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ABSTRACT 

The Extremely Large Telescope[1] (ELT) is a 39 meters optical telescope under construction at an altitude of about 
3000m in the Chilean Atacama desert. The optical design is based on a novel five-mirror scheme and incorporates 
adaptive optics mirrors. The primary mirror consists of 798 segments, each 1.4 meters wide. 

The architecture of the control system[2] is split in layers and in a high number of subsystems/components developed by 
different parties. This implies a high number of interfaces that must be designed and maintained under configuration 
control, to ensure a flawless integration of the different parts. 

Having interfaces (and data) definitions in a flexible central place allows us to extract several different artifacts (for 
example Interface Control Documents (ICDs), Interface Definition Language (IDL) files, tabular spreadsheets, help files, 
other generated code formats like code stubs or state machine implementations). 

In this paper, we explain how selecting a graphical modeling language like SysML and using graphical and tabular 
editing features made available by state of the art modeling tools presents a number of advantages with respect to other 
solutions like spreadsheets, a relational database, or a custom textual DSL. Still, using standard export/import formats 
(EMF XMI), we do not bind ourselves to a specific vendor. 

We describe the workflow that we have identified for the definition of interfaces, what artifacts we want to automatically 
produce and why. We also describe what technologies we are using to reach these objectives. 

A key aspect of this work is the selection of interface design patterns that are formal enough to allow automatic 
generation of the artifacts and, at the same time, pragmatic and simple to gain acceptance from all users and not incur in 
overhead.  

Keywords: ELT, modeling, interface definition 

1. INTRODUCTION  
ESO has been relying since several years on model driven engineering methodologies and tools for the development of 
the control systems of telescopes and instruments. Rational, concrete usage and lessons learned have been presented in 
several papers, like [3],[4] and [6]. The Active Phasing Experiment project (APE) was also used by the OMG Telescope 
Modeling Challenge Team as a base for writing a cookbook for Model Based System Engineering (MBSE) with 
SysML[5]. 

For the ELT we are developing models using these methodologies in the areas where we can get concrete advantages and 
when we can use them to produce and maintain documentation and other artifacts. This is particularly true for control 
software design and development. 

Selecting a SysML model and a tool like MagicDraw2 as the master format presents several advantages with respect to 
other formats, like spreadsheets, relational database or custom textual languages, including: 

• Easy visually-assisted handling of interface hierarchies and modularity. 

                                                 
1 gchiozzi@eso.org; phone +49-89-32006543 
2 https://www.nomagic.com/products/magicdraw  
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Figure 1. Basic standard interface 
structure 

• Reuse across various types of model and checking of consistency. For example, defining queries to identify who 
is using any of the specified interfaces and if the usage is consistent. 

• Native implementation by the tool of several typical system engineering concepts. 
• Possibility of keeping together interfaces and their behavioral descriptions. 
• Flexibility of reusing the information for further design/verification activities. 
• Possibility of implementing validation rules using the tool’s validation engine in order to promote model 

consistency. 
• Collaborative work with partial locking of edited interfaces. 
 

Using standard export/import formats (EMF XMI), we do not bind ourselves to a specific tool or to a specific vendor. 
Model transformations to generate artefacts from EMF XMI exported files do not depend on the tool used to graphically 
develop the model and can rely on open tools, frameworks and transformation languages, like the EMF and the Xtend 
tool set[7]. 

The choice does not preclude to change the master database to a different format at a later time. Operational needs might 
later require, for instance, to maintain interface information in an ELT Central Configuration Database, rather than in a 
descriptive SysML model. Reversing the direction of generation and import/export achieves this goal. 

One area where we consider modeling particularly useful is in the definition of interfaces, since we need to keep the 
definitions aligned in the Interface Control Documents and all through requirements analysis, design and 
implementation. In the ELT we have to keep under configuration control the interfaces between the Local Control 
Systems that are contracted to industry, and the Central Control System and the interfaces with the instruments. 
Interfaces evolution is a natural part of the design and implementation life cycles, with new features and details being 
added or edited. Model assisted interface definition greatly enhances the task of maintaining such definitions in a 
consistent state, across iterative modifications.  Also, the daily usage of API interfaces can be greatly enhanced if both 
their documentation and derived code stubs can be obtained from the same, consistent source. 

We have therefore defined a workflow and elements (terms, and their attributes) in a dedicated ELT SysML profile to 
support the development of interfaces, described in the following sections. 

2. STANDARD ICD STRUCTURE 
In the case of ICDs for Local Control Systems, the basic assumption is that 
we shall follow the structure already used in the ICD documents prepared for 
the contractors of the ELT subsystems, and exemplified in Figure 1 and 
Figure 5: 

• Every ICD can be hierarchically structured in functional groups 
For example, the interface for Dome control can be split in 

o Dome Azimuth Rotation 
o Wind Screen 
o Slit Doors 
o ... 

• Each ICD or functional group have a Control and a Safety part. 
• Interface specifications for Control or Safety parts can include: 

o Commands 
o Monitoring (measurements and status) 
o Configuration 

• For each interface it shall be possible to specify 
o Documentation 
o Types of parameters and monitor/configuration data items 
o Standard quality of service (Q0S) parameters such as 

 Rate 
 Synchronization 
 Latency 
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o Eventually other semantic information 

 

This structure is not binding (in particular for usages different from LCS ICDs) and can be easily adapted to the specific 
needs of different projects. For example, instead of identifying Control and Safety interfaces at sub-component level, a 
project can decide to do the other way around and have a Control and Safety interface directly below the subsystem and 
have a functional structure inside the Control or Safety level. Nothing changes at the level of what is described here, but 
for the order in which the packages are nested. Consistency inside the project and the usage context naturally remains an 
important goal for the ELT project.  

3. ICS SYSML PROFILE AND TEMPLATES 
We follow the MBSE and OOSEM conventions[5], as they have been adapted for the ELT, in terms of package structure 
and usage of UML and SysML elements and modeling specifications. All conventions were formalized in the mentioned 
SysML profile. 

Figure 2 is a screenshot of the package structure for the Subsystem metamodel in the ELT profile. 

 

The metamodel contains templates intended to be copied & pasted as a complete sub-tree in the place where the 
developer wants to use them and doing search & replace operations to customize them. They are therefore as much as 
possible self-contained and relative to the root package. 

Together with the model-based definition of the interfaces, the template contains a set of standardized tables, whose 
content is generated by querying the model, and that are automatically updated when the model changes. These tables are 
meant to be directly used in the ICD printable documents and are also very handy for editing the details of the interface 
elements (otherwise often a drawback of graphical modeling), as shown in Figure 3. 

4. DEFINING INTERFACES IN MODELS 
The hierarchical containment tree (on the left in Figure 3) is the best place to create/remove interfaces. 

 
Figure 2. Subsystem model structure 

Proc. of SPIE Vol. 10707  1070725-3
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 7/13/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



-oem pi

.. o.m IFHti[e_pahe"I

'... o-ó.oáee..m,.m..m.wa..r.wl.ß e

ob,¢ arretemde00
ó O wn,mna'

6ó
ezm'w.tpk`aa /

o®rtsm es
o-E.®:..

[9 oviem .
-FY.w..w

by

$m i«YWie..mwY-Yrweav.,ovmvn.

.-.tm.ai..e
pt .:e:..r..,nanrmwu.r

a ®emnaJe

Maser

m,as-551ffl,_. EurOl i rrmnmem.,,mm.. Pex14241 nemnrstem.tn-....._ . , m m ® . III

a7 ... CESE 5505° 515 3- ,E.,pmrea.m I.®va.2',QQirmx...! Er> IC-I.IID
I_J sw<IwI: .w mtmaoJ+mlve .; I ... I Fw: 0..

I

m.. o...,..
I

-oe,rt
I

ori 1111.,,.......,..........°°"°'.

Editable fields

Cif Eleallam

Clod

aewc+> <uaeMm artnm>

pa.eee.,

ea .l veperm,amelma.me,,.k
Mint

E LEI

i <u.emw>

atapertw' Dap :e
.nXX,xtx9 and 009En cowman..

ueb nlnp« nemnelrcw>dma'p:n
vasrmlealy

comma .M. ems this Merlme

ñnia,wáa.w%..á.p emce
2-05.°55555,55555. 055°12552 wn

.unnnntemeemnpmnW
.npnlN..ddn.r

FMt speck WIMP. R nt15

eremryeal. rteswM
gagman pox. omsen

Ktm:lm> AertAVeie sped Po
cwmmes'Decke u amXMwe <Me[ Xe.E
rtseüroesW.

20 0
.,mewpmt.s n .wp. even

t:-
em senne 5f Sn ind ,nnsendsf 'satt ne

The xanterfaceelskx, n 55 Spsp port of teeesp
F disweak fente t mntlnsluE one,vento' war m
n ut w Propel, me .cat.nenv» aereetroe Spl
command keaan npmms wan eev.md» cor

. p.eean:.

Navigate and add remove
elements

 

 

Summary tables (on the right in Figure 3) are the best place to edit the details of single interfaces. 

In the following description (using UML/SysML notation), as well as in the template, ASubsystem is a generic name 
to be replaced by the name of the actual subsystem being modeled, for example M4. 

ASubsystemLCS_Interfaces is the package grouping together the interfaces of the whole LCS. The package, in 
its basic form, contains an «interfaceBlock» element modeling the whole interface according to the structure 
defined in section 2 or any other logically defined structure. 

According to SysML and OOSEM conventions, interfaces are modeled as «proxy» ports typed as the corresponding 
«interfaceBlock». Therefore, in our LCS standard, each sub-component interface ASubComponent_if has two 
«proxy» ports, one for Control and one for Safety. Unless reusing interfaces already defined somewhere else, we also 
define inside this block two «interfaceBlock» elements that will contain the detailed definition of the specific 
interfaces. 

Interfaces are modeled by: 

• creating an «interfaceBlock» model element, typically 
• inside an _Interface package 
• or inside another «interfaceBlock» 

Interfaces are declared by: 

• adding a «proxy» port element to the block exposing that interface and assigning as type to the port the 
corresponding «interfaceBlock». 

An «interfaceBlock» can be structured in sub-interfaces to model finer granularity. 

Typically, the «interfaceBlock» defining the internal sub-interface is created inside the super-interface (unless 
reusing something already existing). 

An «interfaceBlock» can contain the description for interfaces as: 

 
Figure 3. Interface navigation and editing with tables. 
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Figure 5. Interface structure in a block definition diagram 

 

5. USING INTERFACES IN MODELS 
 
There are different options to model the usage of an interface by a client. 

The simplest way, that we are suggesting here, is to: 

1. add a «proxy» port element to the block representing the client 
2. assign as type to the port the «interfaceBlock» representing the used interface 
3. "conjugate" the port (think about the male/female interfaces) to model the fact that you are a user of the 

interface and therefore output becomes input and the other way around. Conjugation is displayed with the ~ 
symbol (see e.g. Figure 6). 

4. draw a connector between the port of the server and the one of the client (Figure 7). 

Most modeling tools will perform some validation when you draw the connector and will markup the connection in red 
color if the ports are not compatible. 
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Figure 6. Adding to a client a port with conjugate interface 

 

 
Figure 7. Connect client and server interfaces 
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6. ICD EXAMPLES 
As a concrete example, Figure 8 shows the BDD for the interface of the of the M4 LCS. The interface is split in 3 
functional groups (Adaptive Mirror, Cooling System and Power Supply), each with a control and a safety interface. 

 

Figure 8. M4 LCS Interface 

 

Figure 9 shows instead the standard interface defined in the Instrumentation Framework for shutter devices. 

The ELT Instrumentation Framework defines standard interfaces for the devices commonly used in instruments, like 
Lamps, Motors, Shutters, Piezo.  

The interfaces defined for these devices are at detailed design level and take into account specific implementation details, 
like the fact that communication from the PLCs to the applications using them goes through OPCUA. 

The controller for each device has two interfaces:  

• an Opcua interface, toward the users, implemented through OPCUA, and  

• a Mapping interface directly communicating with the connected hardware through digital, analog or other types 
of I/O ports on the PLC. 

For the Opcua interfaces it has been decided to separate explicitly control, configuration and monitoring (here called 
status) in three separate «interfaceBlock» definitions. 

Proc. of SPIE Vol. 10707  1070725-8
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 7/13/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



bdd [Package] SPIE2018- 10707 -78- Designing_ and_ managing _soflware_intertaces_for_the_ELT [ r;,

ainterfaceBbcks

Shutter if

uaShutterControl if: uaShutterControl if

opcua_if : Opcu a_if

uaShutterConfig_if : uaShutterConfig_if

uaShutterStatus if:uaShutterStatus if

mapin_if : mapin_if

mapping_if: Mapping_if

map0ut_if : map0ut_if

opcua_if

ShutterinterfaceStructure- simplified
interfaceBbdcs

uaDevControl_if

ainterfaceBlcks

ainterfaceBbcks uaShutterControl_if
Opcua_if uaShutterControl_i f, RPC_Close()

RPC_OpenQ

rnt.pping_i i

ainterfaceBlocks

Mapping_if

uaShutterConfig_if ainterfaceBlocks

uaShutterConfig_if
POW properties

inout bActivityLowClosed : Boolean = false
inout bActivityLowFault : Boolean = false
inout bActivityLow0pen : Boolean = false
inout bActivityLowSwitch : Boolean = false
inout blgnoreFault : Boolean = false
inout blgnore0pen : Boolean = false
inout binitialState : Boolean = false
inout nTimeout : Integer = 3000

ainterfaceBlocks

uaDevStatus_if

uaShutterStatus_if ainterfaceBlocks

' uaShutterStatus_if

map0ut_if
ainterfaceBlock»

mapOut_if
flow properties

out switch : Boolean

ainterfaceBbcks

mapin_if mapin_if
flow properties

in close : Boolean [1]
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Figure 9. Instrumentation Framework Shutter standard interface 

 

7. MODEL TRANSFORMATIONS 
At the moment, the primary usage of the interfaces defined in the model is for analysis and design inside the models 
themselves and for producing documentation. A documentation engine executed from inside MagicDraw based on a 
document generation UML profile is responsible for generating documents in DocBOOK and PDF format[8], but also 
the tool’s native reporting engine for PDF can be used to generate customary ICD documentation,  

We aim at developing model transformations to generate from XMI exports of the models: 

o Stubs and skeletons for the interfaces in the form of IDL files for the CII infrastructure, in the supported 
languages. 

o Google Protocol Buffer definitions. 

o Schema for the configuration database and configuration files. 

In parallel to interfaces, we will be using the structural model of the system to generate skeletons of the complete 
applications and we are generating already control state machines as described in [3] and [4]. 
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8. CONCLUSION 
Until now we have defined the standard structure, modeling profile and workflow for the definition of interfaces. 

We are also generating documentation and we have started prototyping the generation of other artefacts, following the 
path adopted with our previous projects. This work will proceed in parallel to the consolidation of the design of CCS 
supervisory applications, of the Instrumentation Frameworks and of CII, that will define the targets of the model 
transformations.  

The process of managing interfaces as being used now still involves manual steps, but most of them can be simplified or 
made completely automatized by customizing the elements of the profile or by writing MagicDraw macros. It will have 
to be evaluated up to which level automation pays off in pragmatic terms. 

We want to be sure that the effort spent in writing each model transformations or modeling support tool will be 
abundantly compensated by the saved effort on the side of the users and in maintaining and keeping aligned the 
information/documentation and the actual implementation along the lifetime of the project. 
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