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ABSTRACT   

The VLT control system is a large distributed system consisting of Linux Workstations providing the high level 
coordination and interfaces to the users, and VME-based Local Control Units (LCU's) running the VxWorks real-time 
operating system with commercial and proprietary boards acting as the interface to the instrument functions. After more 
than 10 years of VLT operations, some of the applied technologies used by the astronomical instruments are being 
discontinued making it difficult to find adequate hardware for future projects. In order to deal with this obsolescence, the 
VLT Instrumentation Framework is being extended to adopt well established Commercial Off The Shelf (COTS) 
components connected through industry standard fieldbuses. This ensures a flexible state of the art hardware 
configuration for the next generation VLT instruments allowing the access to instrument devices via more compact and 
simpler control units like PC-based Programmable Logical Controllers (PLC's). It also makes it possible to control 
devices directly from the Instrument Workstation through a normal Ethernet connection. This paper outlines the 
requirements that motivated this work, as well as the architecture and the design of the framework extension. In addition, 
it describes the preliminary results on a use case which is a VLTI visitor instrument used as a pilot project to validate the 
concepts and the suitability of some COTS products like a PC-based PLCs, EtherCAT8 and OPC UA6 as solutions for 
instrument control. 
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1. INTRODUCTION 
What is today the VLT Instrumentation Software (INS) is the result of the generalization and evolution of the control 
software developed for the first VLT instruments. The software artifacts created for the first generation instruments such 
as ISAAC, UVES and NACO together with the experience gained during the first years of operations laid the 
groundwork to develop incrementally an application framework which has become the basis for the instrument software 
of many VLT/VLTI instruments.  

This application software framework provides the following: 

• A standard and modular structure for VLT instrument software that defines the building blocks of the 
instrumentation software. 

• Common software providing a set of libraries, utilities, rules, definitions and guidelines to support the 
development of VLT instrumentation software1. 

• Template Instrument to ease the implementation at the early phases of the development process by means of 
predefined and customizable instrumentation software. 

The instrumentation software is subdivided into the following standard INS software packages2: 

• Instrument Control Software (ICS): It controls and monitors instrument devices. 

                                                 
1 mkiekebu@eso.org; phone +49 89 32006-0; fax: +49 89 320 2362. 



 

 

• Detector Control Software (DCS): It performs all the tasks to control technical and scientific detector 
subsystems. It takes exposures for different read-out modes, it handles the image transfer and display, and store 
images as FITS files. 

• Real-Time Computer (RTC): It carries out the data acquisition, reconstruction and control in order to 
compensate for the atmospheric aberrations. 

• Observation Software (OS): It coordinates the execution of an exposure for a given observation mode and is 
the main interface to the instrument control software. 

• Maintenance Software (MS): It is used for instrument configuration, checking and troubleshooting. 

• Observer Support Software (OSS): It consists of tools to support the observer in the preparation of an 
observing block. 

In the scope of this paper we will focus only on the extension of the ICS package, therefore the other components of the 
instrumentation software will not be described further. 

1.1 Instrument Control Software  

ICS is the software system dealing with the control of all devices belonging to an instrument such as filter wheels, 
calibration lamps, temperature and pressure sensors, shutters, etc., but excluding detectors and real-time computers 
which are handled by other software packages according to the organization of the VLT instrumentation software. The 
hardware architecture of the ICS follows the typical architecture of the VLT control system3.  It includes an instrument 
WS running Scientific Linux and one or more LCUs acting as the interface with the hardware devices as it is depicted in 
Figure -2. An LCU (Figure -1) is an autonomous computing unit composed of a set of custom and commercial boards 
(CPU, digital and analog I/O, serial and motion controllers, etc.)  connected through the VME bus4. Each LCU has 
several layers of software most of them developed in house providing the basic services to all VLT applications. This 
common software includes the message system, local database, time services, motor library and drivers 4.   

 
Figure -1: Typical LCU architecture. 
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Figure -2: Example of actual instrument hardware architecture. 



 

 

The ICS is composed of two parts, one running 
on the instrument WS and the other one running 
on the LCU.   

The ICS WS part includes the following 
components: 

• ICS WS front-end Process doing the 
following tasks: 

o Controlling the global status of ICS. 

o Forwarding setup commands to the LCU 
front-end processes. 

o Handling and coordinating replies from 
the LCUs front-end processes. 

o Retrieving status of all devices. 

• One additional process when which 
simulates the LCU behaviour. 

• Graphical Interfaces, automatically 
generated and customizable for instrument 
specifics needs. 

 

The ICS LCU part consists of : 
 
• ICS LCU front-end server which acts as the front-end 

for all commands coming from the WS. 

• Standard Device Manager, a single server dealing with all requests for all standard devices. 

• Special Device Manager (if required), a single server per device or group of devices of the same type implementing 
the control of instrument specific software requirements. 

 
1.2 Concept of Standard and Special Devices  

In the ICS nomenclature, standard devices are generic and configurable pieces of software controlling VLT standard 
hardware. The ICS standard devices are part of the instrumentation framework such that instrument developers just need 
to customize them by means of a set of configuration parameters. The following table shows the list of devices currently 
available as part of the ICS LCU software. The so-called ICS special software devices are all devices which are not part 
of the framework and are implemented to accommodate to specific instrument requirements. This generally occurs when 
the VLT standard hardware needs special treatment or when instruments use hardware that is not supported.  

Table 1: Currently available ICS software devices. 

Quantity  Device Type  Interface  ICS Devices 

2  Digital Control  Digital I/O 
Board  

Lamps and Shutters  

12  Motor  Motion Control  ADC, Derotator, Filter Wheel, Slit Wheel, Optical function 
with continuous position, etc.  

9  Sensor  Serial Port  ESO cabinet cooling controller, OMEGA  temperature 

Figure -3: ICS Hardware architecture without the 
fieldbus extension.  



 

 

controller, Humidity sensor, Ester DC24 temperature 
controller, Yokogawa DAQ, Lakeshore temperature 
controller, etc.  

1  Sensor  Digital I/O 
Board  

Digital sensors 

1  Other  TIM board  Time synchronization device 
 

2. JUSTIFICATION 
2.1 Hardware Obsolescence 

During the conceptual phase of the VLT control system in the early nineties, VME technology was the clear choice for 
implementing hardware control for telescopes and instruments. This technology had many benefits in performance, 
reliability and support for long life cycle developments. ESO has developed many specialized hardware and software 
solutions for this architecture in order to satisfy various requirements coming from the VLT projects.  

In the last ten years, the industrial market, in particular the non real-time applications have been migrating toward less 
expensive and simpler solutions based on PLCs and fieldbuses. As the consequence, some of our hardware providers are 
starting to shift their product lines to follow the market trends making it more difficult to ensure the availability and 
support of our VME based technologies for future instruments and to replace failing parts. A concrete example of this 
situation happened some years ago when our main vendor for motion control boards announced the discontinuation of 
the support for the VME interface forcing ESO to embark on the development of a custom-made motion controller with 
all the associated costs this has implied.  

Because ESO is still in the process of developing second generation VLT/VLTI instruments and because we might have 
even a third generation of instruments coming up, there is a clear need to take measures to alleviate this rising issue by 
searching for alternatives with lower long term sustainability risks. 

2.2 PLC support  

There has been a revolution in the area of industrial automation with the definition of international standards and with 
the development of Ethernet based fieldbuses, some of them with extensions for real-time communication. PLCs are 
becoming more powerful and supporting not only digital and analog I/O but also motion control, distributed control 
systems and process and safety control.  

VLT instruments like VISIR and PRIMA are already employing PLCs in their respective control systems, being pioneers 
in this area, but without a proper infrastructure allowing a smooth integration with the VLT instrumentation software. 
Future VLT projects are also planning to incorporate PLCs especially for the control of safety related tasks like the 
interlock panel of the 4LGS Facility or in the ongoing development of a cryogenic controller for infrared detectors.  In 
summary, we could say that PLCs are becoming a new standard for VLT instruments and therefore it is required to 
provide an interface for them within the ICS. 

2.3 Complexity  

Many of the tasks to control and monitor instrument devices do not require real-time capabilities or high computational 
power. The LCU is a general purpose real-time system that is very flexible and versatile but often too complex and 
costly for simple control requirements. The ICS framework provides templates and examples that facilitate the task of 
developing control software for the LCU but this is still not a straight forward process5. Some of the factors increasing 
this complexity are: 

• VLT control software is a custom software framework and the learning curve is steep, especially for the ICS 
LCU code. 

• Only ANSI C is supported as the programming language for the ICS LCU software. This means that we cannot 
make use of real object oriented capabilities that would simplify the coding of the devices. 



 

 

• A real-time operating system is inherently more complex that normal UNIX operating systems.  

• The large number of applications deployed and still being developed make the introduction of significant 
changes more difficult, as well as  ensuring backward compatibility. 

2.4 E-ELT Pathfinder 

ESO has embarked on the E-ELT project and in this context we are looking for the most suitable instrument control 
technologies that could be used by the E-ELT instruments. We are very much interested in prototyping and doing field 
tests on real astronomical instruments to evaluate not only functional capabilities but also some performance issues 
associates to several months of operations under realistic environmental conditions. We strongly believe that, at this 
moment, any evolution of the VLT control system should be tried in the direction of the E-ELT technologies. 

3. VLT ICS FIELDBUS EXTENSION 
Based on the motivations explained previously, we have decided to explore the possibility of an extension of the ICS 
toward industry standards and fieldbuses. This means a flexible architecture that will allow deploying state of the art 
technology connected to the IWS through a simple network interface and without the need of custom and complex 
software. The goal is to be able to connect the hardware devices directly to the IWS via Ethernet when devices support it 
or connect them through a fieldbus commanded by a PLC for more elaborated applications. The above is illustrated in 
Figure -4. 

 
 
 
The ICS fieldbus extension (ICSFB) is still under development and it is planned to be officially released with the VLT 
software version 2011. Nevertheless, we have already a beta version which has been tested in our lab and which comes 
with device drivers needed for our first users. The details of ICSFB are presented in the following sections.  
 
3.1 Project Constraints 

In order to facilitate a seamless integration of the ICSFB into the existing ICS architecture and avoid backward 
incompatibilities that could affect the operations of actual instruments, we have defined the following constraints: 

• The ICS extension must be fully compatible with the command interfaces of the ICS LCU. 

• The technologies to be used should not create a strong impact on the Paranal maintenance.  

Figure -4: Example of an instrument control system architecture with the fieldbus extension. 



 

 

• The ICSFB should be compatible with the present device configuration of the ICS framework. 

3.2 Design Principles 

Based on the constraint of ICSFB and other requirements, we have defined the following design principles:  

• The ICS extension is fieldbus independent. It is possible to support different PLC vendors and fieldbuses as long as 
a proper communication interface exists.  Any hardware to be employed shall be previously defined as a VLT 
standard; exceptions from this principle must be duly justified.  

• The ICS fieldbus extension runs on a private CCS environment but on the same IWS. This means that although the 
extension is running on the same machine, it is completed decoupled from the ICS WS software. 

• The simulation capabilities of the software devices are decoupled from its implementation.  
• The software architectures for standard and special devices are identical. 
• The PLC shall be used only for the interaction with the hardware minimizing the programming to what is strictly 

necessary. As much business logic as possible shall be implemented in the ICSFB device driver. 
• Each software device uses a communication interface dealing with all requests toward the physical device or the 

controller (PLC). This interface is fully independent from the software device implementation. The same device 
server might be deployed with different communication interfaces depending on the protocol and technologies to be 
used. 
 

3.3 Architecture  

There is one front-end control process (ICSFB Control) acting as the interface between device servers and the ICS WS 
main process in the same way as in the ICS LCU software. Unlike the ICS LCU part, the ICSFB uses two servers to 
control each device: Device Server and Device Simulator (Figure -5). This model tries partially to overcome the lack of 
multithreading support on the VLTSW and promote parallelism between devices. 

 
 Figure -5: ICS Software architecture with the fieldbus extension 



 

 

The communication between software processes is done through the VLT message system and via the online database 
(OLDB). The ICSFB CCS environment has its own database and the synchronization with the ICS WS part is achieved 
by means of the CCS scanning system. The ICS WS database structure for fieldbus devices has been simplified, but 
keeping compatibility with LCU devices so that the same graphical user interfaces could be reused. From the user point 
of view, there is no difference between devices controlled from traditional LCUs or devices handled by a PLC.  

The overall architecture is very flexible 
and scalable allowing the control of 
complex VLT/VLTI instruments. One 
instrument could have multiple ICSs, 
each one having one or more ICSFB 
instances. Each ICSFB instance could 
handle several devices without 
presenting performance degradation2.  It 
might be also possible to run ICSFB 
instances in a separate IWS when 
performance becomes an issue but this is 
not encouraged and should be properly 
justified. The amount of devices 
controlled by one PLC depends on the 
characteristics of devices and/or on the 
capabilities of the PLC.  One PLC can 
control several devices making use of 
multitasking capabilities of modern PLCs. 

3.4 Main Components  

The ICSFB code consists of set of C++ classes that provides the basis for the framework and the foundation for 
implementing software devices, simulators and communication interfaces. Some of the core classes for the development 
of devices drivers and communication interfaces and the relationship between them are depicted in Figure -7. This 
diagram shows, as an example, a device driver for a lamp device that has one communication interface. At the 
instantiation of the device driver, two communication interfaces are assigned: one for normal operations and one for the 
simulation mode.    

 

                                                 
2 According to the tests carried out on a standard IWS  running 100 devices in one CCS environment (around 200 processes). 

Figure -7: Some core classes of the ICSFB. 
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Figure -6: Overall ICS architecture with ICSFB. 



 

 

3.5 Communication Interface 

ICSFB provides an abstract base class, “icsfbIF_BASE” (see Figure -7), that gives the basis for implementing the 
communication protocol between the device object and the controller. This class has a set of methods (see Table 2) that 
encapsulates the actions needed by any communication interface like for instance connect, disconnect, read and write. 
For each type of communication protocol supported, a class must be implemented, derived from this class. 
 

Table 2. Main methods of base interface class (icsfbIF_BASE). 

Methods Description 

AddressUser() Register the address used to connect to the device. The method must parse and check 
the validity of the address, before registering it in the object.

CheckConnectionUser() Check that the connection is in good condition.

ConnectUser() Connect to the service provided for the device.

DisconnectUser() Disconnect from the service provided for the device.

InitialiseUser() May be implemented to initialize the basic housekeeping of the object. Note, no access 
to the HW should be implemented within this method.

ReadUser() Read the value of one or several parameters.

ScanUser() Scan the name space of the device and generate a vector with these names and the 
pertinent information about each parameter defined in the name space. 

WriteUser() Write the values of a given set of parameters to the device.

 

3.6 Device Driver 

The base class allowing the creation of device drivers is “icsfbDEV_DRV_BASE”. This class provides a set of abstract 
methods to be overriden by child classes adding the user implementations of each device. Following this scheme, all 
standard ICS commands like setup, status, online, standby, off are mapped into the methods of this class and derived 
classes should provide the specific implementation. In order not to block the functioning of each device driver while 
performing an action, there is another set of methods providing information about the status of the actions being 
executed. 

 Figure -8: Example of class hierarchy for ICSFB device driver classes. 



 

 

3.7 Industry Standards 

The international standard selected to interface the VLT messaging system and the PLCs is OPC6. OPC is a well 
established and largely used communication interface in the area of industrial automation that has been historically 
supported only for Windows platforms but recently extended to a new and cross-platform specification named OPC 
Unified Architecture (UA). The usage of this standard will allow us to be independent of the vendor specific protocols 
and fieldbuses.  
 
Although OPC UA is encouraged, we cannot use it at the VLT with traditional PLCs without the availability of an OPC 
UA Server for the Linux platform. At this moment, OPC UA Servers for Linux are not yet available on the market10. For 
this reason we have also implemented a communication interface for Siemens proprietary PLC protocol. 
 

Table 3: Current ICSFB communication interfaces. 

Interface Description 

OPC UA Implements the OPC UA communication interface based on the Unified Automation OPC UA 
SDK9. 

S7 Implements the communication interface to Siemens PLCs via the access to Softnet Library. 
Softnet is a commercial library from Siemens supported under Linux that implements the 
communication with PLCs using the proprietary S7 protocol. 

CCS Implements the pure CCS interface for simulation purposes. 
 
 
3.8 Complexity of ICSFB devices 

Although it is probably too early to make evaluations and comparisons between the ICS LCU code and the ICSFB, it is 
interesting to see some SLOC metrics for both platforms. The following table shows the lines of code of a set of devices 
computed by sloccount3  

Table 4: Lines of code of software devices in ICS LCU and ICSFB. 

 Traditional LCU 

ANSI C 

Field Bus Extension 

C++ PLC ST (structured text) 

Lamp Device 4262 370 80 

Shutter Device 3054 332 70 

Digital Sensor 2059 233 50 

 

The above shows a significant difference between the amount of code for the LCU ICS and the ICSFB that could be 
interpreted as a gain in simplicity. However, these are just preliminary results based on a beta version of the ICSFB 
devices so they are not conclusive. 

The low number of lines of code in the PLC is explained by the simplicity of accessing the hardware within the PLC 
programming language and by the ICSFB principle of moving away the complexity from the low level part reducing it 
only to the mapping with the hardware and the definition of interface variables for the devices listed above.  

                                                 
3 generated using David A. Wheeler's 'SLOCCount'. 



 

 

 
 
 

4. PIONIER INSTRUMENT – PILOT PROJECT 
PIONIER is a VLTI visitor instrument being developed by Laboratoire d'Astrophysique de Grenoble  (LAOG) and 
planned to be commissioned in Paranal during end of 2010.  Based on the simple control requirements and due to the 
various constraints on the project like budget, power dissipation and flexibility, LAOG have decided to use COTS 
components instead of the traditional LCUs. PIONIER functions will be controlled by an Embedded PC (CX1030) and 
several EtherCAT modules like remote IO and stepper motion controllers from the company Beckhoff7. The CX1030 is 
an industrial PC, as well as a PC-based PLC suitable for medium performance control tasks.  It hosts a real-time kernel 
controlling all the distributed I/O components through the EtherCAT fieldbus8 and a Windows CE operating system for 
the non-realtime tasks including the industrial standard OPC UA server.  
 
ESO, through the SDD/CIS department, has established a collaboration agreement with LAOG to develop the ICS 
extension so that it could be ready on time to be used as the control software for PIONIER. For its part, LAOG has made 
commitment to contribute in testing and commissioning this software.  
 

 
Figure -10: PIONIER Control System 

 

(* Interface variables *) 
bCtrlSwitch:   BOOL;   (*~ (OPC : 1 : comment) *) 
bStatOpen:   BOOL;    (*~ (OPC : 1 : comment) *) 
bStatClosed:   BOOL;    (*~ (OPC : 1 : comment) *) 
bStatLocal:   BOOL;   (*~ (OPC : 1 : comment) *) 
bStatFault:   BOOL;    (*~ (OPC : 1 : comment) *) 

(* Physical signals *) 
q_bCtrlSwitch  AT %Q*:  BOOL; (* Dig OUT for shutter control signal*) 
i_bStatOpen   AT %I*:  BOOL; (* Dig IN for OPEN status signal*) 
i_bStatClosed        AT %I*:  BOOL; (* Dig IN for CLOSED status signal*) 
i_bStatLocal   AT %I*:  BOOL; (* Dig IN for LOCAL status signal*) 
i_bStatFault   AT %I*:  BOOL; (* Dig IN for FAULT status signal*) 

Figure -9: Extract of the ICSFB PLC code for a Shutter Device. 



 

 

 
Figure -11: PIONIER optical table. 

 

 
Figure -12: PIONIER crate housing the Beckhoff Embedded PC and EtherCAT modules. 

 
The Beckhoff system equipped with an embedded PC and EtherCAT fieldbus is used to control PIONIER motors, lamps, 
shutters and sensors. It is now being integrated with the instrument and it has been already tested with shutters and 
motors using the ICSFB software. According to the words of the PIONIER project manager “Some developments and 
tests have still to be done, but we have validated most of the critical issues:  
 

• PLC programs - embedded programs on Beckhoff system 
• OPC UA protocol - protocol used for communication between WS and Beckhoff system 
• ICS extension - framework to support new fieldbus device drivers” 

 



 

 

5. CONCLUSIONS 
Throughout this paper we have presented the ICS fieldbus project which extends the current architecture of the ICS 
framework toward industry standards aiming to tackle the rising obsolesce problem of the VME-based LCUs. This new 
software not only tries to simplify the coding of instrument control software but it also attempts to introduce technologies 
envisaged for E-ELT instruments in order to use the VLT as a field test. We will have to wait until after the deployment, 
commissioning and operations of PIONIER to conclude about the success or failure of these solutions but the 
preliminary results obtained are already validating the efforts spent on this project.  
 
The usage of PLCs and international standards simplify the low level control of devices. However it requires some time 
to learn how to use efficiently the tools to program and configure the PLCs and fieldbuses. OPC UA has a great potential 
to be used as the solution to interconnect PLCs coming from different vendors but it is not yet a mature specification. 
There is currently only one commercial SDK for Linux and no availability of OPC Servers from main PLC providers for 
this platform so a windows machine is required where to run the OPC UA Server. Embedded solutions like the Beckhoff 
Embedded PC overcome this problem by providing an integrated controller with Windows CE and the PLC real-time 
environment. Using communication interfaces for proprietary solutions is another way to solve this problem as it has 
been done in ICSFB for Siemens PLCs. 
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