A NEW REPRESENTATION OF THE RELATIVISTIC DIELECTRIC TENSOR
FOR A MAGNETIZED PLASMA

X. Bonaféci and G. Chiozzi
Physics Department, University of Ferrara, Ferrara, Italy

A representation of the dielectric tensor which does not involve the
sum over harmonics is obtained. The novel form can be expressed in terms of
either a product of two Bessel functions whose orders are functions of
momentum, or an integral over the range (0,π/2) of combinations of J0,1,2
with cosine functions.

Introducing the standard form of the (relativistic) dielectric tensor
\[\epsilon_{ij} \], relevant to electron cyclotron interaction in a magnetized plasma,
involves both a double integral over the momentum variables, e.g., \(\mathbf{p}_1 \) and
\(\mathbf{p}_0 \), and an infinite sum over harmonics of terms each of which contains the
product of two Bessel functions whose argument is a function of \(\mathbf{p}_1 \). More
specifically, in the reference frame in which \(\mathbf{B}_0 = \hat{z} B_0 \) and \(k \mathbf{k} = \hat{x} \mathbf{k}_x + \hat{y} \mathbf{k}_y + \hat{z} \mathbf{k}_z \), one has

\[\epsilon_{ij} = \delta_{ij} + 2m c^2 \begin{vmatrix} \mathbf{E}_0 \end{vmatrix} \int \frac{d^3 \mathbf{p}_1}{(2\pi)^3} \int \frac{d^3 \mathbf{p}_0}{(2\pi)^3} \left[\mathbf{F} (\mathbf{p}_1, \mathbf{p}_0) \mathbf{J}_2 (k c \mathbf{p}_0 \cdot \mathbf{z}) \right] \left[\mathbf{u} (\mathbf{r}_0) \right] \mathbf{J}_1 (p_1) \mathbf{p}_1 \right] \]

(1)

where \(\mathbf{F}(\mathbf{p}_1, \mathbf{p}_0) = \mathbf{F}(\mathbf{p}_1) \cdot \mathbf{F}(\mathbf{p}_0) \) (propagator) and \(\mathbf{u}(\mathbf{r}_0) \) (prolate)
equilibrium distribution function, and \(\mathbf{J}_0 (\mathbf{p}_0 \cdot \mathbf{z}) \) (cyclotron).

The tensor \(\mathbf{\epsilon}_{ij} \) is given by an infinite sum over cyclotron harmonics of a
quantity which contains a singular factor multiplied by a dyadic tensor,
namely,

\[\mathbf{\epsilon}_{ij} = \sum_n \mathbf{y}^{(n)} \mathbf{z}_n \mathbf{z}_n \]

(2)

with \(\mathbf{y}^{(n)} = \mathbf{y}^{(n)} \mathbf{z}_n \), the perpendicular (to \(\mathbf{B}_0 \)) component being

\[\mathbf{\epsilon}_{ij} = \sum_n \mathbf{y}^{(n)} \mathbf{z}_n \mathbf{z}_n \]
the matrix appearing in (5) being (real and symmetric). The main features of the form (5) of the tensor T_{ij} with respect to (2) are: i) the infinite sum over harmonics is no longer present (explicitly); ii) the orders of the Bessel functions appearing in (5) are now functions of the momentum via the same variable $\mu = (\omega \nu \sigma) (\gamma - \nu \Pi \Pi' / \nu \Pi' \sigma)$ that appears in the denominator $\sin(\mu \omega)$. Using (5) into the double integral over the momentum variables in (1) makes it convenient to choose μ as one of the integration variables, instead of Π_1 or Π_{11}, and split the range of the corresponding integral into symmetric intervals around each singular point $\mu = n \Pi$ (in integer), with the result that

$$
\int_{\mu=\infty}^{\infty} \frac{f(\mu) d\mu}{\sin(\mu \omega)} = \sum_{n=-\infty}^{\infty} \int_{\mu=\infty}^{\infty} \frac{f(\mu) d\mu}{\sin(\mu \omega)} = \sum_{n=-\infty}^{\infty} \left[\int_{\mu=\infty}^{\infty} f(\mu) d\mu \right] \sin^{-1}(\mu / \omega)
$$

Since the matrix on the right-hand-side of (5) is real, the anti-Hermitian part of the dielectric tensor enters entirely from the singularities connected with $1 / \sin(\mu \omega)$. Thus, from (6) one recovers the standard harmonic expansion (3) for F_{ij} and, hence, no real advantage is obtained by using (5) rather than (2). As for the Hermitian part of T_{ij} instead, for every singular point n the μ-integration in (6) is over a finite range instead of being an infinite integral as in the standard harmonic expansion (2). This fact turns out to be advantageous for the numerical evaluation of F_{ij} at high temperatures and high frequencies. (We note that the (2,3)-element of the (1,3)-element) obtained by Weiss and (Tamor) in the expression corresponding to (5) does not appear to be correct).

B. Integral representation of T_{ij}. Each element of matrix (5) can be expressed in integral form with a single Bessel function by using the relation

$$
J_\nu(z)J_{\nu}'(z) = \frac{1}{\pi} \int_0^{\pi} J_{\nu+\lambda}(2z \cos \psi) \cos[(\nu-\lambda) \psi], \quad Re(\nu+\lambda) > 0
$$

Applying (7) to (5) yields the symmetric form
\[T_{ij} = \frac{2^{n/2}}{\sin(n\phi)} \left[\frac{\cos(2n\Phi)}{2^{n/2}} \right] \left[\begin{array}{c} \frac{1}{2} J_0(2\Phi) \\ \frac{1}{2} J_2(2\Phi) \\ \vdots \\ \frac{1}{2} J_{2n}(2\Phi) \end{array} \right] - \frac{\cos((2n+1)\Phi)}{2^{n/2}} \left[\begin{array}{c} \frac{1}{2} J_0((2n+1)\Phi) \\ \frac{1}{2} J_2((2n+1)\Phi) \\ \vdots \\ \frac{1}{2} J_{2n+2}((2n+1)\Phi) \end{array} \right] \]

with \(t_{23} = \frac{p_0}{p_1} \left(\frac{\sqrt{2}}{1 - \cos(2\Phi)} \right)^{1/2} \), the argument of \(J_{0,1,2} \) being \(2\nu \cos \Phi = 2(\omega/\omega_c)\nu \). A representation similar to (8) has been obtained also by Shi et al.\(^6\). The salient characteristic of (8) is the \(\Phi \)-integral over the \((0,\pi)\)-range of combinations of \(J_{0,1,2} \) with cosine functions. As for (5) the poles connected with \(\sin(n\phi)\neq 0 \) contribute an anti-Hermitian part to the dielectric tensor. More specifically, for \(n^2 \geq 1 \) one has

\[\left[\begin{array}{c} \nu \left(f_{\alpha} \right) \end{array} \right]_{n} = \left[\begin{array}{c} \frac{p_0}{p_1} \left(\frac{\sqrt{2}}{1 - \cos(2\Phi)} \right)^{1/2} \end{array} \right]_{n} \left[\begin{array}{c} \nu \left(f_{\alpha} \right) \end{array} \right]_{n} \]

where \(t_{ij} \) is the integrand of the \(\Phi \)-integration in (8).

Acknowledgments. This work has been performed with financial support from the Ministero della Pubblica Istruzione of Italy.

References