
The ACS Distributer Component

The ACS Bulk Data Distributer acts as a receiver towards the Sender and as a sender towards the
Receivers willing to get the dispatched data, so the ACS Characteristic Component relative to the
Distributer inherits both from the sender and receiver interfaces. It is implemented as a template class
with two template parameters: the sender callback, which takes the default value BulkDataSenderDe
faultCallback, and the distributer receiver callback (BulkDataDistributerCb), used to receive the data
from the Sender. When the Distributer receives parameters or data from the Sender, this callback
manages and dispatches the received data to all connected Receivers (registered in an internal
hash table), taking care of the possible receiver timeout and availability. At present this forwarding
mechanism is implemented in a sequential way, i. e. the internal hash table which holds the information

of the connected Receivers is read sequentially. This mechanism will be improved in the next Bulk Data releases.
The figure shows the class diagram for a Distributer component. The two methods multiConnect() and multiDisconnect() allow the Receivers to register and de-register from the Distributer.

BulkDataDistributer

+distSendData(flowName : ACE_CString&, frame : ACE_Message_Block*) : int

+multiDisconnect(recvName : const ACE_CString&) : void
+multiConnect(recvName : const ACE_CString&) : void

+distSendStart(flowName : ACE_CString&) : void

+distSendStop(flowName : ACE_CString&) : void

TReceiverCallback
TSenderCallbackBulkDataDistributerImpl

+setReceiver(recvConf : const BulkDataReceiverConfig&) : void

+multiConnect(receiver : BulkDataReceiver*) : void

+multiDisconnect(receiver : BulkDataReceiver*)

+connect(receiver : BulkDataReceiver*) : void

+closeReceiver() : void
+openReceiver() : void

+disconnect() : void

TReceiverCallback
TSenderCallback = BulkDataSenderDefaultCallback

POA_bulkdata::BulkDataDistributer

+setReceiver(recvConf : BulkDataReceiverConfig&) : void

+multiDisconnect(receiver : BulkDataReceiver*) : void

+multiConnect(receiver : BulkDataReceiver*) : void
+connect(receiver : BulkDataReceiver*) : void

+closeReceiver() : void
+openReceiver() : void

+disconnect() : void

+paceData() : void
+startSend() : void

+stopSend() : void

CharacteristicComponentImpl

BULK DATA TRANSFER DISTRIBUTER: A HIGH PERFORMANCE
MULTICAST MODEL IN ALMA ACS

R. Cirami1, P. Di Marcantonio1, G. Chiozzi2, B. Jeram2

1INAF- Osservatorio Astronomico di Trieste, via G. B. Tiepolo 11, I-34131 Trieste, Italy
2European Southern Observatory, Karl-Schwarzschildstr. 2, D-85748 Garching, Germany

The ALMA astronomical interferometer will consist of at least 50 12-m antennas operating at millimeter
wavelength. The whole software infrastructure for ALMA is based on ACS, which is a set of application
frameworks built on top of CORBA. To cope with the very strong requirements for the amount of data
that needs to be transported by the software communication channels of the ALMA subsystems (a
typical output data rate expected from the Correlator is of the order of 64 MB per second) and with the
potential CORBA bottleneck due to parameter marshalling/de-marshalling, usage of IIOP protocol,
etc., a transfer mechanism based on the ACE/TAO CORBA Audio/Video (A/V) Streaming Service
has been developed. The ACS Bulk Data Transfer architecture bypasses the CORBA protocol with
an out-of-bound connection for the data streams (transmitting data directly in TCP format), using
at the same time CORBA for handshaking and leveraging the benefits of ACS middleware. Such a
mechanism has proven to be capable of high performances, with a measured efficiency comparable
to that of a raw socket connection.
Besides a point-to-point communication model, the ACS Bulk Data Transfer provides a multicast
model. Since the TCP protocol does not support multicasting and all the data must be correctly
delivered to all ALMA subsystems, a distributer mechanism has been developed. The ACS Bulk
Data Distributer mimics a multicast behaviour managing data dispatching to all receivers willing to
get data from the same sender.

References
• P. Di Marcantonio, R. Cirami, B. Jeram, G. Chiozzi, “Transmitting huge amounts of data: design, implementation and performance of the Bulk Data
Transfer mechanism in ALMA ACS”, ICALEPCS 2005, Geneva, Switzerland, October 2005
• ACS Web page, http://www.eso.org/projects/alma/develop/acs/
• OMG Audio/Video Streams Specification, v.1.0, http://www.omg.org/cgi-bin/doc?formal/2000-01-03.
• N. Surendran et al., “The Design and Performance of a CORBA Audio/Video Streaming Service”, Proceedings of HICSS-32 vol. 8, Hawaii 1999, 8043.

The ALMA astronomical interferometer will consist of at least 50 12-m antennas operating at millimeter
wavelength. The whole software infrastructure for ALMA is based on ACS, which is a set of application
frameworks built on top of CORBA. To cope with the very strong requirements for the amount of data
that needs to be transported by the software communication channels of the ALMA subsystems (a
typical output data rate expected from the Correlator is of the order of 64 MB per second) and with the
potential CORBA bottleneck due to parameter marshalling/de-marshalling, usage of IIOP protocol,
etc., a transfer mechanism based on the ACE/TAO CORBA Audio/Video (A/V) Streaming Service
has been developed. The ACS Bulk Data Transfer architecture bypasses the CORBA protocol with
an out-of-bound connection for the data streams (transmitting data directly in TCP format), using
at the same time CORBA for handshaking and leveraging the benefits of ACS middleware. Such a
mechanism has proven to be capable of high performances, with a measured efficiency comparable
to that of a raw socket connection.
Besides a point-to-point communication model, the ACS Bulk Data Transfer provides a multicast
model. Since the TCP protocol does not support multicasting and all the data must be correctly
delivered to all ALMA subsystems, a distributer mechanism has been developed. The ACS Bulk
Data Distributer mimics a multicast behaviour managing data dispatching to all receivers willing to
get data from the same sender.

The ACS Receiver Component

The ACS Characteristic Component
relative to the Receiver is implemented
also as a template class. The template
parameter in this case is a callback class,
which has to be provided by the user
and must be used to actually retrieve
and manage the received parameters
and data stream.

The figure shows the class diagram for a receiver component. Two
methods are implemented in this case: openReceiver(), which reads e.g.
from the Configuration Database all the connection parameters - as in the
Sender case - and creates the required flow endpoints accordingly, and
closeReceiver(), used to close the connection.

POA_bulkdata::BulkDataReceiver

+closeReceiver() : void
+openReceiver() : voidCharacteristicComponentImpl

BulkDataReceiverImpl

+closeReceiver() : void
+openReceiver() : void

TReceiverCallback

BulkDataReceiver

TReceiverCallback

The ACS Sender Component

The ACS Characteristic Component relative
to the Sender is implemented as a C++ tem-
plate class. The template parameter is a call-
back which can be used for sending asyn-
chronous data. This callback class provides
methods for sending data at predetermined
user-configurable time intervals. For the Dis-
tributer such asynchronous mechanism has

not been implemented yet, and only the synchronous mechanism is provided.
As shown in the figure, the BulkDataSenderImpl<TSenderCallback> template class realizes a component providing the
implementation for the BulkDataSender IDL interface (represented in the diagram by the CORBA-generated POA_bulkdata::
BulkDataSender skeleton class). BulkDataSenderImpl<TSenderCallback> provides a concrete implementation for the
connect() and disconnect() methods using the contained C++ wrapper class (BulkDataSender<TSenderCallback>). The
connect() method is responsible for the connection establishment with the Distributer component, passed as a parameter.

BulkDataSender

+startSend(flownumber : ULong, param : ACE_Message_Block*=0) : void
+startSend(flownumber : ULong, param : const char*, len : size_t) : void

+sendData(flownumber : ULong, buffer : const char*, len : size_t) : void
+sendData(flownumber : ULong, buffer : ACE_Message_Block*) : void

+stopSend(flownumber : ULong) : void

TSenderCallback

BulkDataSenderImpl

+connect(receiver : BulkDataReceiver*) : void
+disconnect() : void

+paceData() : void
+startSend() : void

+stopSend() : void

TSenderCallback = BulkDataSenderDefaultCallback

POA_bulkdata::BulkDataSender

+connect(receiver : BulkDataReceiver*) : void
+disconnect() : void

+paceData() : void
+startSend() : void

+stopSend() : void

CharacteristicComponentImpl

Basic terminology

The CORBA A/V Streaming Service specification
defines a flow as a continuous sequence of
frames in a clearly identified direction. A stream
is defined as a set of flows between two objects,
and is terminated by a stream endpoint. A stream
endpoint can have multiple flow endpoints, acting
as a source or as a sink of data.
The ACS Bulk Data Transfer provides C++
classes and ACS Characteristic Components
which implement the features described. In the
peer-to-peer communication model, it allows to
connect a sender component (the producer of

data) with a receiver component (the consumer), creating dynamically as many flows as required.
In the multicast model a sender component sends data to the distributer component which, in
turn, delivers the data to one or more connected receiver components.

Distributer Performances

In order to evaluate the performance of the ACS Bulk Data Distributer we developed
and implemented a Sender, a Distributer and one (or more) Receiver(s). The aim of
the experiment was to measure the throughput, i.e., the number of bits per second,
sending data of different size from a Sender to one or more Receivers passing through
a Distributer. In all the performance tests the data were sent on one flow.
For the measurements we used two Compaq PCs (one CPU P4, 3.0 GHz) equipped
with 1GB RAM and 80 GB HD connected via a 1Gbit Ethernet network. Both PCs
were isolated from the Institute LAN to avoid external network loads, but to be more
realistic the two PC were connected using two Gbit switches. Scientific Linux 4.1
operating system and ACS 5.0.2 were installed on both machines.

The figures above represent the results of our performance tests. Every point is an average of 100 samples. The error bars represent the error on the mean. In all the tests, the Sender and the Dis-
tributer were located on one PC, whereas the Receiver(s) on the other one.
The figure on the left shows that the throughput, i.e., the number of bits per second, between a Sender and a single Receiver is more the 800 Mbits/sec, and that the Distributer introduces a penalty
of performances of the order of 300 Mbits/sec. This is an expected result, since the Distributer introduces a further data processing step in the data flow. Data must be received, read and forwarded
to the Receiver. The Distributer then has to wait until the Receiver has fully consumed the data in order to be synchronized. This could be considered the best performance achievable fulfilling the
synchronization requirement.
The figure on the right shows the throughput when one or more Receivers are connected to the Distributer. It can be seen that for every connected Receiver the performance penalty increases and
the overall throughput for four connected Receivers is of the order of 180 Mbits/sec. This is due to the sequential way of sending the data. This mechanism will be improved in the next Bulk Data re-
leases using e.g. a thread pool, the Half-Sync/Half-Async pattern or changing the underlying protocol to one that support multicasting.

