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Abstract

Selective electron-cyclotron processes are investigated using the
phase~space spectra of emission and absorption for arbitrary momentum
distribution functions. It is shown that, in general, for a system of
electrons a sharp resonant velocity does not exist because of the finite
half-width of the radiation spectra. However, the maximum of power
apsorption (emission) determines the velocity range of the predominant
electrons and can represent the counterpart of the one-particle
relativistic resonance velocity. It is also shown that, in contrast with
the Maxwellian distribution, for a non-thermal plasma the emission and
absorption spectra are not proportional and therefore emission and
absorption depend on electrons in different regions of the accessible
phase space.

I. Introduction

Emission and absorption of electron-cyclotron waves in a plasma
with a given momentum distribution are described by the emission and
absorption coefficients and their determination is a central issue in
cyclotron radiation processes and related applications as, for instance,
current drive and diagnosis of non-thermal electrons. However, the
emission and absorption coefficients are momentum integrated quantities
and will not display any specific feature of selective wave emission
and absorption which are of paramount interest for current drive ang
plasma probing. In order to investigate momentum selective resonance
processes, it is necessary to analize the emission and absorption pro-
files in momentum space. The velocity spectra define the accessible
region in the phase space where the resonant processes take place. In
particular, the maxima of the emission and absorption spectra
characterize the predominant contributions of the resonant electrons.
As 1s known, the resonant interaction between an electron of given
momentum and a wave 1is determined by the one-particle relativistic
resonance relation. This 1s often used to determine the resonant
velocity of a system of electrons. This qualitative estimate of the
resonant velocity is in general incorrect. 1In fact, for a system of



electrons the counterpart of the one-particle resonant velocity 1is
naturally given by the maximum of the emission and absorption spectra.
In contrast with the one-particle resonant velocity, the location of
the maximum in the parallel and perpendicular directions 1is well
determined. However, the half-width of the radiation spectra is in
general comparable with the value at the maximum and therefore, for a
system of electrons, it is not possible to define a sharp resonant
velocity.

The paper is devoted to this problem and it is organized as follows.
In Sec. II, we present the general formulation of the theory of
electron-cyclotron radiation. 1In Sec. III, we discuss several examples
of momentum distributions of current interest, i.e., the isotropic
Maxwellian, the loss—cone distribution and the lower-hybrid sustained
fast tail; for each case a typical application is discussed. In the
first case, we derive an analytical formula for the maximum of the
absorption profile and discuss its relevance in the problem of
electron-cyclotron current drive for arbitrary harmonics. The loss-cone
distribution is used to illustrate the deviation between the predominant
groups of electrons contributing to the processes of emission and
absorption for a given wave. Finally, in the last case we discuss the
resonant velocity for a fast tail and the relevance of the perpendicular
momentum component on the parallel resonant velocity for a system of
electrons, a central issue in the diagnosis of a current-carrying tail
using electron-cyclotron wave emission and transmission. The conclusion
is given in Sec. IV.

I1. General theory of emission and absorption.

The global results of emission and absorption are the cumulative
contributions of electrons in a given velocity range, thus,

2(w) = [aB a®) = §, [« @), (1)

where ; is the electren momentum. For cyclotron resonance processes
a (p)=&(y~Y_~N, p,/mc) , where g2 = (1+p?/m?c?), ¥ =nw /w , N, is the
parallel refractive index and m is the electron reft mass. Using the
d-function, we obtain the one-particle resonance relation

T = le + N"p"/mc ’
from which

2 2 2 2
(py/mc)” = (N,p,/mc+Y )™ = 1 = (p,/mc)” = Vi .

Since pi > 0, we obtain p_ < p, < P, and

P.
a@) = % Jap, w (2,

where

2 2.k 2
p,=mc [ N, ¥ & (N, -1+Y) 1/(1-N)



and we consider for simplicity the case of most interest, i.e., |N“|<
1. wn(p") is proportional to the power absorption per unit interval in
momentum space. Now, from Poynting theorem «(w)=W/S, where W is the power
absorption per unit volume and S is the magnitude of the Poynting vector,
and

W = Jdﬁ 2 (3f/3t) (
= ne p mc Y cy ! 2)

where n, is the electron density,

pF, . 2= T
(50)oy= 4™ £ lmdN" (1/pL)L D _8(y=¥ -N,p,/mc)L £ (3)
_ 2 ﬁ 2
1L = ¥ (3/8py)+(N,p)/mc)(3/2p,) , D= (p/8w)[E-T |
> . . _ i
E is the wave electric  fielgd, Hln—an(p)/p, ﬂzn—*lJn(p),
ﬂ (P"/pl)Jn(p) p = k|p;/mw _, —e is the electron charge, and k is the

c i
wave vector. Using Egs. (2) and (3), we obtain

V.
z(w) =n£1 Jdv" wn(v") ,
v.
W (v,) = -2n(mc) @’ [§(D_/S)L_£] , (4)
n " p n n V.sz-LR
- -
v = p/mc, vi =1, Tﬁ P, =Y NV, o7, = (14 )’i and w_ 1s the plasma
frequency. e emlsclon coefflc1ent Blw) i obtalned from the absorption

coefficient «(w) using the transformation

— 2 32
Lnf » ~(w?/8n%c?)p;f/my ,

hence,
v,
flw) =n§l Jdv" Gn(v") ,
V.
where
Gn(v“) = (m2/8n302)2n(mc)302c[(Dn/S)vlf]vl:le. (5)

Equations (4) and (5) determine the momentum spectra of the absorption
and emission coefficients. W_ (G_) describes the relative role of the
electrons in a given velocity range on the global absorption (emission).
In particular, the value of v, for which W_ (G_) is maximum characterizes
the group of electrons which yields the predominant contribution to wave
apsorption (emission). In the case of a sharp maxXimum it is possible
to define the resonant velocity for a system of electrons. Unfortunately,
for most systems of practical interest this is not the case. Note that,
for a Maxwellian distribution, Gn(v") = Bown(v"), B, = sze/Snﬂci, and



we obtain that the electrons giving the predominant contribution to
emission and apbsorption lie in the same range of velocities. For non-
Maxwellian momentum distributions, G_(v,) is not in general proportional
to wn(v") and emission and absorption depend on electrons in different
regions of the momentum space.

III. Applications

III.a Emission and absorption in a HMaxwelllan plasma.

We first consider a Maxwellian distribution. In this case

22 2 2 2 2
wn(v“) = [wpg /leKz(y)]le [|E nnl /S]vl=leexP( w1 (6)
where y = mcz/Te. As discussed in Ref. 2, for N, # O, wn(v") is maximum
at v, = v, given by (N, > 0)

- 2 2 2.k 2 2 2 2
Van™ [N"Yn— (N -1+ -V ¥) 1/7(1-N)) vi, = L ¥/(-ND)

1+ (P19 0% - [(1-N2) 2/t ean(wP-14v2) /3212
¥ = n’’"'n n n’’n

2(1 - )

A= (N"yYn)2/4n2(1—N3)2. For small n we have
2 2.1/2

2 2
~ - = —_ -+ .
Vi, ~(2n/N u)(N, - 1 + Yn) . sgn(v"n) sgn(1 Y 2nYn/y)
For Y <1 and N, > 0 we optain v, > 0. For ¥ > 1 and N, > 0, we obtain
J n n
Van 0 except for

"
2,1/2

o< n/ug + (1 + nz/p ) =~ 1+ n/y

We obtain that for the predominant group of electrons v, changes sign

if Yn crosses the value Yn = 1. This is illustrated by the two examples
shown in Fig. 1 (ordinary mode, N, = 0.42, w /w = 0.933), and in Fig.
2 (extraordinary mode, N, = 0.766, w /w = 1.2, for n = 1 and T = 3

keV. The same conclusions hold for the emission, since for a Maxwgﬁlian
distribution W_(v,) is proportional to G_(v,).

It is of interest to relate W _{v,) with the current drive
efficiency. Using Eh impulse-response method, the incremental
efficiency is given by’

_ 8 1 -1
Bch/SPcy—(e/mC)[N"+ v"xp(1)31(1V(1))][TV(7)] ,

where

2 ©
SPcy— (4me /m)n§l Dn8(1—nwc/w—N v )Lnf .

"o

Combining the two equations we obtain



v, v,

av,g(v,) W (v,) / & ldv" v, (7)

g /P = 1 [
cy’ cy n=L g

where

g(v,) = (e/mc)[N, + V"F(Tn)]/wnv(xn) ,

and for the ion charge Z=1

(4ne4neA/m2c3)(1—1)3/2 / (1+1)l

v(y) /2(12— 2y 1ny -1) ,

r'(y) [212(7+2)1n1—(4x—1)(12—1)][7 (72—1)(12- 2y 1ny -l)]_l )

where A 1s the Coulomb logarithm. It appears from Eg. (7) that in tne
low harmonics range of frequencies, v, changes sign for two adjacent
harmonics and current cancellation duelko narmonic overlap might occur.
On the other hand, as shown in Ref. 2, for n >> 1, sgn(v, ) = sgn(N,)
for any relevant value of Y and no cancellation occurs. This 1is
illustrated in Fig. 3, where éhe resonant momenta are shown for w/w =~
10.4, Te = 50 keV, N, = 0.77, poloidal angle x = n/2, and the relevant
values Of the !armonic number n. The trapping cone 1s also shown for
e =r/R = 0.1 (s0lid line) and 0.2 (dashed line).

III.b Emisslon and absorption by a loss—cone distribution.

In order to 1illustrate the deviation between Gn(v") and wn(v"), we
consider the loss-cone momentum distribution

1/2  1+2/2
By HL 1 y, 5
f= viexp(-g v|/2 -¢
(2n)3/2(mc)3 2£/2r(1+1/2)

v2/2 )

" "

where )= mcz/Tl, g,= mcz/T" and £ 1s a given number representing the
m%rror effect. For simplicity, we consider a tenuous plasma, for which
N|=1-N_ According to Egs. (4-5), this implies that W_ and G_ vanish for
N,»1. For £ =0 and T, =T, we obtain the Maxwellian aistribution. For
£ =0 Dbut T, # T Egs. (4-5) yield

= 1
Gn/wn - y’l[ Ynf"_]_ * N“y"V" ] M (8)

where W_=W_(v,)B (w,T;). Since Gn/ﬁn is not constant in momentum space,
Kirchhoff's law is not valid for the anisotropic Maxwellian distribution,
as appears in Fig. 4, for n=2, w=2w_, N, =0.5 , T,=50 keV, and T =2 keV.
However, Fig. 4 shows that the two processes are determined by electrons
in the same ranges of v, and v,.

For a loss—cone distribution, i.e., £#0, Egs. (4-5) yield

— 2 -1
G /W = wyl ¥ (u=2/vi)+ Moo, 17 (9)

This equation shows that now the sign of Gn/ﬁ can change. In particular,
for small v,;_, W _can become negative, i.e., stimulated emission is
dominant compared to "true" absorption. This is illustrated in Fig. 5,



for the parameters of Fig. 4 and £=2. It appears that for the loss-cone
distribution two distinct groups of electrons are mainly responsible
for stimulated emission and "true" absorption, for v, < 0.1 and v, >
0.1, respectively. Note that, for v, =~0.l1, the spontaneous emission is
maximum whereas the global absorption 1is practically zero. This
illustrates the microscopic behaviour of a system of electrons for which
the Kirchhoff's law is not applicable.

ITI.c Emission and absorption by the lower-hybrid tail.

We now discuss electron-cyclotron emission and absorption by a
special non-Maxwellian system, i.e., the current carrying electron tail
generated by lower-hyprid waves. In this case, the momentum distribution
is computed by means of a 3-D Fokker-Planck code, solving the equation

of of of
—— = _ + _
ot <(8t)LH> <( Bt)coll> ! (10)
where

of 3 of

—_— - — D -
(at)LH du, LH 3u,

(9f/0t) is the high-velocity limit of the relativistic Fokker—-Planck
collision operator, the brackets < > denote flux-surface averaging in
toroidal geometry and u, = p,/p_ = p,/(mT_)°. For the lower-hybriad

diffusion coefficient we adopt a very simple model, i.e., we assume D
constant for p, < p, < p, and vanishing outside this interval. The values
of pl and p. are reléied to the boundaries of the lower-hybrid N,

spectrum. En the following example we refer to typical TorEBSuB
parameters, i.e., a =70 cm, R=225cm, T = 3 keV, ne =5x 10 cm o,
and we choose D = 0.8, u, =p./p (0) = f.a, u_. = 7. Equation (10) is

solved for 0 £ r £ 40 cm or ‘eleven magnetic surfaces, until steady-state
is attained. In Figs. 6 and 7 we present the parallel distribution f
and the perpendicular temperature T, versus u,  for several values of
r, i.e., a) r =0, b) r=20cm, c) r = 40 cm. Note that the complicate
spatial dependence of f, and T; could hardly be described by simple models
and its evaluation requires the use of a 3-D Fokker-Planck code. The
distribution function shown in Figs. 6 and 7 is used to evaluate the
absorption of electron-cyclotron waves. By an appropriate launching
of the extraordinary mode it is possible to transfer electron-cyclotron
wave energy to any desired region in ordinary and momentum spaces .
For instance, for B(0) = 4.5 Tesla, wave frequency f = 100 GHz, top
launching at an angle ¢ = 105° with respect to the toroidal magnetic
field, the maximum power deposition occurs at r = 16 cm, where wc/w =
1.35. The location of maximum power deposition in momentum space is
found by plotting W (u,) for the numerically computed distribution
function, as shown ih Fig. 8. Note that vV, 18 appreciably different

from v, , where W,6 = 0. The value v, = v _ 1is often considered as
representative of'%he resonant velocity for the lower—-hybrid sustained
tail. Now, for v, = v, we obtain v; = 0. The result of Fig. 8 clearly

shows that for a system of electrons the finite value of v, is essential
for determining both the v, position of maximum absorption and the
half-width of the absorption spectrum. It appears that most of the wave



power 1s absorbed for 7 < u, < 8, i1.e., in the far end of the electron
tail. In this case, the position of the maximum of W, does not change
during the guasilinear evolution of the electron distribution function
at high electron cyclotron power, as also shown in Fig. 8 for P 0.4
MW. The localization in momentum space of the perturbation 1né%ced by
the electron-cyclotron wave pulse at 100 GHz gives rise to a localized
change in the absorption and emission coefficients of any electron-
cyclotron wave used to probe the plasma. For instance, we now consider
wave transmission and emission in the vertical direction, i.e., normal
to the toroidal magnetic field and to its gradient, at frequencies close
to the second harmonic, for the extraordinary mode. The transmission
coefficient for an extraordinary wave propagating along a poloidal
diameter is defined by

+a

trx(w) = exp[—J_adX ax(x)] ,

where X 1s the abscissa along the diameter. The radiative temperature
T of the radiation emerging at one of the two ends of the poloidal
diameter *a, in the absence of wall reflections is defined by

+a ta
——-‘2"; © | ax g (xexpl 7 [ ax'a (x)]
w -a X

(+a w) =

where « (B.) is the absorption (emission) coeff1c1ent6 for the
extraord§nary mode at the second harmonic. In FPigs. 9 and 10, we show
the incremental transmission coefficient and radiative temperature,
respectively, i.e., the difference between those quantities in the
presence and in the absence of the electron-cyclotron power. It appears
that both the incremental spectra have pronounced peaks in frequency,
related to the peak of W _(u,). Transmission and emission measurements
at the second harmonic can then help for an experimental investigation
of selective resonance absorption near the fundamental gyrofrequency.

IV. Conclusions

The general problem discussed in this paper is the definition of
the electron-cyclotron resonance velocity for a system of electrons with
an arbitrary momentum distribution. This is a central problem in the
theory of selective resonance processes as, for instance, current drive,
electron heating via superthermal electrons , and diagnosis of non-
Maxwellian distributions. The adopted procedure is naturally the study
of the emission and absorption profiles in the momentum space. For
electron momentum distributions for which the power absorption
(emission) profile has a sharp maximum within the accessible phase space,
the position of the maximum represents the counterpart of the one-
particle resonance velocity. However, for the three cases of momentum
distributions considered in the paper, i.e., the isotropic Maxwellian,
the loss-cone, and the lower-hybrid sustained tail, we have found a
relatively broad maximum determined by the perpendicualr temperature.
Therefore, in general, it is only possible to determine the velocity



range of the electrons which gilive the predominant contribution to
emlssion and absorption. The case of the resonant velocity for
electron-cyclotron wave absorption by the fast lower—-hybrid tail is
particularly instructive. We have found that the maximum of power
deposition differs appreciably from the value v, which i1s the solution
of the simplified one-particle resonance (i.e., for p; = 0). This is
of relevance in the problem of radial coptrol of the lower—-hybrid current
by electron-cyclotron wave absorption” and diagnosis of the tail dis-
tribution Yy electron-cyclotron wave transmission (emission)
measurements . This study has also shown the role of the appropriate
Fokker-Planck code in the problem of diagnosing the superthermal electron
distribution, since the absorptiocn (emission) spectra are very sensitive
to the perpendicular momentum distribution. We have also shown that
for systems with inverted population distributions there is no simple
relation between emitting and absorbing electrons resonating with a given
wave. This is of relevance in the problem of radiation transfer. Finally,
it 1s shown that the power absorption profile determines the efficiency
of electron-cyclotron current drive and therefore an experimental
investigation of the ratio J/P is in principle possible through wave
transmission measurements of electron cyclotron waves.
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Figure captions

Fig. 1 W_(u,) for the ordinary mode, w_/w = 0.933, N, = 0.42.

Fig. 2 wl(u") for the extraordinary moge, w /= 1.2, N, = 0.766.

Fig. 3 Trapping cones for X = n/2, ¢ = 0.1 (solid) and ¢ = 0.2 (dashed);
locations of the resonant velocities Vant Vig’ for m/wc = 10.4,
Te = 50 keV, N, = 0.77, and n = 7 - 14.

Fig. 4 G, and ﬁn in arbitrary units versus v, for an anisotropic
MaXwellian distribution and n=2, w=2w_, N,=0.5, T;=50 keV, T,=2

Fig. 5 Egvin Fig. 4 for a loss—cone distribution with 4£=2.

Fig. 6 -1n f, vs v, sgn(u,) for a) r=0; b) r=20 cm; c) r=40 cm.

Fig. 7 Perpendicular temperature in keV for the conditions of Fig. 6.

Fig. 8 wl(u“) for the distribution function shown in Figs. 6,7 and for
P = 0.4 MW.

Fig. 9 InCremental transmission Atrx vs frequency for P c = 0.4 MW.

Fig.10 Incremental emission ATrx for the conditions of Elg. 9.
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