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Abstract 

Selective electron-cyclotron processes are investigated using the 
phase-space spectra of emission and absorption for arbitrary momentum 
distribution functions. It is shown that, in general, for a system of 
electrons a sharp resonant velocity does not exist because of the finite 
half-width of the radiation spectra. However, the maximum of power 
absorption (emission) determines the velocity range of the predominant 
electrons and can represent the counterpart of the one-particle 
relativistic resonance velocity. It is also shown that, in contrast with 
the Maxwellian distribution, for a non-thermal plasma the emission and 
absorption spectra are not proportional and therefore emission and 
absorption depend on electrons in different regions of the accessible 
phase space. 

I. Introduction 

Emission and absorption of electron-cyclotron waves in a plasma 
with a given momentum distribution are described by the emission and 
absorption coefficients and their determination is a central issue in 
cyclotron radiation processes and related applications as, for instance, 
current drive and diagnosis of non-thermal electrons. However, the 
emission and absorption coefficients are momentum integrated quantities 
and will not display any specific feature of selective wave emission 
and absorption which are of paramount interest for current drive and 
plasma probing. In order to investigate momentum selective resonance 
processes, it is necessary to analize the emission and absorption pro­
files in momentum space. The velocity spectra define the accessible 
region in the phase space where the resonant processes take place. In 
particular, the maxima of the emission and absorption spectra 
characterize the predominant contributions of the resonant electrons. 
As is known, the resonant interaction between an electron of given 
momentum and a wave is determined by the one-particle relativistic 
resonance relation. This is often used to determine the resonant 
velocity of a system of electrons. This qualitative estimate of the 
resonant velocity is in general incorrect. In fact, for a system of 
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electrons the counterpart of the one-particle resonant velocity is 
naturally given by the rraximum of the emission and absorption spectra. 
In contrast with the one-particle resonant velocity, the location of 
the maximum in the parallel and perpendicular directions is well 
determined. However, the half-width of the radiation spectra is in 
general comparable with the value at the maximum and therefore, for a 
system of electrons, it is not possible to define a sharp resonant 
velocity. 

The paper is devoted to this problem and it is organized as follows. 
In Sec. I I, we present the general formulation of the theory of 
electron-cyclotron radiation. In Sec. Ill, we discuss several examples 
of momentum distributions of current interest, i. e., the isotropic 
Maxwellian, the loss-cone distribution and the lower-hybrid sustained 
fast tail; for each case a typical application is discussed. In the 
first case, we derive an analytical formula for the maximum of the 
absorption profile and discuss its relevance in the problem of 
electron-cyclotron current drive for arbitrary harmonics. The loss-cone 
distribution is used to illustrate the deviation between the predominant 
groups of electrons contributing to the processes of emission and 
absorption for a given wave. Finally, in the last case we discuss the 
resonant velocity for a fast tail and the relevance of the perpendicular 
momentum component on the parallel resonant velocity for a system of 
electrons, a central issue in the diagnosis of a current-carrying tail 
using electron-cyclotron wave emission and transmission. The conclusion 
is given in Sec. IV. 

II. General theory of emission and absorption. 

The global results of emission and absorption are the cumulative 
contributions of electrons in a given velocity range, thus, 

-+ . 
where p lS the electron moment urn. For cyclotron resonance 
a: (P)a.:O(T-Y -N p /r.tc) , where T2 := (1+p2/m 2 c 2 ), Y =n<...l /c.J , 

n n "'.'.. n c parallel retractlve lndex and m lS the electron rest mass. 
o-function, we obtain the one-particle resonance relation 

T = Yn + N"p,,/mc 

from which 
2 2 2 2 

(pl../mc) (N"p,,/mc+Yn ) - 1 - (Pit/me) = v.lR 
. 2 . 

Slnce Pl.. > 0, we obtaln P_ < PIt < P+' and 

P ... 

a:(w) n~l JdP" Wn(p,,) , 
p-

where 

(1 ) 

processes 
N" is the 
Using the 
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and we consider for simplicity the case of most interest, i.e., IN .. I< 
1. W (p,,) is proportional to the power absorption per unit interval in 
momeRtum space. Now, from Poynting theorem a:(w )=w/S, where W is the power 
absorption per unit volume and S is the magnitude of the poynting vector, 
and 

W = n 
e 

2 
me l' ( af /at) , cy 

where n is the electron density, 
e 

cc 

J dN" 
-CD 

TLn = Yn(a/oP.l)+(N"P.l/mC)(%p,,) , 

(2 ) 

( 3 ) 

.... 
E is the wave electric field, [] =nJ (p)/p, 

In n 02 =-iJ'(p), n n 
~ 

[]3 =(p,JP.l)J (p), p :;;: k.lp.l/mw , -e is the electron charge, and k is the 
n n . () c () wave vector. USlng Eqs. 2 and 3 , we obtain 

v. 

W ( v,) = - 21'1: ( me ) 3 w 
2 

[ T (D / S ) L f] , ( 4 ) 
n ' p n n v.l=v.lR 

~ ~ 2 22 24 
v = p/mc, v 1. = l' -T.. ,1' = Y +N" v,. , 1 tI = (1 +v" ) and w is the plasma 
frequency. ~e em~ssion c~efffcient ~(w) if obtained fromPthe absorption 
coefficient a(w) using the transformation 

L f ~ -(w2 /8n 3 c 2 )p.lf/mT , 
n 

hence, 

v+ 

~(w) =ngI IdV" Gn(v II ) , 

v_ 

where 

( 5) 

Equations (4) and (5) determine the momentum spectra of the absorption 
and emission coefficients. W (G) describes the relative role of the 
electrons in a given velocity 1ang~ on the global absorption (emission). 
In particular, the value of v for which W (G) is maximum characterizes 

. ". n n. ., the group of electrons WhlCh Ylelds the predomlnant contrlbutlon to wave 
absorption (emission). In the case of a sharp maximum it is possible 
to define the resonant velocity for a system of electrons. Unfortunately, 
for most systems of practical interest this is not the case. Note that, 
for a Maxwellian distribution, G (vu) = BOW (vu), BO = w2 T /87t 3 C 2

, and n n e 
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we obtain that the electrons gl vlng the predominant contribution to 
emission and absorption lie in the same range of velocities. For non­
Maxwellian momentum distributions, G (v,,) is not in general proportional 
to W (VII) and emission and absorpti6n depend on electrons in different 

.n 
reglons of the momentum space. 

Ill. Applications 

III.a Emission and absorption in a Maxwellian plasma. 

We first consider a Maxwellian distribution. In this case 

2 2 2 ~ ~ 2 
W (VII) = [CJ {.l /16WK2(~)]Vl..R [IE·n I Is] _ exp(-~1)' 

n p n vl..-vl..R n 
(6) 

2 
where ~ = me /T. As discussed in Ref. 2, for Nil ;;J; 0, W (v,,) is maximum 
at VII = v"n giveen by (N" > 0) n 

V"n 
2 2 2 4 2 [N"Y

n
- (N -1+Y -Y .) ]/(l-N ) ,. n n " 

2(1 - A) 
2 2 2 2 

A = (N,,~Y ) /4n (1-N
II

) • For small n we have 
2 n 2 2 1/2 

vl..n ~(2n/N"fl)(NII - 1 + Yn ) 
2 

sgn(v II ) = sgn(l-Y +2nY /ll) 
n n n 

For Y < 1 and N,> 0 we obtain 
VII Jia except for 

n 2 2 1/2 
Y < n/~ + (1 + n /fl) ~ 1 + n/~ 

n 

v > a. For Y > 1 and N, > 0, we obtain "n n I 

We obtain that for the predominant group of electrons VII changes sign 
if Y crosses the value Y = 1. This is illustrated by the two examples 
ShOW~ in Fig. 1 (ordinaPy mode, Nil = 0.42, w /w = 0.933), and in Fig. 
2 (extraordinary mode, N = 0.766, w /w = 1.2J, for n = 1 and T = 3 
keV. The same conclusion~ r.old for t~e emission, since for a Maxw€llian 
distribution W (v,,) is proportional to G (VII). 

It is of interest to relate W ~v) with the current drive 
eff~c~enCY. . ~sing 2~3 impUlse-resp2ns; method, the incremental 
efflCleTIcy lS glven by 

a 1 -1 
oJ lop =(e/mc)[N + V"TV(T)-a (-(-»][TV(1')] , 

cy cy " 1 TV 1 

where 

2 CD 

oP = (4tte /m) :El D S(T-nw /w-N"V,,)L f • 
cy n= n c n 

Combining the two equations we obtain 



J /p 
cy cy 

where 

v ... 

- 5 -

v ... 

g ( V It) = (e / mc )[ N" + VII r (1 ) ] lr v (1 ) , 
n n n 

and for the ion charge Z=l 
4 2 3 3/2 1/2. 2 

v(l) (4ne n A/m c )(1-1) / (1+1) (1 - 21 1nl -1) , 
e 

rei) = [212(1+2)ln1-(41-1)(12_1)][1 (12-1)(12- 21 1nl _1)]-1 

(7 ) 

where A is the Coulomb logarithm. It appears from E2. (7) that in the 
low harmonics range of frequencies, v" changes sign for two adjacent 
harmonics and current c~lcellation due \0 harmonic overlap might occur. 
On the other hand, as shown in Ref. 2, for n» 1, sgn(v .. ) = sgn(N

tt
) 

. n .. for any relevant value of Y and no cancellat10n occurs. Th1S 1S 
illustrated in Fig. 3, where t~e resonant momenta are shown for w/w ~ 

. / c 10.4, T = 50 keY, N" = 0.77, pololdal angle X = 1t 2, and the relevant 
e. .. values of the larmon1c number n. The trapp1ng cone 1S also shown for 

£ = r/R = 0 . 1 (solid line) and 0.2 (dashed line). 

III.b Emission and absorption by a loss-cone distribution. 

In order to illustrate the deviation between G (v,,) and W (v,,), we 
n n 

consider the loss-cone momen~um distribution 

f 

1/2 1+-f/2 
~" fl.l 

2/ 2/ " . where f.'1. = mc T.l' f.'" = mc T tI and -f ~ s a g~ ven number represent1ng the 
m~rror2effect. For simplicity, we consider a tenuous plasma, for which 
N .l=1-N" According to Eqs. (4-5), this implies that W and G vaniSh for 
Nil-H. For -.e 0 and TtI=T.l' we obtain the MaxwelliarP distribution. For 
..( = 0 but T" ~ T.l Eqs~ (4-5) yield 

(8) 

where W = W (v ) BO (w, T1.). Since G /W is not constant in momentum space, 
Kirchho~f' s rla~' is not valid for trfe aHisotropic Maxwellian distribution, 
as appears in Fig. 4, for n=2, w=2~ , N,=0.5 , T1.=50 keY, and T =2 keY. c ' 11 

However, Fig. 4 shows that the two processes are determined by electrons 
in the same ranges of v" and V.la 

For a loss-cone distribution, i.e., ~*O, Eqs. (4-5) yield 

(9) 

This equation shows that now the sign of G /W can change. In particular , . n. n. . . . 
for small V.l

R
' W can become negat~ve, 1.e., stl.mulated emlSS10n lS 

dominant comparecfto "true" absorption. This is illustrated in Fig. 5, 
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for the parameters of Fig. 4 and ~=2. It appears that for the loss-cone 
distribution two distinct groups of electrons are mainly responsible 
for stimulated emission and "true" absorption, for VII < 0.1 and v

ll 
> 

0.1, respectively. Note that, for V"~O.l, the spontaneous emission is 
maximum whereas the global absorption is practically zero. This 
illustrates the microscopic behaviour of a system of electrons for which 
the Kirchhoff's law is not applicable. 

III.c Emission and absorption by the lower-hybrid tail. 

We now discuss electron-cyclotron emission and absorption by a 
special non-Maxwellian system, i.e., the current carrying electron tail 
generated by lower-hybrid waves. In this case, the momentum distribution 
is computed by means of a 3-D Fokker-Planck code, solving the equation 

(10) 

where 

a of 
ou" DLH au" 

(Of/?t?COll is the high-velocity limit of the relativistic FOkker-~lan~k 
colllSlon operator, the brackets < > denote f~x-surface averaglng ln 
toroidal geometry and u" = p,/p = p .. /(mT ) • For the lower-hybrid 
., . . e. e . 

dlffuslon coefflclent we adopt a very slmple model, l.e., we assume DLH 
constant for P1 < PIt < P2 and vanishing outside this interval. The values 
of PI and P2 are rela~ed to the boundaries of the lower-hybrid N" 
spectrum. In t~e following example we refer to typical Torr3 sul?.~ 
parameters, i.e., a = 70 cm, R;:; 225 cm, T = 3 keV, n = 5 x 10 cm , 
and we choose DL = 0.8, u = P /p (0) ;:; f.s, u

2 
= 7.

e
Equation (10) is 

< H 1 1 e. . 
solved for 0 _ r ~ 40 cm Oh eleven magnetlc surfaces, untll steady-state 
is attained. In Figs. 6 and 7 we present the parallel distribution f" 
and the perpendicular temperature T..l versus un for several values of 
r, i.e., a) r = 0, b) r = 20 cm, c) r ;:; 40 cm. Note that the complicate 
spatial dependence of f" and T.l could hardly be described by simple models 
and its evaluation requires the use of a 3-D Fokker-Planck code. The 
distribution function shown in Figs. 6 and 7 is used to evaluate the 
absorption of electron-cyclotron waves. By an appropriate launching 
of the extraordinary mOd~ it is ~ossi~le to.transfer electron-cyclotrgn 
wave energy to any deSlred reglon In ordlnary and momentum spaces . 
For instance, for B (0) = 4.5 Tesla, wave frequency f ;:; 100 GHz, top 
launching at an angle <p ;:; 1050 with respect to the toroidal magnetic 
field, the maximum power deposition occurs at r ; 16 cm, Where w /w = 

.. .. - . c . 
1.35. The locatlon of maxlmurn power deposltlon In momentum space ~s 
found by plotting W 1 (Un) for the numerically computed distribution 
function, as sr..own i'n Fig. S. Note that v"R is appreciably different 
from v , where W = O. The value Vu = v is often considered as 
represe+ntative of~he resonant velocity for the lower-hybrid sustained 
tail. Now, for Vu = v + we obtain v.l ;:; o. The result of Fig. 8 clearly 
shows that for a system of electrons the finite value of v.l is essential 
for determining both the v" position of maximum absorption and the 
half-width of the absorption spectrum. It appears that most of the wave 
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power is absorbed for 7 < U
It 

< 8, i.e., in the far end of the electron 
tail. In this case, the position of the maximum of W does not change 

. . .. . 1.. . 
dur~ng the quaslllnear evolutlon of the electron dlstrlbutlon functlon 
at high electron cyclotron power, as also shown in Fig. 8 for P ~ 0.4 
MW. The localization in momentum space of the perturbation in!u~ed by 
the electron-cyclotron wave pulse at 100 GHz gives rise to a localized 
change in the absorption and emission coefficients of any electron­
cyclotron wave used to probe the plasma. For instance, we now consider 
wave transmission and emission in the vertical direction, i.e., normal 
to the toroidal magnetic field and to its gradient, at frequencies close 
to the second harmonic, for the extraordinary mode. The transmission 
coefficient for an extraordinary wave propagating along a poloidal 
diameter is defined by 

t (w) 
rx 

+a 

exp[-J dx ax(x)] , 
-a 

where x is the abscissa along the diameter. The radiative temperature 
T of the radiation emerging at one of the two ends of the poloidal 
rx. . dlameter ±a, ln the absence of wall reflectlons is defined by 

T (±a,"-l) 
rx 

where a (~) is the absorption (emission) coefficient6 for the 
extraorcllnaryXmode at the second harmonic. In Figs. 9 and 10, we show 
the incremental transmission coefficient and radiative temperature, 
respectively, i.e., the difference between those quantities in the 
presence and in the absence of the electron-cyclotron power. It appears 
that both the incremental spectra have pronounced peaks in frequency, 
related to the peak of W (u

ll
). Transmission and emission measurements 

. 1 . . . . at the second harmonlc can then help for an experlmental lnvestlgatlon 
of selective resonance absorption near the fundamental gyrofrequency. 

IV. COnclusions 

The general problem discussed in this paper is the definition of 
the electron-cyclotron resonance velocity for a system of electrons with 
an arbitrary momentum distribution. This is a central problem in the 
theory of selective resonance processes as, for instance, current drive, 
electron heating via superthermal electrons , and diagnosis of non­
Maxwellian distributions. The adopted procedure is naturally the study 
of the emission and absorption profiles in the momentum space. For 
electron momentum distributions for which the power absorption 
(emission) profile has a sharp maximum within the accessible phase space, 
the position of the maximum represents the counterpart of the one­
particle resonance velocity. However, for the three cases of momentum 
distributions considered in the paper, i.e., the isotropic Maxwellian, 
the loss-cone, and the lower-hybrid sustained tail, we have found a 
relatively broad maximum determined by the perpendicualr temperature. 
Therefore, in general, it is only possible to determine the velocity 
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range of the electrons which give the predominant contribution to 
emission and absorption. The case of the resonant velocity for 
electron-cyclotron wave absorption by the fast lower-hybrid tail is 
particularly instructive. We have found that the maximum of power 
deposition differs appreciably from the value v which is the solution 

+ of the simplified one-particle resonance (i.e., for Pi = 0). This is 
of relevance in the problem of radial cogtrol of the lower-hybrid current 
by electron-cyclotron wave absorption and diagnosis of the tail dis­
tribution gy electron-cyclotron wave transmission (emission) 
measurements . This study has also shown the role of the appropriate 
Fokker-Planck code in the problem of diagnosing the superthermal electron 
distribution, since ·the absorption (emission) spectra are very sensitive 
to the perpendicular momentum distribution. We have also shown that 
for systems with inverted population distributions there is no simple 
relation between emitting and absorbing electrons resonating with a given 
wave. This is of relevance in the problem of radiation transfer. Finally, 
it is shown that the power absorption profile determines the efficiency 
of electron-cyclotron current drive and therefore an experimental 
investigation of the ratio J/p is in principle possible through wave 
transmission measurements of electron cyclotron waves. 
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Figure captions 

Fig. 1 W
1

(u n ) for the ordinary mode, c.J /w = 0.933, Nil = 0.42. 
Fig. 2 W (uti) for the extraordinary mo~e, w /w = 1.2, Nil :;: 0.766. 
Fig. 3 Tlapping cones for X :;: n/2, £ ~ 0.1 (~Olid) and £ :;: 0.2 (dashed); 

locations of the resonant velocities v" , v~ , for w/w :;: 10.4, 
n n c 

T = 50 keV, N = 0.77, and n = 7 - 14. 
e " 

Fig. 4 G and W in arbitrary units versus v" for an anisotropic 
n . n. ., 2 2 5 T Maxwelllan dlstrlbutlon and n= , w= wc' N,,==0.5, T.L= 0 keY, ,,=2 

Fig. 5 *~Vin Fig. 4 for a loss-cone distribution with ~=2. 
Fig. 6 -In fit vs u" sgn(u,,) for a) r=Oj b) r=20 cm; c) r=40 cm. 
Fig. 7 Perpendicular temperature in keY for the conditions of Fig. 6. 
Fig. 8 W (u ) for the distribution function shown in Figs. 6,7 and for 1 ,. 

P
Ee 

:;: 0.4 MW. 
Fig. 9 Incremental transmission ~t vs frequency for PEC = 0.4 MW. 
Fig.l0 Incremental emission ~T fb~ the conditions of Flg. 9. 
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