, …) without any
changes to the implementation of the tiers built above it.
5.1 Configuration Database
The ACS configuration database has three important
parts:
1. The database engine used to store and retrieve data.

It may consist of a set of XML files in a hierarchical
file system structure or it may be a relational
database or another application specific database
engine.

2. The Database Access Layer (DAL) that hides the
actual database implementation from applications, so
that the same interfaces are used to access different
database engines. For each database engine a specific
DAL CORBA service is implemented. The DAL is
defined in terms of CORBA IDL interfaces and
applications access data in the form of XML records
or CORBA Property Sets.

3. The database clients access data from the database
using only the interfaces provided by the DAL.
Data clients like Activators, Managers and DOs
retrieve their configuration information from the
Database using a simple read-only interface. On the
other hand, CDB Administration applications are
used to configure, maintain and load data in the
database using other read-write interfaces provided
by the DAL.

We have provided several database engine
implementations. The most advanced implementation is
based on a set of XML files representing structured
records (e.g., configuration information for a complex
device). The XML files themselves are hierarchically
organized in the file system. Every XML file is assigned
an XML schema (XSD), which defines its exact structure,
making it possible for an XML file to obtain default
values from the schema, as well as model the
specialization relationships of the schemas.
5.2 Device Drivers
ACS does not impose any special requirements on the
devices and their drivers. So far, the ACS has been made
to interact with hardware connected via the CAN bus, as
well as LonWorks. We are also considering interacting
with EPICS at the level of device drivers.

6 MIDDLE TIER
The middle tier represents the tier that actually knows
what the application is all about. For example, in a
business application this is the tier that would understand
the concept of an order, and would know that after the
client submits an order, the client’s charge should be
calculated, debited from the client’s credit card, and the
order delegated to the manufacturing department.
In control systems, the middle tier is the one that knows
the business, too – the business being control of hardware
devices. For example, if a value of a controlled property

•

•

changes, the middle tier should be capable of
remembering the value in the property’s history, and if a
certain threshold is reached, raise an appropriate change
notification or alarm.
Note that a well-built middle tier never accesses physical
sources of data directly; instead, it always uses the data
access tier to do the job.
6.1 BACI
BACI defines a set of base classes and interfaces, which
are used by Device Object implementations. BACI itself
does not define any specific control system. It does,
however, restrict the set of all definable objects to a
specific set that conforms to BACI design guidelines and
uses BACI interfaces in a predefined way.
The heart of BACI is a distributed object model (see the
BACI Class Diagram on Figure 2).
In BACI all devices/controlled objects are defined by
means of Device Objects (DOs). DOs are implemented as
objects that are remotely accessible from any computer
through the client-server paradigm.
Each DO is further composed of Properties. A DO can
also contain references to other DOs to build hierarchical
structures of components.
DOs and Properties have specific Characteristics, e.g.
name, unit, and minimum/maximum. The common

behavior of DO and Property has been factorized in the
Named Component common base class.
While there are in principle an infinite number of DO
types, for example one for each physical controlled
device, there are very few different Property types: in
principle one for each primitive data type and one for
each sequence of primitive data types.
BACI also defines patterns as callbacks (using
Asynchronous Completion Token - an object behavioral
pattern for efficient asynchronous event handling), on-
trigger and on-change monitors and event sets (alarms).
6.2 Error System
The Error System propagates error messages through the
ACS, making use of OO technology: exceptions and
serialization.
In the ACS Error System, all errors that occur are
encapsulated in exception objects. The ACS Error System
defines how to and provides means to chain consecutive
error conditions that depend upon each other into a linked
list of exception objects within a single process.
For inter-process communications such a CORBA
method calls or monitors, the ACS Error System
serializes the linked list of exceptions and transfers it to
the calling process. There, it is deserialized back into a
linked list, to which new exceptions can be appended.
6.3 Logging and Archiving

Figure 2: BACI Class Diagram.

type

RWProperty<type>

set_sync()
set_async()
increment()
decrement()

type

ROProperty<type>

get_sync()
get_async()
create_monitor()

Device
(from Examples)

type

MonitorPoint
(from Examples)

type

ControlPoint
(from Examples)

Control system Devices
are Distributed Objects

Thermostat
(from Examples)

An example of
Device

Examples of user defined classes:

Property

DO_name()

DO

0..n0..n0..n0..n

NamedComponent

name()
description()
version()
URI()
get_interface()
get_characteristic_by_name()
find_characteristic()

Characteristic0..n0..n

During software execution, it is sometimes important to
log certain events, mostly to let the operator know what is
happening or how far along a certain operation is. Such
logs are also useful for developers to diagnose the cause
of errors in the control system. ACS provides a set of API
calls for developers to perform the logging, as well as an
implementation of the centralized logger, which collects
the log events generated throughout the system. ACS also
provides a high performance user interface for real-time
examination of logs.
Similarly, archives of values of control points are
important, particularly for diagnostic reasons. The ACS
framework provides for such archiving automatically
through the logging service.

7 PRESENTATION TIER
Presentation layer is concerned with presenting the data to
the user, and enabling the user to interact with the system.
It essentially enables the users to work with the middle
tier in a way that is efficient, cosy and comprehensive to
them.
Please note that the implementation of the presentation
tier is not a part of the ACS. So far, we have used the
Abeans-based [8] Java GUI applications to present the
state of an ACS control system to the end user.
7.1 Abeans
An in-depth examination of programming practices of any
control system client application reveals two main focal
points, where careful design and a relatively small
programming effort may increase the productivity of the
application programmers and the maintainability of the
applications. Firstly, programmers must be offered a
library of solutions to common application problems,
such as bootstrapping the application, access to resources,
configuration management, logging, universal
containment of components etc. These tasks are
performed by the Abeans framework, which is shared by
all applications. Secondly, a library of invisible modelling
components and GUI components must be provided to
facilitate Rapid Application Development (RAD) in visual
builder tools. For example, a power supply model is an
invisible Java Bean that represents the physical power
supply. Models use framework services to solve problems
of correct life cycle timing, concurrency in event
dispatching and try to provide Quality-of-Service
guarantees about the data delivery to the application.
Reusable GUI components interact with invisible models
to provide a consistent display across different platforms.
Our GUI Java libraries, called CosyBeans, address these
issues in a communication platform independent way.

8 DEVELOPMENT STATUS

8.1 Supported Platforms
Thanks to the extensive and consistent use of the ACE
framework, the ACS framework has been successfully
ported to and tested on the following platforms:

VxWorks real-time operating system
Linux operating system
Microsoft Windows operating system
Sun Solaris operating system

8.2 Control Systems using ACS
Currently, ACS is used in two control systems:

The ANKA synchrotron light source.
The ALMA project, which is under development,
uses the ACS as the framework atop which the entire
control system is being built [9].

9 CONCLUSION
Development of a software part of a control system is an
expensive task. The development of a framework is an
even greater endeavour, but, if it is well designed, proves
worthwhile after several (3 to 5) control systems have
been used atop of it. So far, the ACS has proven to offer a
lot of added value to the control system developer. Due to
the fact that it is open source, well documented and free
to use, we are hoping that it will become a cornerstone to
even more control systems than the current two.

10 REFERENCES
[1] Cosylab Ltd., http://www.cosylab.com
[2] The World Wide Web Consortium, “Extensible

Markup Language (XML) 1.0 (Second Edition)”,
Oct 2000, http://www.w3.org/XML

[3] The World Wide Web Consortium, “Extensible
Stylesheet Language (XSL/T) 1.0”

[4] K. Zagar, A. Vodovnik, “Program Generators and
Control System Development”, PCaPAC 2002,
Frascati, Oct 2002

[5] Object Management Group, “Common Object
Request Broker Architecture Specification”,
http://www.omg.org

[6] D. Schmidt et al. “TAO CORBA Implementation”,
http://www.cs.wustl.edu/~schmidt

[7] D. Schmidt et al. “ACE - Adaptive Communication
Environment” , http://www.cs.wustl.edu/~schmidt

[8] I. Verstovsek, “The New Abeans and CosyBeans:
Cutting Edge Application and User Interface
Framework”, PCaPAC 2002, Frascati, Oct 2002

[9] G. Chiozzi et al. “CORBA-based Common Software
for the ALMA project”, Proc. SPIE 4848, paper 05,
Kona, Aug 2002

•
•

•
•

•
•

