
Bulk data transfer distributer: a high performance multicast model in
ALMA ACS

R. Cirami1, P. Di Marcantonio1, G. Chiozzi2, B. Jeram2

1INAF-OAT, Osservatorio Astronomico di Trieste, via G.B. Tiepolo 11, I-34131 Trieste, Italy

2European Southern Observatory, Karl-Schwarzschildstr. 2, D-85748 Garching, Germany

ABSTRACT

A high performance multicast model for the bulk data transfer mechanism in the ALMA (Atacama Large Millimeter
Array) Common Software (ACS) is presented. The ALMA astronomical interferometer will consist of at least 50 12-m
antennas operating at millimeter wavelength. The whole software infrastructure for ALMA is based on ACS, which is a
set of application frameworks built on top of CORBA. To cope with the very strong requirements for the amount of data
that needs to be transported by the software communication channels of the ALMA subsystems (a typical output data
rate expected from the Correlator is of the order of 64 MB per second) and with the potential CORBA bottleneck due to
parameter marshalling/de-marshalling, usage of IIOP protocol, etc., a transfer mechanism based on the ACE/TAO
CORBA Audio/Video (A/V) Streaming Service has been developed. The ACS Bulk Data Transfer architecture bypasses
the CORBA protocol with an on out-of-bound connection for the data streams (transmitting data directly in TCP or
UDP format), using at the same time CORBA for handshaking and leveraging the benefits of ACS middleware. Such a
mechanism has proven to be capable of high performances, of the order of 800 Mbits per second on a 1Gbit Ethernet
network.
Besides a point-to-point communication model, the ACS Bulk Data Transfer provides a multicast model. Since the TCP
protocol does not support multicasting and all the data must be correctly delivered to all ALMA subsystems, a
distributer mechanism has been developed. This paper focuses on the ACS Bulk Data Distributer, which mimics a
multicast behaviour managing data dispatching to all receivers willing to get data from the same sender.

1. INTRODUCTION

The ALMA Common Software (ACS) is a set of application frameworks built on top of CORBA to provide a common
software infrastructure to all partners in the ALMA collaboration (for a detailed description see [1][2]). Since ALMA
will be the largest astronomical interferometer in the world, consisting of at least 50 12-m antennas operating at
millimeter wavelength, the need for transferring efficiently huge amounts of data arise consequently. For example, a
typical output data rate expected from the Correlator (the device responsible for the processing of raw digitalized data
from the antennas) will be of the order of 64 MB per second [3].
Since all subsystems in ALMA rely on a communication infrastructure (ACS), which is CORBA-based, this poses some
problems to meet the stringent QoS (quality-of-service) requirements. It is well known in fact that DOC (Distributed
Object Computing) middleware, such as CORBA, increases the packet latency due to marshalling/de-marshalling, to
usage of the IIOP protocol, etc. To cope with ALMA requirements and to overcome the CORBA potential bottleneck,
we developed a transfer mechanism based on the ACE/TAO CORBA Audio/Video (A/V) Streaming service [4], the
ACS Bulk Data Transfer. This architecture uses CORBA for handshaking, but allows an efficient data transfer by
creating out-of-bound stream(s) of data (i.e. bypassing the CORBA protocol), thus enabling ALMA applications to keep
leveraging the inherent portability and flexibility benefits of the ACS middleware. We developed in this way a transfer
mechanism capable of high performances, of the order of 800 Mbits per second on a 1Gbit Ethernet network [5].
Besides a point-to-point communication model, which allows the data transfer between one sender and one receiver, the
ACS Bulk Data Transfer provides a multicast model. Since the TCP protocol does not support multicasting and all the
data must be correctly delivered to all ALMA subsystems, a distributer mechanism has been developed. It is possible in
this way to transfer data from one sender to more connected receivers.
This paper focuses on the ACS Bulk Data Distributer, which mimics a multicast behaviour. One or more receivers can
subscribe to a common object (the Distributer) which receives data from one sender (e.g. the Correlator), and dispatches

them to all the subscribed receivers using out-of-bound connections. Locating the Distributer on a different computer
has also the advantage of reducing the network/CPU load.
Before proceeding with the design description and implementation of the ACS Bulk Data Distributer, it is necessary to
introduce some terminology (see Fig. 1).
The CORBA A/V Streaming Service specification [6] defines a flow as a continuous sequence of frames in a clearly
identified direction between (two) multimedia devices. A stream is defined as a set of flows between two objects, and is
terminated by a stream endpoint. A stream endpoint can have multiple flow endpoints, acting as a source or as a sink of
data.

The ACS Bulk Data Transfer provides C++ classes and ACS Characteristic Components which implement the features
described above (for ACS see [1][2]). In the peer-to-peer communication model, it allows to connect a sender
component (the producer of data) with a receiver component (the consumer), creating dynamically as many flows as
required. In the multicast model a sender component send data to the distributer component which, in turn, delivers the
data to one or more connected receiver components.

2. DESIGN AND IMPLEMENTATION

The ACS Bulk Data Transfer provides a wrapper and an adaptation of the CORBA A/V Streaming Service (in the TAO
implementation) to ACS, hiding most of its complexity from the user. C++ classes have been created for the sender,
distributer and receiver components (at present only C++ implementation is provided). These classes allow to create a
stream between the ACS Bulk Data components adding to it as many flows as needed.
Once the connection has been successfully established, the Sender can immediately start to send data to the Distributer
in a synchronous (blocking) way.
The Distributer and the connected Receivers, on the other side, can receive data only in an asynchronous way, by means
of a callback called automatically by the ACE Reactor implemented in the TAO A/V. For each distributer or receiver
flow the ACE Reactor, as soon as data are available, calls the associated callback. As soon as the Distributer receives
the data inside its callback, it forwards them immediately to all connected Receivers, mimicking in this way a multicast
behaviour.

stream endpoint

flow endpoint

stream connection

flow connection

Sender

Distributer

Receiver 1

Receiver 2

Fig. 1. Stream configuration for Sender, Distributer and Receivers (Black spots: sender flow endpoints.
White spots: receiver flow endpoints)

Besides C++ classes, ACS Characteristic Components for the Sender, Receiver and Distributer have been implemented,
which contains and uses the aforementioned C++ classes, offering the developer user-friendly IDL (CORBA Interface
Definition Language) programming interfaces. These Components are briefly described in the following subsections.

2.1. Sender ACS Component

The ACS Characteristic Component relative to the Sender is implemented as a C++ template class. The template
parameter is a callback which can be used for sending asynchronous data. This callback class provides methods for
sending data at predetermined user-configurable time intervals. For the Distributer such asynchronous mechanism has
not been implemented yet, and only the synchronous mechanism is provided.
As shown in Fig. 2, the BulkDataSenderImpl<TSenderCallback> template class realizes a component providing the
implementation for the BulkDataSender IDL interface (represented in the diagram by the CORBA-generated
POA_bulkdata::BulkDataSender skeleton class). BulkDataSenderImpl<TSenderCallback> provides a concrete
implementation for the connect and disconnect methods using the contained C++ wrapper class
(BulkDataSender<TSenderCallback>). The connect method is responsible for the connection establishment with the
distributer component, passed as parameter. By reading from the Configuration Database [2] the connection parameters
such as the number of flows of the stream, the protocol (TCP or UDP), and the host and port number, the connect
method fully manages the creation of appropriate flow endpoints with different settings. The other three methods
(startSend, paceData and stopSend) are purely abstract and must be implemented by the user. Once the out-of-bound
connection is correctly established, these methods are used to actually send short parameters (startSend), huge amounts
of data (paceData) and to terminate the data transfer (stopSend).

BulkDataSender

+startSend(flownumber : ULong, param : ACE_Message_Block*=0) : void
+startSend(flownumber : ULong, param : const char*, len : size_t) : void

+sendData(flownumber : ULong, buffer : const char*, len : size_t) : void
+sendData(flownumber : ULong, buffer : ACE_Message_Block*) : void

+stopSend(flownumber : ULong) : void

TSenderCallback

BulkDataSenderImpl

+connect(receiver : BulkDataReceiver*) : void
+disconnect() : void

+paceData() : void
+startSend() : void

+stopSend() : void

TSenderCallback = BulkDataSenderDefaultCallback

POA_bulkdata::BulkDataSender

+connect(receiver : BulkDataReceiver*) : void
+disconnect() : void

+paceData() : void
+startSend() : void

+stopSend() : void

CharacteristicComponentImpl

2.2. Receiver ACS Component

The ACS Characteristic Component relative to the Receiver is implemented also as a template class. The template
parameter in this case is a callback class, which has to be provided by the user and must be used to actually retrieve and
manage the received parameters and data stream (see 2.2.1).

Fig. 2: Sender ACS component class diagram

Fig. 3 shows the class diagram for a receiver component. Two methods are implemented in this case: openReceiver,
which reads from the Configuration Database all the connection parameters (as in the Sender case) and creates the
required flow endpoints accordingly, and closeReceiver, used to close the connection.

As in the sender case, the actual implementation is delegated to the C++ class BulkDataReceiver<TReceiverCallback>.
Such a design and implementation proves to be very flexible: the number of flows can be different on either part, but
only those that match against some criteria (like protocol, direction, and name according to A/V rules etc.) are then
actually connected. Note that the managing of flow creation, connection establishing, reading of parameters etc., is
completely hidden from the user point of view. By providing the required callback to manage the received stream and
by providing the data to be sent, an interested user can use directly the sender and receiver components without the need
for further development.

2.2.1. Receiver Callback

The responsibility of the receiver callback is to receive parameters and data
from the Distributer. This callback mechanism derives directly from the
TAO A/V Streaming Service, where the Sender/Receiver architecture is
implemented by using the ACE Reactor Pattern [7], which uses a callback
mechanism to actually manage the incoming data stream.
The provided TAO_AV_Callback class offers three methods to fulfill this
purpose (see Fig. 4): handle_start and handle_stop, which react when a
start/stop is issued on a specific flow (CORBA calls), and a receive_frame,
which is used to get the received data and is triggered by the ACE Reactor.
This mechanism has the following limitations:

1) there is no possibility to send short parameters directly when a
start is issued (for example an UID to characterize the
forthcoming frame, a string containing a filename to be opened,
etc.);

2) a synchronization problem occurs.
Point 2 is quite subtle. Data sent by the Distributer are first received in the
TCP-receive memory buffer of the involved host (whose typical default
size for Scientific Linux 4.1 is around 85 KB). Being the ACE Reactor
event-driven, as soon as data are available the pre-registered callback
method is called and data are consumed (the Reactor concrete event
handler is the receive_frame method, as described before). The limitation

POA_bulkdata::BulkDataReceiver

+closeReceiver() : void
+openReceiver() : voidCharacteristicComponentImpl

BulkDataReceiverImpl

+closeReceiver() : void
+openReceiver() : void

TReceiverCallback

BulkDataReceiver

TReceiverCallback

Fig. 3: Receiver ACS component class diagram

UserReceiverCb

+cbStart(userParam : ACE_Message_Block*=0) :
+cbReceive(frame : ACE_Message_Block*) : int
+cbStop() : int

+receive_frame(frame : ACE_Message_Block*) : in
+handle_start() : int

+handle_stop() : int

TAO_AV_Callback

+receive_frame(frame : ACE_Message_Block*) : in

+cbStart(userParam : ACE_Message_Block*) : int
+cbReceive(frame : ACE_Message_Block*) : int

+handle_start() : int

+handle_stop() : int

+cbStop() : int

BulkDataCallback

Fig. 4: Receiver callback class

is that internally the TAO A/V reads data only in chunks of 8192 bytes. It could happen therefore that the Distributer
receives the acknowledgement of the last frame received even if the data are still not fully consumed on the receiver side
(they are actually stored in the host TCP receive buffer, but are not read yet). In this case a stop could be issued to early
spoiling the last part of the received stream.
In order to overcome this problem, we implemented a hand-shake protocol on top of this architecture, by inheriting from
the TAO_AV_Callback (as shown in Fig. 4), and adding internally a new state management (not shown). Before sending
the raw data, a control frame is sent and analyzed by the BulkDataCallback callback class. The control frame contains
the information (an ID) on whether the forthcoming stream is a parameter or the bulk of data, and the number of
expected bytes length. The ID allows to call internally the appropriate methods (cbStart/cbReceive) to distinguish
between parameters and data, whereas the bytes length information permits to manage and overcome the
synchronization problem.
This hand-shake mechanism allows the user to receive fully synchronized data. What the user has to do is only to inherit
from BulkDataCallback and implement the three abstract methods (cbStart, cbReceive and cbStop), without knowing
anything about what happens below.

2.3. Distributer ACS Component

The ACS Bulk Data Distributer acts as a Receiver towards the Sender and as a Sender towards the Receivers willing to
get the dispatched data, so the ACS Characteristic Component relative to the Distributer inherits form both the sender
and receiver interfaces (see Fig. 5). The BulkDataReceiverDistr interface is used for internal purposes. It is implemented
as a template class with two template parameters: the sender callback, which takes the default value
BulkDataSenderDefaultCallback (see 2.1), and the distributer receiver callback (BulkDataDistributerCb), used to
receive the data from the Sender (see Fig. 6). This callback manages and dispatches the received data to all registered
Receivers, taking care of the possible receiver timeout and availability (see 2.3.1).

The Sender connects to the Distributer in the usual way, with the connect method, passing the distributer component as
parameter. The distributer multiconnect method allows the Receivers to register themselves into the Distributer. It
delegates to the multiconnect method of the contained BulkDataDistributer object the task of creating the connection
with the Receivers. Inside the Distributer, for each connecting Receiver an object of the class BulkDataSender is
istantiated. Then the connection is created between this new Sender object and the Receiver, with the number of flows

+setReceiver(recvConf : BulkDataReceiverConfig) : void

bulkdata::BulkDataReceiverDistr

bulkdata::BulkDataSender

+connect(receiver : bulkdata::BulkDataReceiver) : void
+disconnect() : void

+paceData() : void
+startSend() : void

+stopSend() : void

bulkdata::BulkDataDistributer

+multiDisconnect(receiver : BulkDataReceiver) : void
+multiConnect(receiver : BulkDataReceiver) : void

bulkdata::BulkDataReceiver

+closeReceiver() : void
+openReceiver() : void

Fig. 5: Class diagram for Distributer idl interfaces

specified inside the Configuration Database. A hash table is maintained internally, which associates each Receiver with
the corresponding sender object.

BulkDataDistributer

+distSendData(flowName : ACE_CString&, frame : ACE_Message_Block*) : int

+multiDisconnect(recvName : const ACE_CString&) : void
+multiConnect(recvName : const ACE_CString&) : void

+distSendStart(flowName : ACE_CString&) : void

+distSendStop(flowName : ACE_CString&) : void

TReceiverCallback
TSenderCallbackBulkDataDistributerImpl

+setReceiver(recvConf : const BulkDataReceiverConfig&) : void

+multiConnect(receiver : BulkDataReceiver*) : void

+multiDisconnect(receiver : BulkDataReceiver*)

+connect(receiver : BulkDataReceiver*) : void

+closeReceiver() : void
+openReceiver() : void

+disconnect() : void

TReceiverCallback
TSenderCallback = BulkDataSenderDefaultCallback

POA_bulkdata::BulkDataDistributer

+setReceiver(recvConf : BulkDataReceiverConfig&) : void

+multiDisconnect(receiver : BulkDataReceiver*) : void

+multiConnect(receiver : BulkDataReceiver*) : void
+connect(receiver : BulkDataReceiver*) : void

+closeReceiver() : void
+openReceiver() : void

+disconnect() : void

+paceData() : void
+startSend() : void

+stopSend() : void

CharacteristicComponentImpl

When the Distributer receives parameters or data from the Sender, its receiving callback (BulkDataDistributerCb)
delegates to the contained distributer class the task of forwarding the incoming parameters and data to all the connected
Receivers. At present this forwarding mechanism is implemented in a sequential way, i. e. the internal hash table which
holds the information of the connected Receivers is read sequentially. This is a known bottleneck (see 3), and will be
improved in the next ACS Bulk Data releases.

2.3.1. Distributer Callback and High-Level Hand-shake mechanism

The responsibility of the distributer callback is to receive data from
the Sender (from one or more flows) and deliver them correctly to all
the connected Receivers.
Also in this case we have implemented a callback
(BulkDataDistributerCb) class which derives from TAO_AV_Callback
and which implements the hand-shake protocol as in the receiver
callback case (see Fig. 7).
As soon as the distributer callback receives parameter and/or data
from the sender, it must deliver them immediately to all connected
Receivers, delegating this task to the contained distributer class (see
2.3). In order to do this correctly, it must take into account the fact the
one or more Receivers may not be ready to receive the data (some
receiver flows may take too long elaborating the data or some
Receivers may not be available). Therefore we have implemented an
appropriate mechanism for addressing this problem. The distributer
callback contains an internal table that holds the information of the
status of all the flows of all connected Receivers. In case of error, the
receiver status is checked inside the table and, if it is not available, the
data is not sent to the Receiver on that particular flow. At the same

BulkDataDistributerCb

+cbFwdStart(userParam_p : ACE_Message_Block*=0) :
+cbFwdReceive(frame_p : ACE_Message_Block*) : int

+cbHandshake(frame_p : ACE_Message_Block*) : int

+receiver_frame(frame : ACE_Message_Block*) : int

+cbFwdUserStop() : int

+handle_start() : int

+handle_stop() : int

+cbFwdStop() : int

+receive_frame(frame : ACE_Message_Block*) : int
+handle_start() : int

+handle_stop() : int

TAO_AV_Callback

Fig. 7: Distributer callback class

Fig. 6: ACS distributer component class diagram

time, this mechanism allows to inform the Sender that a particular receiver is in a timeout state or is not working
properly, so that it can take the appropriate action.

3. BULK DATA DISTRIBUTER PERFORMANCES

In order to evaluate the performance of the ACS Bulk Data Distributer we developed and implemented three ACS
Components (hereafter simply called the Sender, the Distributer and the Receiver), following the design described in the
previous sections. The aim of the experiment was to measure the throughput, i.e., the number of bits per second, sending
data of different size from a Sender to one or more Receivers passing through a Distributer. In all the performance tests
the data were sent on one flow.
For the measurements we used two Compaq PCs (P4, 3.0 GHz) equipped with 1GB RAM and 80 GB HD connected via
a 1Gbit Ethernet network. Both PCs were isolated from the Institute LAN to avoid external network loads, but to be
more realistic the two PC were connected using two Gbit switches. Scientific Linux 4.1 operating system and ACS 5.0.2
were installed on both machines.
The results are shown in Fig. 8 and Fig. 9. On the X axis the buffer sizes sent from a Sender to the Receiver(s) are
reported, and on the Y axis the measured throughput. Every point is an average of 100 samples. The error bars represent
the error on the mean.
In all the tests, the Sender and the Distributer were located on one PC, whereas the Receiver(s) on the other one.
Fig. 8 shows that:

• The throughput between a Sender and a single Receiver is more than 800 Mbits/sec, confirming the results
obtained in [5], but using now a different operating system and ASC release.

• The Distributer introduces a penalty of performances of the order of 300 Mbits/sec. This is an expected
result, since the Distributer introduces a further data processing step in the data flow. Data must be
received, read and forwarded to the Receiver. The Distributer then has to wait until the Receiver has fully
consumed the data in order to be synchronized. This could be considered the best performance achievable
fulfilling the synchronization requirement.

• The measured throughput in the range of the sent buffer size (10-400 MB) is nearly constant.

 Fig. 8: Throughput performances measured with Sender-Receiver and Sender-Distributer-Receiver configurations

Fig. 9 shows the throughput when one or more Receivers are connected to the Distributer. It can be seen that for every
connected Receiver the performance penalty increases and the overall throughput for four connected Receivers is of the
order of 180 Mbits/sec. As described in 2.3, this is due to the sequential way of sending the data. This mechanism will
be improved in the next Bulk Data releases using e.g. a thread pool or the Half-Sync/Half-Async pattern [7].

4. CONCLUSION

This paper describes the design and the implementation of the ACS Bulk Data Distributer. Performance tests at our
Institute clearly shows that introducing a distributer model in the ACS Bulk Data Transfer mechanism introduces an
expected performance penalty, estimated of the order of about 40%. If more than one Receiver is connected to the
Distributer the performances obviously decrease. This could be improved by using a different way of forwarding data
and will be analyzed/implemented in the next ACS Bulk Data Transfer releases.

REFERENCES

1. G. Chiozzi et al., “Application development using the ALMA common software”, these proceedings.
2. G. Chiozzi et al., “The ALMA common software: a developer friendly CORBA-based framework”, Proceedings of

SPIE vol. 5496, Glasgow 2004, 205.
3. J. Pisano et al., “ALMA correlator computer system”, Proceedings of SPIE vol. 5496, Glasgow 2004, 146.
4. N. Surendran et al., “The Design and Performance of a CORBA Audio/Video Streaming Service”, Proceedings of

HICSS-32 vol. 8, Hawaii 1999, 8043.
5. P. Di Marcantonio, R. Cirami, B. Jeram, G. Chiozzi, “Transmitting huge amounts of data: design, implementation

and performance of the Bulk Data Transfer mechanism in ALMA ACS”, ICALEPCS 2005, Geneva, Switzerland,
October 2005.

6. OMG Audio/Video Streams Specification, v.1.0, http://www.omg.org/cgi-bin/doc?formal/2000-01-03.
7. D. C. Schmidt, S. D. Huston, “C++ Network Programming, Volume 2: Systematic Reuse with ACE and

Frameworks”, Addison Wesley, 2002.

Fig. 9: Throughput performances measured with one, two and four Receivers connected to the Distributer

