
ACS as a Dependable Distributed System∗

K. Žagar† , I. Verstovšek, G. Pajor, M. Šekoranja, Cosylab, Ljubljana, Slovenia
G. Chiozzi, ESO, München, Germany

Abstract

ACS (Advanced Control System) is a component-
oriented infrastructure for distributed control systems.
Components representing controlled devices or control
logic can be deployed across host computers throughout
the network. A central entity called the Manager is respon-
sible for determining on which host a given component will
reside. This centralized approach to deployment allows dy-
namic reconfiguration of the system, e.g., due to changes in
requirements or as an automated response to failures within
the system. In this article, the dependability and availabil-
ity of an ACS based system is discussed, and future devel-
opments in the context of the European Union’s 6th Frame-
work project Dependable Distributed Systems (DeDiSys)
are outlined.

INTRODUCTION
The key element for achieving scalable and maintainable

distributed software systems is dependability, because oth-
erwise the complexity of distribution would leave the sys-
tem uncontrollable.

Data in distributed systems are not stored at a single lo-
cation, nor is data processing performed by only one com-
puter. Such an interconnected system is much more sus-
ceptible to failure than a non-distributed one: if only one
of the many computers fails, or if a single network link is
down, the system as a whole may become unavailable.

ACS
ACS is a set of application frameworks built on top of

CORBA [1]. It provides a common software infrastructure
for development of distributed control systems as well as
other distributed applications.

Principal driver of ACS development is the Atacama
Large Millimeter Array (ALMA), in the context of which
the ACS acronym stands for ALMA Common Software.

The purpose of ACS is twofold:

• from a system perspective, it provides the implemen-
tation of a coherent set of design patterns and services,

• from the perspective of a developer, it provides a
friendly programming environment in which the com-
plexity of the CORBA middleware and other libraries
is hidden and coding is drastically reduced.

∗The work described herein is supported by the European Community
under Framework Programme 6 of the IST Programme within the project
Dependable Distributed Systems (DeDiSys, Contract No. 004152)

† klemen.zagar@cosylab.com

The ACS allows development in C++, Java and Python.
This gives developers enough flexibility to choose the right
tools for the right tasks – the code that interacts with the
hardware is typically written in C++, user-interfaces and
high-level applications are covered by Java whereas Python
is useful for quick ad hoc scripting, testing and prototyping.

Deployment Management
One of the core elements of ACS is a Component-

Container Model of deployment (Figure 1). In this model,
the application-specific code is packaged in components.
Physically, components are shared libraries or similar dy-
namically loadable code, such as Java classes and Python
scripts.

Components typically implement one or more inter-
faces through which other components and clients (user-
interfaces, scripts, ...) interact with them. The interface
is defined using CORBA’s Interface Definition Language
(IDL).

Container is a process that hosts components. Physi-
cally, the container is an executable that provides environ-
ment to its components. It also directly manages com-
ponent’s lifecycle (loading of code, activation, destruction
and unloading of code).

ACS features a Manager, which is essentially a broker or
a naming service that issues clients references to compo-
nents they request. The Manager communicates with con-
tainers to perform the following tasks:

• Manager instructs the container to activate a compo-
nent. The Manager specifies the code that will have
to be loaded (e.g., the name of the dynamic library)
and the name of the component. Container loads the
code, creates an instance of the component, and han-
dles all the complex overhead activities, such as mak-
ing the component accessible through CORBA. The
container also ensures that the component receives its
configuration data from the CDB.

• Use a heart-beat to periodically check the health of a
container.

In ACS, the deployment of components into containers
is configurable through the ACS’ Configuration Database
(CDB).

Fault Management
So far, ACS made a limited effort in the direction of de-

tecting faults and mitigating their negative effects.
Every container is capable of self diagnostics. When a

container detects a critical error condition, it tries to notify



Manager 1 Manager 2

WAN

LAN of Site 1 LAN of Site 2

Container 1 Container 3

Container 2

Client 1

Container 4

Device 1
Database 1

Device 2

Figure 1: An example deployment of an ACS-based system. Every site has its own Manager responsible for supervision
of containers. Containers host components representing devices attached to the host computers.

the Manager and restarts. This allows the Manager to no-
tify the clients of the components hosted by the affected
container, and also to activate these components at a later
time.

A more frequent failure is when the container can not no-
tify the Manager of its condition, e.g., when its host com-
puter crashes, or when the network link is down. This class
of failures is detected by the Manager’s heart-beat mecha-
nism: upon receiving no reply during a repeated heart-beat,
the Manager assumes that the container, and consequen-
tially all of its components, are unavailable.

Recovery scenarios in the case of node failures and link
failures may be different (Figure 2). For example, if only
a network link had failed, the Manager need not take any
action. However, if a node has crashed, it could be more
benefical to activate the crashed components in other con-
tainers, thus increasing availability. Unfortunately, link and
node failures can not be reliably distinguished yet.

ACS Users
ACS is used in various distributed control applications

as well as in the field of Geographical Information Systems
(GIS). Current applications include:

• The control system of the Angströmquelle Karlsruhe
(ANKA) synchrotron light source [4].

• The Atacama Large Millimeter Array (ALMA), un-
der development by European Southern Observatory

(ESO) and National Radio Astronomy Observatory
(NRAO) [2].

• The Atacama Pathfinder Experiment (APEX) of the
Max-Planck-Institut für Radioastronomie.

• The 1.5m Hexapod Telescope of the Ruhr-University
Bochum.

• Cosylab’s GIS framework Giselle, with an application
deployed at the Slovenian Ministry for Agriculture,
Forestry and Food.

DEDISYS
DeDiSys [5] is a European research project with the fo-

cus on dependability of distributed systems in order to im-
prove availability, reliability, and safety. The project fo-
cuses on a highly innovative method – trading consistency
against availability – as the means to enhance dependability
in the presence of node and link failures.

There are 8 members in the project consortium: Vi-
enna University of Technology (Austria), Wroclaw Univer-
sity of Technology (Poland), Linköpings Universitet (Swe-
den), Universidad Politecnica de Valencia (Spain), Fre-
quentis (Austria), Etra (Spain), Cosylab (Slovenia) and
XLAB (Slovenia). The project started in September 2004,
and is scheduled to end in July 2007. At the time of this
writing, the requirements analysis phase of the project is
nearing completion.



Client 1

Client 4

Client 5

Crashed 
Server

Severed 
Network Link

Copy 1: 
active

available

Copy 3:
active

inconsistent
available

Copy 2: 
crashed

Client 2Client 6

Client 3

Figure 2: Clients 1 and 2 could switch to using copy 1 if their dedicated server crashes. If a network link is down, copy 3
is still available, but it could become inconsistent.

Consistency/Availability Trade-Off
The most commonly used approach to improve availabil-

ity is to replicate services and data to several locations in
the network, making at least one copy available while fail-
ures are present.

However, this introduces additional issues:

• How to ensure that modifications of the data are prop-
agated to all replicas?

• How to minimize deteriorating impacts on perfor-
mance due to such widespread updating?

And what if update propagation can not succeed due to the
presence of failures?

Simply disallowing modification would reduce availabil-
ity, whereas allowing them would involve a risk of intro-
ducing inconsistencies among replicas. The aim of the De-
pendable Distributed Systems (DeDiSys) project is to in-
vestigate the possible optimum between the two extremes
(Figure 3):

• can one give up some of the data and service integrity
constraints, and

High availability

Strong consistency

Figure 3: Depiction of the trade-off between consistency or
availability: one can be gained only at the expense of the
other.

• yield improved availability of the distributed system
in return?

PLANNED ACS IMPROVEMENTS

Alarm System and Diagnostics

According to a survey of existing control system users
and operators peformed in the context of the DeDiSys
project, one of the most important tools that would facili-
tate operations and improve availability is detailed diagnos-
tics that would accurately and quickly pin-point the fault 4.

ACS already features a distributed logging system which
allows for high-performance, reliable, asynchronous deliv-
ery of log messages to one or more interested parties (e.g.,
a relational database). The logging system allows for ac-
curate pin-pointing of a problem, but analysis of logs is
both time-consuming and requires in-depth knowledge of
the workings of the control system and its parts.

Another useful tool for fault detection is the alarm sys-
tem. ACS currently has a synchronous implementation of
the alarm system, which requires interested clients to con-
nect to all possible alarm sources. Theory forecasts that
such approach does not scale, and practice has confirmed
this to be true.

The solution would be a cross-over of the above: an
alarm system that would deliver alarm notifications asyn-
chronously using a publisher-subscriber paradigm. The de-
velopment of such a system is currently nearing comple-
tion at CERN [6], and there is an ongoing investigation into
whether that same solution would also be applicable for the
ACS alarm system.



Figure 4: A screen-shot of Abeans [7] exception panel,
which shows detailed information about a failure in the sys-
tem.

Manager Replication
Currently, the ACS’ Manager is a single point of failure

– if the Manager becomes unavailable, no client will be
able to retrieve a reference to a component it requires, ef-
fectively rendering all subsequently requested components
unavailable.

Fortunately, the Manager is not required much during
operation because most references are established upon
strartup of the distributed control system. Therefore, it is
very likely that a temporary unavailability of the Manager
will not have any negative effects.

Manager maintains rich information regarding deploy-
ment state. This information must not get out-of-sync
with the actual state of deployment, as otherwise compo-
nents could be created more than once or destroyed through
ACS’ distributed garbage collection pre-maturely. Cur-
rently, the Manager handles this issue by keeping a trans-
action log of all the operations on the deployment state,
which it can replay during recovery from a crash.

The next step would be to allow for a secondary Man-
ager. Whenever the deployment state of the primary Man-
ager would change, the primary Manager would not only
persist the transaction to persistant storage, but also trans-
mit it to the secondary Manager. The method of transmis-
sion (synchronous/asynchronous) is yet to be determined:
choosing the first could cause unavailability of the primary
Manager due to secondary Manager’s failure, and choosing
the second could result in inconsistancies of deployment
state.

Component Replication
Component replication is either a very easy or very diffi-

cult task, depending on whether components have state that
needs to be synchronized among replicas (state-full compo-
nents) or not (state-less components).

Benefits of component replication can be two-fold:

• Resilience to faults. If one component fails, one of its
replicas could take over.

• Load balancing. The replicas utilize resources of sev-
eral machines.

The case with the state-less components is already sup-
ported by ACS and used in practice for over a year in GIS
applications. There, the Manager may be configured with a
strategy that helps the Manager decide in which container
to host a component. For example, the strategy might keep
track of CPU utilization of container’s hosts, and always
decide to activate a component in the container where most
resources are available.

CONCLUSION
Douglas Adams once wrote: “The major difference be-

tween a thing that might go wrong and a thing that cannot
possibly go wrong is when a thing that cannot possibly go
wrong goes wrong it usually turns out to be impossible to
get at or repair” [8].

Following this advice, distributed control systems must
anticipate failures, and assist as much as possible to either
circumvent failures automatically, or at least help operators
to reduce the down-time.

ACS already provides some features that make it easier
to survive through failures (e.g., recovery of the Manager,
containers under heart-beat surveillance, ...). In the next
few years, we intend to further improve on this through ex-
perience of others and incorporation of DeDiSys project’s
research findings.

REFERENCES
[1] G. Chiozzi et al., “The ALMA common software: a devel-

oper friendly CORBA-based framework”, SPIE Astronomi-
cal Telescopes and Instrumentation, July 2004, Glasgow

[2] G. Chiozzi et al., “The ALMA Common Software (ACS):
Status and Developments”, ICALEPCS 2003, October 2003,
Gyeongju, South Korea

[3] K. Žagar et al., “ACS – Overview of Technical Features”,
ICALEPCS 2003, October 2003, Gyeongju, South Korea

[4] I. Kriznar et al., “The Upgrade of the ANKA Control Sys-
tem to ACS (Advanced Control System)”, ICALEPCS 2003,
October 2003, Gyeongju, South Korea

[5] DeDiSys consortium, “Dependable Distributed Systems”,
European Community’s Framework Programme 6 project
(IST Programme), http://www.dedisys.org

[6] M. W. Tyrrell et al., “Moving Towards a Common Alarm
Service for the LHC Era”, ICALEPCS 2003, October 2003,
Gyeongju, South Korea

[7] I. Verstovsek et al., “Abeans: Application Development
Framework for Java”, ICALEPCS 2003, October 2003,
Gyeongju, South Korea

[8] Douglas Adams, “Mostly Harmless”, Henemann, London
1992


