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Analytical expressions for the weakly relativistic dielectric tensor near the
electron-cyclotron frequency and harmonics are obtained to any order in finite-
Larmor-radius effects for a bi-Maxwellian distribution function. The dielectric
tensor 1s written in terms of generalized Shkarofsky dispersion functions, whose
properties are well known. Relevant limiting cases are considered and, in
particular, the anti-Hermitian part of the (fully relativistic) dielectric tensor is
evaluated for two cases of strong temperature anisotropy.

1. Introduction

One of the standard forms of the (relativistic) dielectric tensor ¢, relevant to
the study of the interaction between magnetized plasmas and electromagnetic
waves, is characterized by integration over the momentum variables, e.g. p,
and p;, the momenta perpendicular and parallel to the magnetic field, a time
integration and an infinite sum over harmonics of terms containing the product
of two Bessel functions whose argument depends on p, (Bornatici ef al. 1983 a).
More specifically, in the reference frame in which the equilibrium magnetic field
B, = B,z and the wave vector k = k, X+ k, Z, the relativistic dielectric tensor e
can be written in the form (only the contribution from electrons is considered)
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with J, (b) the Bessel function of the first kind of order » (the harmonic number)
and argument b = N, (v/w,.)p,/me, and J,(b) = dJ,(b)/db; (V™)* denotes the
complex conjugate of V. Furthermore, y = [1+(p/mc)*}t and f, = fo(p., p,) is
the (gyrotropic) equilibrium distribution function of the electrons, normalized
to unity ; N, and N, are the wave rvefractive indices respectively perpendicular
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320 M. Bornatici, G. Chiozzi and P. De Chiara

and parallel to the magnetic field, and w, and w, (> 0) are respectively the
plasma and cyclotron frequencies of the electrons.

The last term on the right-hand side of (1) requires some comment. Of course,
it is identically zero for an isotropic distribution function, i.e. for Ff, = 0.
When summed over harmonics, the corresponding off-diagonal elements are
identically zero and only the (z,2) element survives; in fact, explicitly,

@
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It is only when considered along with (4), but not term by term, that the
dielectric tensor (1) possesses the symmetries relations e,, = ¢,, and ¢,, = —¢,,.
In this paper the form (1) together with (4) is uged. On the other hand, the anti-
Hermitian part of the dielectric tensor, ¢, ;; is connected solely with the second
term on the right-hand side of (1). More specifically, integration over ¢ (Bekefi
1966) produces the resonant denominator y — N, (py/me) — (nw,/w), and in the
limit in which the imaginary part of w and/or k is small (so that the Plemelj
formula is applicable), one finds
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From (3) and (5) it appears that the effect of the anisotropy of the distribution
function, accounted for through F’fo, enters in combination with ¥,.

The possibility of analytically performing the integration over momentum
variables as well as the sum over the harmonie numbers in (1) and (5) depends
on the actual form of the distribution function f;. In particular, for a
(relativistic) loss-cone-type distribution, a fully relativistic calculation can be
performed analytically, with the sole exception of the ¢ integration in (1) (cf. for
example the second of Trubnikov’s formulae for a relativistic Maxwellian
(Bornatici et ol. 19834)); in particular, in the weakly relativistic limit (y =
1+ p*/2m*c*, me* /T > 1), €5 can be expressed in terms of the generalized
Shkarofsky functions studied by Robinson (1987). The anti-Hermitian part (5)
of the dielectric tensor can also be expressed in the form of an infinite sum over
harmonics of terms, each of which contains modified Bessel functions (Bornatici
& Ruffina 1985; Ziebell 1988).

For a bi-Maxwellian (7] # T} distribution, on the other hand, only one of the
integrations in (1) can be carried out analytically in the fully relativistic case
(Tsang 1984), whereas in the weakly relativistic limit both momentum
integrations can again be performed analytically (Tsai et al. 1981 ; Lam, Scharer
& Audenaerde 1984), as shown in §2. Relevant limiting cases of the general
dielectric tensor thus obtained are considered in §3, while the limits of strong
temperature anisotropy are investigated in §4. In particular, with reference to
€,.4 Only, the integration over momentum space can be carried out analytically,
for the fully relativistic case, in the limit of strong temperature anisotropy, i.e.
for T\ # 0 and 7} = 0 (two-dimensional Maxwellian), or 7} + 0 and T = 0 (one-
dimensional Maxwellian). These cases are also considered in §4. Our conclusions
are summarized in §5. A few mathematical details of the calculation are given
in Appendices A and B.
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Relativistic dielectric tensor 321

2. Weakly relativistic dielectric tensor for a bi-Maxwellian distribution

In the weakly relativistic approximation and for the bi-Maxwellian
distribution function
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(7, and T, being the temperatures respectively parallel and perpendicular to the
magnetic field) both the p, and p, integrations in (1) can be carried out
analytically, as shown in detail in Appendix A, and the dielectric tensor can be
expressed in terms of the dispersion function '
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with ¢ and ! respectively half-integer and integer positive numbers,
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I, (x) being a modified Bessel function. With reference to (7), one finds the

following.

(i) The effect of the temperature anisotropy is present explicitly both in the
denominator of the integrand and in the argument of the I', functions.

(i) In the isotropic limit, i.e. 7) =T, (7) reduces to the generalized
Shkarofsky function studied by Robinson (1987).

(iii) In the non-relativistic limit, i.e. (1—17) = (L—1T /7)) = 1,
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where Z is the usual non-relativistic dispersion function.
(iv) Using the series representation of I' (x) given by (A 6), one can express

R in terms of a series in the Larmor parameter A, i.e.
w
n) — kHn
R(],l =2 ak.hzf/\l | IWq,k+l+tn|> 9)
k=0

a _ (— l)k[2(|n|+k)] ! —(k+In)
T ) 4+ k) 2lnl + k) ! ’

where

and

i ﬂ: = 3 “ exp[izn(ﬂ])’r_a”72/(l”“7:’1')]
ﬂ/().ﬂ(zn(ql)x a'\l ’ 7“) = ZJ; dr (1 _1:1_)4 (1 —iTTL/ﬂﬂp (10{1)

1s a generalization to the anisotropic-temperature case of the weakly relativistic
Shkarofsky dispersion function (Shkarofsky 1966)
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whose analytical properties are well known (Maroli & Petrillo 1981 ; Krivenski
& Orefice 1983 ; Shkarofsky 1986; Robinson 1986).

(v) Considering explicitly the case for which j1—1;/T,| < 1 and expressing
(1—+7T,/7,)7? in terms of the corresponding series representation, 1.e.
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one has, from (10a),
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(vi) From (11) and the expression for the imaginary part of W, (Maroli &
Petrillo 1981), one has for the imaginary part of W, ,,
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whereas ImW, ,=0 for N +2(nw /o—1)<0.
In particular, in the non-relativistic limit, i.e. for
Ni > Max {2 ‘ oy ,i}, (14)
w e

by using the asymptotic expansion of the I, function in (12), one obtains
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where Z({,) is the familiar non-relativistic plasma dispersion function of
argument §, = (%/;“)% (0 —nw,)/k,c. Note that (15) is independent of the
perpendicular temperature. '

For the explicit expression of the dielectric tensor for the distribution (6), one
finds in terms of the functions (7), and to arbitrary order in finite-Larmor-
radius (FLR) effects,
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where z, = z,(7}) and R/} is as in (7), but w1th I',(x) = dT,(x)/dz in place of
I',(z). In particular, using (A 7), one can express R? in terms of a series, in
analogy to (9):
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Note that from (7) it follows that
oR™
(7; '= =R — —RP
aRq(n; R(n) (n) (n)
8N“ = .U'HNH( o — 2B+ R ),

with ¢ =3 From (16) it appears that the temperature-anisotropy effect
connected with 1T, /7, enters combination with either N, or nw./w.

A convenient form of the dielectric tensor (16) is the series representation,
which is obtained by applying (9) and (17):
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where W= Wy (a0 g W (2T i ) (19)
with W, , defined by (10a). The upper (lower) signs in (18a, ¢) refer to the upper
(lower) term on the left-hand side of the corresponding equation. In the
isotropic limit the dielectric tensor (18 a—d) reduces to the expression obtained
by Shkarofsky (1986).

It is worth noting that, once the dielectric tensor for a bi-Maxwellian
distribution is known, one can obtain the corresponding dielectric tensor for the
loss-cone distribution function (including temperature anisotropy)

. i 0 P S R
POV T8 ememT \2mT) TP\ T 2mT, " 2m T

through the relation (Tsai et al. 1981; Lam et al. 1984)
(—1)" 1 &
o TRt
where ¢,(1 + 0) denotes the dielectric tensor for the distribution (20a) with loss-
cone index I, while e4(l = 0) is the dielectric tensor for the bi-Maxwellian
distribution (6). Note that it is the derivative with respect to the perpendicular
temperature 7| that occurs in (2056); this is connected with the fact that the

loss-cone in the distribution affects the perpendicular component of particle
motion.

€41 £ 0) =

y (T ey = 0)] (200)

3. Relevant limiting cases
Let us now consider a few relevant limiting cases of the dielectric tensor (16).
3.1. The isotropic limit T\ = T, (= T)
In this case the dielectric tensor (16a—¢) reduces to

w. \>mc?
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where function R$Y is the isotropic limit of the function defined by (7)
(Robinson 1987):

o _ . [®, expliz,(T)7—a;7*/(1—17)] ( AL )

RV (z,, 0,7 ) = zJ‘O dr (1—ir)? T, . (23)
and R{™ is given by (23) with T, replaced by I';,. The result (22) coincides with
the result given by equations (2.3.78) and (2.3.53) of Bornatici ef al. (1983a),
where the matrix (2.3.53) should be corrected as follows: (i) replace 2(Ap): by

[—r

!
“




Relativistic dielectric tensor 325

(p/A)fin the 2z (and zx) element: (i) replace I, by T, in the yz (and zy) element;

ii1) replace p b x(r
(i) rep p by pfa(r) 3.2. The non-relativisiic limit

This corresponds to making the following replacements

R(n; A( (’1})) W
P « Zafl
pee Al SR 1, (zn(T..))
6” 2a%'| Zaf Zu% Fay), (24)
Rén f m
A 4-17[Z (Z_H(Z:ﬂl)_‘_w(T) ( 2,(1}) ))}
7 DA N7 Y

where Z'(x) = dZ/dx, the same relations also applying for Ry with I' (A )—
I, (A,). With (24), the dielectric tensor (16 a—¢) reduces to the well- known non-
relativistic expression for a bi-Maxwellian distribution (Melrose 1980).

3.3. To the lowest significant order in the FLR effects

Keeping only the contribution from k& = 0 to the nth harmonic, as well as the
k= 0and k£ = 1 contributions to the n = 0 terms of ¢,, and ¢, respectively, the
dielectric tensor (18) reduces to
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The results (25a—c) reduce to those obtained by Bornatici e al. (1983a) in the
isotropic limit, except the n = 0 contribution to ¢

yz-
3.4. Parallel propagation (N, = 0)

For propagation parallel to the magnetic field, N, = 0 and thus A, = 0, so that
all FLR cffects vanish. As a consequence, from (25a—¢) one obtains
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3.5. Perpendicular propagation (N, = 0)
In this case the effect of the temperature anisotropy combined with Ny vanishes,
and from (18) one gets
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where F{*) is defined as in (19), with W,  replaced by the dispersion function

ﬂ _ i exp[”"‘Tﬂ”]
R ey T /T 2%

which is a generalization to the case of temperature anisotropy of the
Dnevstrovski) dispersion function (Dnevstrovskij, Kostomarov & Shrydlov
1964) and contains the explicit effect of the temperature anisotropy. In
particular, it should be noted that the imaginary part of the function (28),
which exists for z, <0, ie. for v < nw,, can be expressed in terms of the
confluent hypergeometric function {Bornatici et al. 1983b). For the form of ¢,,
given in (27a-d), the limit N, = 0 is more easily obtained starting from (1)
rather than from (18a—d).

4. Limiting cases of strong temperature anisotropy

It is of interest to examine two limiting cases of strong temperature
anisotropy, namely the case for which 7| -0 and 7| is finite, and vice versa, i.e.
T,—0 and 7T, is finite.

With T, -0, FLR effects vanish and the corresponding expressions for the
dielectric tensor are obtained from (25a—<) by keeping only then = 0 and » = 1
terms, 1.e.
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the functions W, being defined by (100b).

R



Relatristic dielectric tensor 327

To consider the limit 7} — 0, it is convenient to make the change of variable
t = 7T, /T, in the dispersion function (10a), so that, as 7} >0,

Wa. ~>%“Fp(zn(ﬂ)), (30)
1
P (7 expliz,(T))1]
where F 2 (T\))=—1| dt— —* , (31)
o (1—13t)?

with p a positive integer and z,(7,) = ¢, (1 —nw,/w). The function F_, which is
independent of N, is the extension of the Dnevstrovskij function to integer
order (Lazzaro & Orefice 1980). With (30), one obtains from (19)
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The salient characteristic of the dielectric tensor (32a-d) is the fact that ¢,
coincides with the cold expression ; for the fully relativistic case one would have
€ =1—(p /(14+p,)) (w,/w)* (Bornaticiti et al. 1983a).

For the case of strong temperature anisotropy it is possible to obtain the anti-
Hermitian part of the dielectrie tensor in the fully relativistic form. We consider
two cases of strongly anisotropic distribution functions, the first of which is the
two-dimensional relativistic Maxwellian {Dawson 1981 ; Bornatici et al. 1983a)

£, = Cyexp { —py [1 + (mﬂ‘

mc)

i

}a(p,)> (33)

where C, = p3 e#1|2n(mc)? (14 g, )]7". The particle energy connected with (33) is
totally in the direction perpendicular to the magnetic field, the corresponding

average kinetic energy
W = (jd“'p'yfu— I) me?
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ﬂ mc2, (34)

Ay (py +1)

with (W) = T to lowest order in u, (= mc?/T, > 1). With (33), in particular,
it is possible to evaluate the anti-Hermitian part of the dielectric tensor (5)
exactly, the relevant two-dimensional integration occurring in (5) being carried
out by means of the two 4 functions occurring. Note that the relevant resonance
condition is [1+(p,/me)?f—nw,/w =0, n > 1, which is meaningful only if
relativistic effects are taken into account. Explicitly, using (B 12)—(B 14) from
Appendix B, one finds
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where J, = J,(b,), J, = dJ,/db, and b, = N, [n*—(w/w,)*}, o < nw,.

Note that the salient characteristic ¢, ,, = 0 is a consequence of the absence
of parallel motion of the two-dimensional distribution (33); also, €, ;; = 0 for
o =nw, and N, = 0.

(a) In the hmlt of propagation perpend@culm (N, = 0) to the magnetic field

one has
ea,ij(Nu =0)= E efzy.léj’ W
n=1
. b,J, b,J.\?
with iy = =it e, ey = () e | 30
n n
o (P L ra [ (e
€a 2z ﬂ(w e exp| —#. | — 1 g

€. =0 fori=ux,y,z

(b) In the limit of propagation parallel (N, = 0) to the magnetic field. FLR
effects have to be kept to lowest order, and one obtains

€a,2y = "4 2z Caqyy — €a, 21>

=Zﬂez/‘i 1 — N2 CANE Nl | (9&-1)}
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for which only the first harmonic » = 1 contributes. Furthermore, ¢, ;, = 0 for
T=2,y, 2.

Another example of distribution with strong temperature anisotropy is the
one-dimensional relativistic Maxwellian

el sl

where C) = [2meK (1))]7', K, denoting the modified Bessel function of the
second kind of order ». In this case the particle motion is along the magnetic
field; thus, in particular, no FLR effects are present, and the average (parallel)
kinetic energy is

[Ko(/’w)
Ki(my)
so that (W) = T, to lowest order in p, (= =mc*/T, » 1). With (38), using (B 20)

and (B 23) from Appendix B, one obtains for the anti-Hermitian part of the
dielectric tensor (5)

(WY = —1 +i] me?, (39)
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where a(y)) = (ﬂ/Qu“)%e‘/‘u/Kl(/L") (=1 to lowest order in s;'),

R ] e

It should be noted that (i) ¢, ;; = 0 when the inequality in (41) is reversed; (ii)
only the contribution from the harmonic » =1 is considered explicitly, the

corresponding contribution from 7z = —1 being obtained with w,—»—uw,
appropriately ; (iii) the first term on the vight-hand side of ¢, , is connectcd thh
the Cerenkov resonance (n = 0), which only exists for N} > 1; and (iv) ¢, ,, is

independent of N, whercas ¢, ,, and the contribution to €q 22 due to cyclotron
resonance dre proportional to N, and N3 respectively.
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In the limit of perpendicular propagation (N, =0), by using the series
expansion of the Bessel functions 1,1, one obtains

2 2 -1 \
€a,22(My = 0) = (éﬂ)%“(ﬂn)(%) %’“f [(%) - 1] EBXP[_/M(%_I)]'

(N, =0) =0, (42)

ea‘zz

w 2
ea.zz(N\l = 0) = NJZ_ [1 —(w_) :|60‘51(N|| = 0)

[

with o < w,.

5. Conclusions

The dielectric tensor relevant to the electron-cyclotron interaction in an
anisotropic plasma has been evaluated for a bi-Maxwellian distribution
function, in the weakly relativistic approximation and to any order in finite-
Larmor-radius effects. A number of relevant limiting cases have been
considered, including two cases of strong temperature anisotropy.

In particular, the anti-Hermitian part of the (fully relativistic) dielectric
tensor has been obtained for a two-dimensional as well as one-dimensional
(relativistic) Maxwellian distribution.

This work was supported by the Ministero della Pubblica Istruzione of Italy.

Appendix A. Integrals relevant to the evaluation of the dielectric
tensor (1)

Within the weakly relativistic approximation, i.e. y =~ 14 (p] +pj)/2m’c?,
the integrations with respect to the perpendicular, p,, and parallel, p,
momenta that occur in the dielectric tensor (1) are independent of each other
provided that the equilibrium distribution function is of the form fi(p,, p,) =
g(p,) h(p)). For the specific case of the bi-Maxwellian distribution (6), the
analytical evaluation of the p, and p, integrals proceeds along the same lines
as for the non-relativistic approximation (Melrose 1980). More specifically, the
relevant integrals with respect to p, (= (2mT")%x) are

1 \

o]
j drexp[—(1—1i7) x2—2iaﬁm] x = ﬂi_ ;
— 22 (L—at)e

{

iaﬁ T

2
X 1—ur exp(—ﬂ‘T—), (A1)

1 me® 0 ) e
—— 1+ N
2(1—11)( ''1 0a,
with a; = Ny mc*/T, and 7 = (T}/mc*)t, ¢ being the same integration variable
that occurs in (1). As 1 —¢7 =1, one recovers the non-relativistic limit.
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L

For the integration over p, (= (2mT,)¥ (1 —iTTL/CI",)‘%y), one has the following
integrals:

J(lyye"y" yd,(by) I (by) =% GALTH(AL) , (&3)
: ¥ (by) S (T 2A8 T L) (A4

where b= (2A,), TUyx)=e*,(¥), A, =A,/(1—irT/T) and A, =
(N, w/w )T, [mct. As A, - A, (A 2)—(A 4) reduce to the non-relativistic results
(Melrose 1980). Using (A 1)-(A 4) in (1) yields the forms (16a-c¢) for the
dielectric tensor for the bi-Maxwellian distribution.

For practical purposes it is useful to express the results (A 2)-(A 4) in terms
of a series representation with respect to the Larmor parameter A . This can be
accomplished by replacmg JE J,J, and JF in (A 2)-(A 4) by their series
representations and carrying out the corresponding integrations term by term.
More specifically, noting that (Gradshteyn & Ryzhik 1980)

S (=DF[2(n+ k)]

Sz = 2
x-

e 1.\2(|n|+k) -
S TGl B @ ke (A 5)

from (A 2) one finds

(= DF[2(Inl+K)]!
lnH—k (2lnl+ k) ! k!

Ta(A) = GA)™ E (GAL (A 6)

Moreover, from (A 5),

(= 1)*[2(In]+ k)]
(Il +k—1)] {nl+k.(2|nl+k}!k!

and together with (A 3) one has

(%z)2(|n|+k)—1

12
Ju(2) J30(2) = 3 E

o — D¥[2(In + 4))!
A=A )T T ( A E £
O b i eyl A (A7)
The series representation of the result given by (A 4) follows simply from (A 6)
and (A 7).

Appendix B. Evaluation of the anti-Hermitian part of the dielectric
tensor

The salient characteristic of the expression (5) for the anti-Hermitian part of
the dielectric tensor is the & function expressing the (relativistic) cyclotron
resonance. To dircctly exploit the & function in the integration over the
momentum, it is convenient to use the variables (y, py) instead of (p,, p;), where
P.y = p..y/me. By making the change of variable P =v*—(1+p}), where y >
(1+72})% and carrying out the corresponding y integration by means of the &
function, one finds from (5)

; (0] 2 oo‘ Py max o n —(re
ta,yy = — 27 (me)? (Zp) py J dp(pL ViV V)4, =P
n

==% v Dj mjn

8 0 :
) __+Nf> (,,_)] . (B 1)
[(ay "op, Joly- P YN PA o

MRS RgE
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1
3

2 3 ,
P = [(Nmﬁ%) —(1+:5ﬁ)] = (M=) @ —5{") (5= 7)1 (B2)

N, nw | nw \? :
) = | ¢ N2+ —£) —1].
P I—NI? w ill_N?l[l "+((D) 1] (B3)

For the limits of the p, integr&tion in (B 1), for N} < 1 it follows from (B 2)
that By max = By and p, i, = P{7, for which Ny + nwc/w)z—l > 0; for Ny > 1,
the p, integration extends over the two intervals (— oo, 7{”) and ( ) 00). In
(B 1) we have also expressed the quantity Uf,, given by (3), in term< of the
variables y and 7, i.e.

- 1 6
0o = 22 (533 ol (B4)

me y

The following points are worth noting.

(i) For
B nwc)2
("

(B 3) yields the non-relativistic resonant value

1 nw
P = —( ) (B 6)
I N“ w
along with p; = [Nu/ —N)](t+nw, /w), the latter value being larger than

(B 6) by a factor 2Nj|1 —nw,/w|™", typically ; both values are such that 7} < 1.
(i) For Ny~ 1, one finds from (B 3) the two resonant values for p;:

1w nw.\? 1 now, .
P= 2 nw [14( w )} 1-Ny o’ (B7)
the first reducing to (B 6) for ¥y = 1 and to lowest order in (1 —nw,/w)*.
(ii)) For perpendicular propagation, ¥y =0 and (B 1) yields

N> 1L (B 5)

2 w 2 o
€,y = 0) = —2m (mc)s(f) z

ﬁﬂ‘mnx o n a _
X J dp"[pi V§ )(Vy('m)*]m:((nwc/w)?—bﬁﬁ]% [gfo(')’» Ph)] ) , (B8)
y=nw,/»

D, min

where w < nw,, 72 1, P mp = — [(nw,/w)?— 1]t and Py max = [(no,/w)? ~ L

An approximation that is commonly used in the evaluation of the anti-
Hermitian part of the dielectric tensor (cf. §2) is the so-called weakly relativistic
approximation, which amounts to taking y =~ 1+(p}+73). With such an
approximation, (B 1) is still valid with

preD = [(PM —p,) (5, — P (B 9)

and Py max = P, D) min = P, where P(*) denote the two resonant values of

.ﬁll’ ]
PO = N+ [N2 (an )] (B 10)
w
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with N} +2(nw,/wo—1) 2 0. Also, for the quantity within the sccond set of

square brackets in the mtugrand of (B 1) one should go back to U/f,, by means
of (B 4), and evaluate it at 7, = p{"® as given by (B 9). As required by the
weakly relativistic approximation itself, the solutions (B 10) are subject to the
condition [P? < 1; hence, in particular, the solution P is valid for max {iV},
2|nw,/w—1} € 1 and is just the approximation of the (fully relativistic) solution
p{"”, (B 3). On the other hand, the solution P is valid for arbitrary N, and
corresponds to either p{” or p{" of (B 3), depending on whether N} is less than
or greater than unity respectively. In other words, to account for the relativistic
effects in the resonance condition requires a fully relativistic treatment if Nj >
1, the weakly relativistic approximation being adequate for N} < 1. The latter
is the case that is usually considered (Krivenski & Orefice 1983).

Let us go back to (B 1) and consider a separable distribution function of the
form fy(y,p)) = g(y) h(p,). With regard to the second term within square
brackets one can perform an integration by parts, with the result

w. \? 02 Py max
€455 = 27" (7’"3)3(;1,) z J dp, h(p,)

n== Pj,min

x { (L= NB [P VOV, e (ZJZ)

y=Nn Dyt nw/w

ne,

+N‘|g('y = N”j)‘n )d Lp I/(n) V(n))*] i)(chs)}. (B 11)
Py

For the particular case for which A(p,) = d(p)), (B 11) yields

Py ] 3 wp e N2y [ V(n) V(n) dg
€aij = 27 (mc) ’,m %y —(1—= n)[?% (V) ]p = (nwl) 1) /
y=nuw /o

=1 d‘y
— e 2 PO () . >
+N,,g(y ) a7 PP g (B 12
where, using (2),
W\ 1 n?J? —inb, J,J, O
PV ottt = CIF COY A A R
Bli- /) N 0 0 0
nw
- [p I/(n) I/(n)) ] '(f"\s)} — c
{d P s =0 w
1
N By =Ny N,
i b w l b
n 7 _r) ’ ___h J’ )
iNﬂ n(J, J3,) A“Nl Abn T N o n Inn - (B19)
L by g 0

N, N, »
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with J, = J,(b,), b, = N, (0/w,) [(n0,/w)*— 1T, © < nw,. Note that o, =0as2
consequence of the absence of motion along the magnetic field (f, oc d(py)).
Let us now consider the case of a distribution function of the form

The factor in the integrand of (B 1) containing the derivatives of f; can be
written as

0 ) 1[ dp)dh nw,,, 1 dﬁ(ﬁl)}
— =N —=—+—h(p,)—— .
(67 ”a fO()’ p" y=N) Byt no/w 2 ' Y dpll w : ﬁld}_)l Py
(B 15)
Furthermore, using (B 2) and (B 3),
6@1) 8(1—’\|_?\(|+))+3(1—’”_¥7\(|_)) (B 16)
DL 1p,-plre® [N} + (nw /o) =1
d 5(?1)] dp, [8@_1.)]
S =——T | = (B 17)
[dpl Do Jp-preo APV APy Py Jy e

Substituting (B 15)—(B 17) into (B 1) and carrying out an integration by
parts of the term connected with (B 17) yields

© 1 D), max

2
w
€, ,;, = —m(me)?| 2 T ap
a,ij ( ) ((1}) n_z‘_‘m{N”z+(nwc/w)2—1]§ Br.min pﬂ

i rn nw, d O, 1 dp
{N"d* [pz V( ) V( ))*]__{[pe V( )(V( )) ]pL=ﬁ(res) h(Pn) _(res) dp(reS)}}p o
L=

x [8(py— P|(|+)) +3(ﬁu _ﬂ_))]- (B 18)
With regard to the first term on the right-hand side of (B 18), using (2), one has
(71 V(n)(VM))*]ﬁfo = ]_’ﬁ 8 L% (B 19)

with 7 =0, the corresponding resonant p;s being (cf. (B3)) p{*'(n = 0)
=+ () —1)7 with N{ > 1. For n = 0 the resonance condition is y = N, p,, 8o
that P, is greater or less than zero, depending on whether IV, is greater or less
than zero, the corresponding range of integration over p, being (p{*, ) or
(—o00,7{”) respectively. Hence the anti-Hermitian part of the dielectric tensor
connected with the (relativistic) Cerenkov resonance n = 0 is

2N, dh
€q,45(n =0) = — (mca(ﬂg) — Lt

For the second term on the right-hand-side of (B 18) one has

0.8, Ni>1 (B20)
By=(Nj-12

d dp
Iy (n) i il
{d]_J" {[pi Vin)(Vj )*]pl=ﬁ(lres) h(Pu p(res) dp(res)}}p170

= 2[Vf")(V;"))*]m:0 h(ﬁn)a (B 21)
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where using (2),

1 F +N,—»
+ - La),:p"
(n) (T7(n)\x [ , y w =1 . _
(Vs (Vim) LSFO:Z +1 | zNL;pn =3Hij(p",n—il)
2
w _ N W w
N, w_ﬂpn —iN, ;:Pu (NJ‘w_cp“)
(B 22)
for n = + 1, the upper (lower) signs in (B 22) referring to n = 1 (n = —1). Thus,

on substituting (B 21) and (B 22) into (B 18), one finds for the (n=1)
contribution

2 i
ot = 1) = br(mep |22} e = -
€, 5(n = 1) f”(m“)( ) ® (N} + (w,/0)?— 1]

*A[H g(n = 1) hly _giinony +Hy(n = 1D ALy _poron), (B 23)
with H,;(n = 1) defined in (B 22).
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