ATTI
 DI CONFERENZE

Volume 21
5° Congresso Nazionale di Eletronica Quantistica e Plasmi
a cura di G.C. Righini
Firenze, 16-19 Novembre 1988

CONFERENCE PROCEEDINGS

Volume 21

Quantum Electronics and Plasma Physics 5th Italian Conference
edited by G.C. Righini
Firenze, 16-19 November 1988

Italian Plysical Society Bologua - Italy

Il Sottoprogetto 4 , oltre a organizzare e sviluppare un servizio di tecnologie elettroottiche, di cui potranno usufruire non solo i partecipanti al progetto ma anche i laboratori di ricerca e industrie sia a livello nazionale che internazionale, svilupperà svariati componenti elettroottici passivi £ra i quali lenti, specchi, miscelatori di fascio, polarizzatori, trattamenti particolari, componenti a fibra ottica per applicazioni di potenza.

Dopo l'approvazione del programma esecutivo da parte degli organi di controllo, si prevede un avvio del progetto nel corso del 1989.

A TUNABLE FREE ELECTRON LASER IM THE MILLIMETRIC BAND

I. Boscolo

Dip. di Fisica dell’Universita e IHEF Sezione di Milano
G. Bottoni, R.Calabrese, D. Candolfo, G.Chiozzi

Dip. di Fisica dell'Universita e INFN Sezione di Ferrara
V. Stagno, V.Variale

Dip. di Fisica dell Universita' e INFN Sezione di Bari

L.Tecchio

Dip. di Fisica dell'Universita' e INFN Sezione di Torino

A free electron laser in the millinetric band is unde: construction

A 700 KeV - 3A continuous electron beam is obtained from a electrostatic generator of the Cockroft-halton type and a multi-staso collector will be used to recover the beam energy.

Aim of the experiment is to check the feasibility of a continuos EL

In this paper the experimental setup, with particular attention to the problem of energy recovery is described.

Introduction

The progress in FEL techology observed in the past years has dram the attention of a number of scientists from various branches of physics. fELs seem to be in fact a good way to obtain high porer tunable electromagnetic waves

Millimetric FELs, able to supply powers over 10 KH , are of great interest for accelerators and plasma physics.

Such devices are essential to build high gradient () $200 \mathrm{KeV} / \mathrm{m}$) accelerators in the "two-bem-accelerator" schene (1) and are planned to be used to provide additional heating in Tokamak reactors, allowing the injection in the plasma of high porer at frequencies which would not be accessible otherwise

In particular a FEL such as the one we have designed, can be used as an injector for a superradiant high power FEL in the micronaves band (2), capable to supply the energy for a tho-beam-accelerator

The construction of a continuous FEL is of great interest in these perspectives.

Io achieve a continuous FEL is necessary to use an electrostatic generator. Because of the silall power this kind of generators can supply, it is of fundamental importance to recover the bean energy
($\mathrm{P} \simeq 2.1 \mathrm{KH}$ in this experiment) and to mininize beam losses during the transport.

The latter can be fulfilled with a "fully immersed" magnetic configuration where the electron beam is immersed in a solenoidal magnetic field.

The bean that we plan to use is that of the Electron Bean Eacility that is currently being assembled, at Laboratori Nazionali INFN of Legnaro, for an electron-cooling experiment(3).

Horking principles

The operating schere of the device is shom in fig.la. Figure ib shows a hydrodinamic model of the system to explain the energetic balance.

The electron beam is produced by a dispenser cathode and accelerated up to 700 KeV (Pump 1 raises the fluid to a high gravitational potential).

The beam enters then the undulator, where laser effect is obtained in a cavity constituted by a waveguide with two Bragg mirrors at its ends. These are transparent to the electron beam but reflect the symchrotron radiation emitted in the undulator.

At this moment the beam loses energy emitted as lașer radiation (the fluid goes through a dissipative region).

The electrons are finally decelerated by a proper decelerating colum and recovered in a multistage collector. At this time a generator (pume 2) provides the energy converted into radiation and makes it possible to close the circuit.

In this way the high voltage generator (pump 1) has only to supply the energy losses due to the electrons lost during the bean transport. These losses are minimized fith the full immersion configuration.

Experimental setue

A sketch of the device is shom in fig. 2. The electron beam and

Fig. 2
the laser are its tho main components.
The latter is installed in the drift region of the accelerator in place of the corresponding segment of the vacuum chamber used for the
electron cooling experiment.

High voltage system
The block-diagram of the high voltage terminal is shown in fig. 3. It is made of 3 iron heads (90 cm high, 1.4 m diameter) connected by ron pipes (3 a long, 20 cm diameter).

The whole system is indersed in SF6 (3 atmospheres) for electric sulation purposes.

The first head holds both the ionic pumps to mantain the vacuum and the electron bean porer supply (an electrostatic cascade ockroft-halton generator, driven by a 3.5 KH square wave oscillator).

It is able to supply a nominal tension of 760 KV with a current of 5 WA and with a ripple of 10^{-4}. It is therefore possible to accelerate The high voltage having at the same time a high quality beam.
ainst as electron heam poner of 2.1 HW . To supply 3.5 kH of power, against an electron beam power of 2.1 MW . To work in a continuous mode,

The second head charge must be less than 0.17 x .
The second head holds the 40 KW power supply for the multistage collector, while the third holds an altemator (380 V three-phases, $50 \mathrm{HZ}, 50 \mathrm{KH}$) able to supply the power necessary to the whole system.

Electron gun
The electrons are produced by a reserve cathode heated at 10500 C .

To balance space charge effects the first five electrodes ar designed in a standard Pierce optics (4). The athers satisfy the criteria of resonant optics (the electrons perform an integer number of Larmor orbits while drifting along the gun).

The accelerating tube consists of a column of 37 costantan electrodes separated by ceramic rings. The total length is about 1.2 a , A special shape of the electrodes has been studied in onder to protect the ceramics from ion current (4).

With this seometry we can obtain a 700 KeV - 3 A beam, 1 cm in dianeter.

After coming out of the gun, the electron beam is bent, by means of toroidal and a dipole magnetic field, and enters the undulator. An analogous magnetic configuration in used to bend the bean in the collector

The collector

The main function of the collector is to recover as many electrons as possible and, at a lower priority, as much energy as feasible.

After the FFI interaction, the electron beam hos lost about 10 KeV and its energy spread is approxinately 10 KeV .

Because of this spread a simple Faraday oup is not the proper solution to recover the beam.

To be able to work in the continuous regime, a maltistage collector has been investigated (5). It is made of several electrodes at the appropriate voltages in order to recover all the electrons and to minimize the energy loss.

The collection efficiency is affected by secondary enission from the anode surfaces. The geonetry of the electrodes has been designed to take care of this difficulty.

In principle the collector is a spectrometer that uses electric and magnetic fields.

To obtain a charge recovery of more than 99%, the calculated energy recovery efficiency is about 60% (5). At the collector about 20 KW of power are needed, 15 of which are lost in the FEL interaction by conversion in electromagnetic waves and 5 dissipated in the collector, which will be properly cooled.

The FEL
The FEL will be essenbled in the 1.5 m long drift region and will give a radiation of about 2.5 mm of minimum wavelength, to match the requirements of the ELFA project (6).

The resonant condition $\lambda \simeq \lambda_{0} / 2 r^{2}$ (rhere λ_{0} is the undulator period and Y the Lorentz factor), imposes a 30 mm period for a 700 ReV electron bear. So the maximan number of undulations we can have is 50 .

This relatively lou number of periods forces the gap between magnets to be as small as possible in order to obtain a reasonably, high wagnetic field.

On the other hand the gap is determined by the height of the haveguide, which is a rectangular cavity with internal dimensions of $60 * 22 \mathrm{~cm}^{2}$

The height depends ultimately on the diameter d of the electron beam (11 mm): in order to have a good superposition between beam and radiation, the height of the waveguide should be more than $2 d$

The rells we assumed be 1.5 m thich and the tho surfaces facins the undulator magnets are ridged in order to withstand the vacuum pressure. The ridges are set between the magnets.

This means that the undulator configuration has a filling factor of $\varepsilon=0.87$, From which we can obtain a magnetic field of 900 Gauss.

The output and input mirrors (the front and back-end sections of the uaveguide) are Brags reflectors. One of them with very hign reflectivity, the other one with a reflectivity of at least 90%.

Conelusions

A tunable FEL in the millimetric band is being constructed. It uses the Electron Beam Facility that is currently being assembled at Laboratori Nazionali INFN at Legnaro

This device will be nodified with the insertion of an undulator to obtain the FEL effect and of a multistage collector to recover the electron bean energy.

The collector is under construction and will be assembled and tested on the bear at the end of 1889. The whole apparstus is expected be operative in 1890 .

References

(1) T.I.Orzechowski et al., Phys.Rev.Lett., (1985) 54889
I.I.Orzechowski et al., Phis.Rev.Lett., (1986) $\underline{57} 2172$
(2) R.Bonifacio, B.H.S.McNail, P.Pierini - Slippage and superrediance in the high-gain FEL
(3) R.Calahrese et al. An electron cooling device in the one He energy region, Proc. of the XII Int. Cone. on High Energy Accelerator, Movosibirsk (1987)
(4) R.Calabrese et al. - Design of the Beam Line and Energ Recovery System for High Energy Electron Cooling Device to be pub, in Il huovo Cimento
(5) I.Boscolo et al. - A High Efficiency Collector for Low Quality Electron Beam Recovery,
6) R.Bonifacio et al. - The ELFA projeot: guidelines for a high goin with ohort elector for g high gain fEL with short electron bunches,

