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ABSTRACT   

ESO is in the process of implementing a new development platform, based on PLCs, for upcoming VLT control systems 
(new instruments and refurbishing of existing systems to manage obsolescence issues). In this context, we have 
evaluated the integration and reuse of existing C++ libraries and Simulink models into the real-time environment of 
BECKHOFF Embedded PCs using the capabilities of the latest version of TwinCAT software and MathWorks 
Embedded Coder. While doing so the aim was to minimize the impact of the new platform by adopting fully tested 
solutions implemented in C++. This allows us to reuse the in house expertise, as well as extending the normal 
capabilities of the traditional PLC programming environments. 
 
We present the progress of this work and its application in two concrete cases: 1) field rotation compensation for 
instrument tracking devices like derotators, 2) the ESO standard axis controller (ESTAC), a generic model-based 
controller implemented in Simulink and used for the control of telescope main axes. 
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1. TECHNOLOGY OVERVIEW 

 
BECKHOFF Embedded PCs and EtherCAT is the proposed solution as the new development platform for VLT 
instrument control systems1. This solution includes TwinCAT (TC) software which is the implementation of the 
EtherCAT master that provides deterministic cyclic access to field inputs and outputs as well as to variables in the 
traditional IEC 61131-3 languages. The TwinCAT version 3 (TC3) launched in 2010 has been a major upgrade which 
includes the eXtended Automation Technlogy (XAT) expanding its capabilities with many new powerful functions3. 
Among those new features is the support for high-level languages such as C/C++ and Simulink for real-time 
applications.  
 
C++ Development Environment 

Starting from TC3, the BECKHOFF software is integrated in the Microsoft Visual Studio (VS) Integrated Development 
Environment (IDE). All TC3 components are encapsulated in a so-called “solution”. Developers can implement PLC and 
C++ code within the same IDE. Templates are provided to create the various types of projects and files, Figure 1 shows 
the default directory structure generated when selecting a C++ driver project. 
 
Additional Licenses 

The free version of the VS shell that is integrated with the TC3 installation package cannot be used for developing C++ 
code. The Professional Edition of VS is required in order to be able to compile C++ code for TC3.  All our tests were 
performed using VS Professional 2012. There is also a specific run-time license required for the execution of software 
developed in C++.  
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Figure 1: MS Visual Studio solution explorer and C++ editor. 

 
TC3 has a modular architecture. All the real-time components are encapsulated in modules which are managed by the 
run-time system. TC3 uses the concepts from “Component Object Model (COM)” to define the characteristics and 
behavior of the modules. TwinCAT COM (TcCOM) is the adaptation of COM to the automation technology that allows 
modules implemented in different languages to interact seamlessly in the real-time context, see Figure 2. 

 

Figure 2: Modular TC3 run-time (source: BECKHOFF website) 

Proc. of SPIE Vol. 9152  91522B-2



TwinCAT Module

Module Description

State Machine

- ITComObject Interface

Interfaces Parameter Interface -
- Pointers -

0 , ..

.., Data Areas Contexts Data Area ,-

Categories
Pointers ,.

ADS Port

0-
0-

 

 

Each TC3 module has a set of mandatory and optional attributes. The mandatory attributes of each TC3 module are: 
description, state machine and a generic interface (ITComObject).  The ITComObject interface is used to access basic 
information and status of the module like name, object ID, parameters and state3.  

 

Figure 3: Internal structure of a TC3 module (source: BECKHOFF website) 

 
 
The module state machine, as showed in Figure 4, 
describes the general state of the module. It controls the 
initialization, parameterization and the creation of the 
connection to the other modules3.  

The state and the transition of the C++ modules are 
consistent with the ones of EtherCAT. The only state 
taking place in the real-time context is the operational 
state (OP). 

 
Figure 4: TC3 module state machine (source: BECKHOFF 
website) 

 
There are two types of files to describe the modules: 

• Class description files, *.tmc 
• Instance description files, *.tmi 

 
The class description contains the description of the module and its interface together with the general information of the 
module: vendor information, class ID, etc. The instance description file contains the concrete settings of the module like 
parameters, interface pointers, etc. 
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C++ Code Generation 

TC3 provides a code generator for implementing the interfaces of module classes such as type definitions, parameters, 
data areas, etc. The generator is based on the TMC file which is produced by the TMC editor, a graphical application 
embedded in TC3. Once data types, parameters and inputs and outputs of a module are defined through the graphical 
editor, the code generation transforms them from TMC file to the C++ code, see Figure 5 and Figure 6. 

 
Figure 5: TMC editor 

 

 
Figure 6: Extract of a code generation. 

C++ Debugging  

Traditional debugging capabilities for C++ are supported in TC3. Additionally, TC3 provides a mechanism for 
monitoring C++ variables at run-time and without stopping the normal execution of the modules. This facility is called 
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LiveWatch and brings a new way of debugging and troubleshooting C++ code more similar to the tools provided within 
the IEC61131-3 editor. 

SVN Integration 

VS can be extended through plug-ins. We have been using the AnkhSVN plug-in which is an open source SVN client that 
is supported and well integrated into VS.   
  
 

SIMULINK Integration 

MathWorks enables the code generation from Simulink models to various targets through the Embedded Coder 5. With 
the Embedded Coder plus the TC3 Target for MatLab/Simulink (TE1400), supplementary software from BECKHOFF, it 
is possible to generate C++ code encapsulated in a standard TC3 module format that can be instantiated or loaded into 
the TC3 development environment.   

In order to perform the code generation it is necessary to customize the coder settings before triggering the building 
process within Simulink. The generation process delivers two outputs: 

• C++ code generated by the MathWorks Embedded Coder/TE1400 in the form of a VS C++ project. The 
generated project contains all source code files, compiler and linker settings that are necessary to successfully 
compile the module within TC3 environment. 

• Binary (object file) produced by the MS VS C++ compiler. 

Binaries can be added as TcCOM objects to the VS solution under the TC3 System. The inputs and outputs of the TC3 
module are matching the ones in the Simulink model from where it was generated. 

One of the most interesting capabilities of TC3 is the possibility to display and navigate through the Simulink block 
diagram including the display of parameters and signals values that can be monitored and/or modified at run-time. The 
user can adjust these parameters within the TC3 environment without to change the original model. 

The TC3 block diagram keeps the same layout and model element names, see Figure 7 and Figure 8. 

 

 
Figure 7: Extract of a simplified version of the ESTAC Simulink model. 
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Figure 8: TC3 version of the original Simulink model. 

2. TRACKING DEVICES 
 
We have implemented a simple prototype of an instrument tracking device (derotator) with the aim of learning and 
validating the C++ support within TC3. While doing this, we have reused the computation of the field rotation 
compensation from the existing LCU code which has been used by several VLT instruments. The adaptation of the C 
code was a fairly simple and straightforward process. The changes to be done were minor, mainly to convert the base 
time between the two systems and the name of the trigonometric functions which have a different name under the TC3 
environment. 
 
As outlined in Figure 9, the tracking device prototype consists of two TC3 modules.  One TC3 module doing the field 
rotation computation (C++), and the other one doing the interaction with the motion controller through the Beckhoff NC 
task (ST).  

  
Figure 9: Derotator device architecture (prototype). 
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v1tUTC- >tv_sec += OFFSET_UNIX;

return hr;

}

ü HRESULT timeGetDcTime(v1tTIMEVAL vltUTC, LONGLONG *dcTime)

{

HRESULT hr = S_OK;

LONGLONG val = 0;

val = v1tUTC.tv_sec * 1000000000;

val -= OFFSET_UNIX;

*dcTime = val + v1tUTC.tv_usec * 1000;

return hr;

}

 

 

 
2.1 C++ Module 

 
The C++ module is executed cyclically in the context of an independent task. The PLC code gets the information from 
the C++ module via the mapping of  input/output variables. The C++ module obtains the UTC time required to compute 
the field rotation based on the internal distributed clocks time and the external reference time (IEEE 1588). We have 
used the interface of the system real-time task (ITcRTime) to inquire the distributed clocks time inside the C++ module: 
 

m_spRTime->GetCurDcTime(GETCURDCTIME_ACTUAL, &m_Outputs.TaskDcTime ); 
 

The distributed clocks time is expressed in nanoseconds since January 1st ,  2000.  The maximum resolution is 100 ns.  
We have implemented some C++ functions to do the conversion between UTC and distributed clock time, see Figure 10. 
 

 
Figure 10: Time conversion functions using C++ in TC3 environment. 

 
The input/output variables of the C++ module are described here: 
 
Input:  

• Structure containing the telescope pointing coordinates (ra, dec, posang, equinox). 
• Structure containing the time reference coming from terminal IEEE1588. 
• Distributed Clocks Time. 

 
Output:  

• Structure containingµ the computation of the field rotation (altitude, azimuth, hour angle, parallactic angle, 
pupil rotation, field rotation, etc.)  
 

2.2 PLC Module 
 

The PLC module consists of two Program Organization Units (POUs), the main program and the function block 
FB_TRACK_CTRL. The FB_TRACK_CTRL implements a set of methods encapsulating the motion control 
functionalities and the state machine handling (see Figure 11). The main program is just instantiating the 
FB_TRACK_CTRL. 
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Figure 11: PLC module prototype implementation. 

 
Input:  

• Telescope pointing coordinates (ra, dec, posang, equinox) received from the high-level software via OPC UA6. 
• NC Structure with the motor status. 
• Field rotation information received from the C++ module via the input and output variables. 

 
Output: µ 

• Updated motor position/velocity. 
• Telescope coordinates. This is required since C++ modules do not support direct interface to OPC UA. 

 
2.3 Evaluation 
 
The implementation of the prototype of the tracking device has been the first attempt to use the C++ language to 
implement software artifacts under the PLC platform at ESO. After the familiarization with the technology, it was rather 
simple to implement and adapt existing pieces of the VLT code to the new environment.  
 
The required correction frequency of the existing derotator devices running on the LCU platform is at maximum 10 Hz. 
The limiting factor is just the requirement and not the capabilities of the LCU. The achieved correction frequency of 
prototype running on the PLC was 1 kHz (on a CX2030) given by the PLC cycle time. At each cycle, the PLC part of the 
prototype is computing a new set point using the information obtained from the C++ part. The computation (in C++) to 
fill up the field rotation structure took less than 50 microseconds. The overall CPU load of the PLC running the 
prototype of the tracking device was very low (2-3%). 

3. ESO STANDARD AXIS CONTROLLER (ESTAC)  
ESTAC is the new standard controller for the control of the main axes of the auxiliary and unit telescopes in Paranal2. It 
has a model based design implemented using MathWorks Simulink. Our goal was to validate the feasibility of 
integrating this ESO product on the new PLC based development environment and use it to control the telescope 
simulator and some DC motors. In order to achieve our goal, we have built a prototype application combining three TC3 
modules: 
 

• ESTAC (Simulink module): a simplified version of the ESTAC model which has been reduced to include only 
the controller part, see Figure 7. 
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• Signal Generator (C++ module):  a set of C++ routines reused from the ESTAC development which produce 
test signals that can be injected in the controller in order to carry out performance measurements4. 

• PLC module: a component doing the gluing of all TC3 modules and the interaction with the hardware.   
 
 
3.1 Evaluation 
 
We have successfully deployed the ESTAC application on a  BECKHOFF Embedded PC. We have tested it by 
controlling the telescope simulator, an existing mockup based on NI hardware that is used to test ESTAC for telescope 
main axes in the VLT control model. Additionally, we have used ESTAC to control, in position and velocity, two 
different DC motors using the DC controller EL7341 and the encoder interface EL5101-0010. In both cases the CPU 
load remained below 10% running at cycle time of 1 ms. 
 

 
Figure 12: Laboratory setup for the integration of ESTAC on a BECKHOFF PLC. 

 
There is a tight integration between TC3 and Simulink, the TC3 target for the MathWorks Embedded Coder includes 
makefiles and build scripts that together with VS compiler/linker produce a TC3 object file directly from the Simulink 
block diagram, without manual intervention.  
 
In TC3 is possible to navigate through the different levels of the Simulink model which are presented hierarchically in a 
tree view together with the block diagram (see Figure 14). The values of the model parameters and the internal signals 
can be accessed and modified at run-time.  
 
The TC3 module general information can be also accessed from the list of properties of the model. 
 

 
Figure 13: TC3 Simulink module properties. 
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During the integration we faced some difficulties bringing the TC3 into run mode. The system simply remained in config 
mode and no error was reported. Later on we discovered that the problem was due to a wrong configuration of the 
parameters of the task calling the TC3 Simulink module. These parameters (task priority, step size, etc.) should match 
the ones defined in the MathWorks coder Tc advanced configuration. 
 
 
 

 

 
Figure 14: ESTAC Simulink model running in TC3 real-time environment. 

 

 
Figure 15: Direct plotting of Simulink model signals. 
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These tests demonstrated the versatility and the potential of integrating C++ and Simulink application into the TC3 
environment. The direct benefits are: 
 

• Re-use of existing and previously tested software components. Some minor modifications are required to adapt 
the code to the new platform though. 

• Simplification of the development by using a well known programming language in our environment. Most of 
our software engineers are experienced C/C++ developers. 

• Implementation of more advanced applications requiring higher order of performance.  

 
The suggested architecture for applications combining PLC and C++ code is to encapsulate the interaction between the 
hardware and the high-level software within the PLC part, and the computation of intensive tasks or complex algorithms 
within the C++ part. Nevertheless, in the scope of instrument control and in order to keep it simple and to avoid 
additional licenses, we intend to use C++ and Simulink only for those cases where this is justified, e.g. for the 
computation of field rotation for tracking devices. 

4. CONCLUSIONS 
 
With the latest version of TwinCAT it is possible to develop PLC code not only with the traditional standard languages 
specified in IEC61131-3, but also in C/C++ and Matlab/Simulik. This is a major advantage that opens the door to 
implementing more advanced applications with a higher level of computational complexity, beyond what is covered by 
traditional PLCs. Our laboratory tests of the new TC3 functionalities demonstrated the feasibility of reusing existing 
VLT software code implemented in C++. This will certainly ease the implementation of instrument control software for 
this new development platform.  
 
The feasibility of integrating Simulink models running in the PLC and without any modification was also verified 
confirming the expansion of the possibilities for this development platform not only for using specialized controllers like 
ESTAC but also for implementing simulation capabilities. 
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