
PROCEEDINGS OF SPIE

SPIEDigitalLibrary.org/conference-proceedings-of-spie

Designing and managing software
interfaces for the ELT

Gianluca Chiozzi, Luigi Andolfato, Mario Kiekebusch,
Nick Kornweibel, Marcus Schilling, et al.

Gianluca Chiozzi, Luigi Andolfato, Mario Kiekebusch, Nick Kornweibel,
Marcus Schilling, Michele Zamparelli, "Designing and managing software
interfaces for the ELT," Proc. SPIE 10707, Software and Cyberinfrastructure
for Astronomy V, 1070725 (6 July 2018); doi: 10.1117/12.2312175

Event: SPIE Astronomical Telescopes + Instrumentation, 2018, Austin, Texas,
United States

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 7/13/2018 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Designing and managing software interfaces for the ELT

Gianluca Chiozzi1, Luigi Andolfato, Mario Kiekebusch, Nick Kornweibel,
Marcus Schilling, Michele Zamparelli

 European Southern Observatory, Garching bei München, Germany

ABSTRACT

The Extremely Large Telescope[1] (ELT) is a 39 meters optical telescope under construction at an altitude of about
3000m in the Chilean Atacama desert. The optical design is based on a novel five-mirror scheme and incorporates
adaptive optics mirrors. The primary mirror consists of 798 segments, each 1.4 meters wide.

The architecture of the control system[2] is split in layers and in a high number of subsystems/components developed by
different parties. This implies a high number of interfaces that must be designed and maintained under configuration
control, to ensure a flawless integration of the different parts.

Having interfaces (and data) definitions in a flexible central place allows us to extract several different artifacts (for
example Interface Control Documents (ICDs), Interface Definition Language (IDL) files, tabular spreadsheets, help files,
other generated code formats like code stubs or state machine implementations).

In this paper, we explain how selecting a graphical modeling language like SysML and using graphical and tabular
editing features made available by state of the art modeling tools presents a number of advantages with respect to other
solutions like spreadsheets, a relational database, or a custom textual DSL. Still, using standard export/import formats
(EMF XMI), we do not bind ourselves to a specific vendor.

We describe the workflow that we have identified for the definition of interfaces, what artifacts we want to automatically
produce and why. We also describe what technologies we are using to reach these objectives.

A key aspect of this work is the selection of interface design patterns that are formal enough to allow automatic
generation of the artifacts and, at the same time, pragmatic and simple to gain acceptance from all users and not incur in
overhead.

Keywords: ELT, modeling, interface definition

1. INTRODUCTION
ESO has been relying since several years on model driven engineering methodologies and tools for the development of
the control systems of telescopes and instruments. Rational, concrete usage and lessons learned have been presented in
several papers, like [3],[4] and [6]. The Active Phasing Experiment project (APE) was also used by the OMG Telescope
Modeling Challenge Team as a base for writing a cookbook for Model Based System Engineering (MBSE) with
SysML[5].

For the ELT we are developing models using these methodologies in the areas where we can get concrete advantages and
when we can use them to produce and maintain documentation and other artifacts. This is particularly true for control
software design and development.

Selecting a SysML model and a tool like MagicDraw2 as the master format presents several advantages with respect to
other formats, like spreadsheets, relational database or custom textual languages, including:

• Easy visually-assisted handling of interface hierarchies and modularity.

1 gchiozzi@eso.org; phone +49-89-32006543
2 https://www.nomagic.com/products/magicdraw

Software and Cyberinfrastructure for Astronomy V, edited by Juan C. Guzman, Jorge Ibsen, Proc. of SPIE
Vol. 10707, 1070725 · © 2018 SPIE · CCC code: 0277-786X/18/$18 · doi: 10.1117/12.2312175

Proc. of SPIE Vol. 10707 1070725-1
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 7/13/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

J
Dome Azimuth Rotator IF

Control

:Commands

: Conroy ration

: Monitoring

Safety

Commands I

: Configuration

: Monitoring 1

Figure 1. Basic standard interface
structure

• Reuse across various types of model and checking of consistency. For example, defining queries to identify who
is using any of the specified interfaces and if the usage is consistent.

• Native implementation by the tool of several typical system engineering concepts.
• Possibility of keeping together interfaces and their behavioral descriptions.
• Flexibility of reusing the information for further design/verification activities.
• Possibility of implementing validation rules using the tool’s validation engine in order to promote model

consistency.
• Collaborative work with partial locking of edited interfaces.

Using standard export/import formats (EMF XMI), we do not bind ourselves to a specific tool or to a specific vendor.
Model transformations to generate artefacts from EMF XMI exported files do not depend on the tool used to graphically
develop the model and can rely on open tools, frameworks and transformation languages, like the EMF and the Xtend
tool set[7].

The choice does not preclude to change the master database to a different format at a later time. Operational needs might
later require, for instance, to maintain interface information in an ELT Central Configuration Database, rather than in a
descriptive SysML model. Reversing the direction of generation and import/export achieves this goal.

One area where we consider modeling particularly useful is in the definition of interfaces, since we need to keep the
definitions aligned in the Interface Control Documents and all through requirements analysis, design and
implementation. In the ELT we have to keep under configuration control the interfaces between the Local Control
Systems that are contracted to industry, and the Central Control System and the interfaces with the instruments.
Interfaces evolution is a natural part of the design and implementation life cycles, with new features and details being
added or edited. Model assisted interface definition greatly enhances the task of maintaining such definitions in a
consistent state, across iterative modifications. Also, the daily usage of API interfaces can be greatly enhanced if both
their documentation and derived code stubs can be obtained from the same, consistent source.

We have therefore defined a workflow and elements (terms, and their attributes) in a dedicated ELT SysML profile to
support the development of interfaces, described in the following sections.

2. STANDARD ICD STRUCTURE
In the case of ICDs for Local Control Systems, the basic assumption is that
we shall follow the structure already used in the ICD documents prepared for
the contractors of the ELT subsystems, and exemplified in Figure 1 and
Figure 5:

• Every ICD can be hierarchically structured in functional groups
For example, the interface for Dome control can be split in

o Dome Azimuth Rotation
o Wind Screen
o Slit Doors
o ...

• Each ICD or functional group have a Control and a Safety part.
• Interface specifications for Control or Safety parts can include:

o Commands
o Monitoring (measurements and status)
o Configuration

• For each interface it shall be possible to specify
o Documentation
o Types of parameters and monitor/configuration data items
o Standard quality of service (Q0S) parameters such as

 Rate
 Synchronization
 Latency

Proc. of SPIE Vol. 10707 1070725-2
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 7/13/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

EELT_TCS Profile]EEIT TCS Profile c81]
Relations

Mebmodels

él-d 6TContrdSystemMetamodel-ToBeRefactored
d- LCSaSV-ICOMetamodel

B-4 Relatons
j p-d ASUbsystemLCS

I ASubsystemLCS Interfaces

i I I7 .22 Relatons
Alllnterfaces-SummaryTade

,Commandlnterfaces-SummaryTable

Confgurationlnterfaces-SummaryTable

Monitorinterfaces-SummaryTable

ja Thenneifeceovucmie

I I

! ASubsystemLCSif -:rterfcceb.ack.
; 6-1A ASUbCOnponntjfnlnterfaceBloda,

ï p-®
'

Contrd if«Interface& .ode»

1

-© InoutposLiiritt5: rad =0.0 =elt:f.confg. dlowProper
i ,]-© tout poslüitLow: rad =0.0 eI[.if.cnfg* álowProperty»

p- r out; opened. Boolean -false celtif.mommr -FlowProperryo
. I

ç.-® out position :rad = 0.0 .eltif.mnibr» ..fIowProperty»
Ï] Ç.-O open°.eltlf.andn

I i, L. O dose°.eltlf.ond*
C-]-® Safety ifdnterfaceBloá»:_

i Ì ! i.= outhakessthtm Boolean = false lt.tf.momtoroábwProperty.
I L. 0 bakesEngage0 eltif.ond»

I

kip 'flout control : EELT TCSProke::Metamodels::LCSaSV-ICOMebmodel::ASubsystmnLCS::AAbsystemLCS I
..-p out safety : EELT TCS_ProPk::Metamodels::LCSasV-uOMetamodel::ASUbsystenUS::ASUbsystemLCS Int

jp InoutaSWCompgnent: EELT TCS Profik::Metamodeh::LCS2LSV-ICDMetmwdel::ASUbsystemLCS::ASubsyste

Eh- © Sbystem

Summary tables

Control and Safety interface decomposition

o Eventually other semantic information

This structure is not binding (in particular for usages different from LCS ICDs) and can be easily adapted to the specific
needs of different projects. For example, instead of identifying Control and Safety interfaces at sub-component level, a
project can decide to do the other way around and have a Control and Safety interface directly below the subsystem and
have a functional structure inside the Control or Safety level. Nothing changes at the level of what is described here, but
for the order in which the packages are nested. Consistency inside the project and the usage context naturally remains an
important goal for the ELT project.

3. ICS SYSML PROFILE AND TEMPLATES
We follow the MBSE and OOSEM conventions[5], as they have been adapted for the ELT, in terms of package structure
and usage of UML and SysML elements and modeling specifications. All conventions were formalized in the mentioned
SysML profile.

Figure 2 is a screenshot of the package structure for the Subsystem metamodel in the ELT profile.

The metamodel contains templates intended to be copied & pasted as a complete sub-tree in the place where the
developer wants to use them and doing search & replace operations to customize them. They are therefore as much as
possible self-contained and relative to the root package.

Together with the model-based definition of the interfaces, the template contains a set of standardized tables, whose
content is generated by querying the model, and that are automatically updated when the model changes. These tables are
meant to be directly used in the ICD printable documents and are also very handy for editing the details of the interface
elements (otherwise often a drawback of graphical modeling), as shown in Figure 3.

4. DEFINING INTERFACES IN MODELS
The hierarchical containment tree (on the left in Figure 3) is the best place to create/remove interfaces.

Figure 2. Subsystem model structure

Proc. of SPIE Vol. 10707 1070725-3
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 7/13/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

-oem pi

.. o.m IFHti[e_pahe"I

'... o-ó.oáee..m,.m..m.wa..r.wl.ß e

ob,¢ arretemde00
ó O wn,mna'

6ó
ezm'w.tpk`aa /

o®rtsm es
o-E.®:..

[9 oviem .
-FY.w..w

by

$m i«YWie..mwY-Yrweav.,ovmvn.

.-.tm.ai..e
pt .:e:..r..,nanrmwu.r

a ®emnaJe

Maser

m,as-551ffl,_. EurOl i rrmnmem.,,mm.. Pex14241 nemnrstem.tn-....._ . , m m ® . III

a7 ... CESE 5505° 515 3- ,E.,pmrea.m I.®va.2',QQirmx...! Er> IC-I.IID
I_J sw<IwI: .w mtmaoJ+mlve .; I ... I Fw: 0..

I

m.. o...,..
I

-oe,rt
I

ori 1111.,,.......,..........°°"°'.

Editable fields

Cif Eleallam

Clod

aewc+> <uaeMm artnm>

pa.eee.,

ea .l veperm,amelma.me,,.k
Mint

E LEI

i <u.emw>

atapertw' Dap :e
.nXX,xtx9 and 009En cowman..

ueb nlnp« nemnelrcw>dma'p:n
vasrmlealy

comma .M. ems this Merlme

ñnia,wáa.w%..á.p emce
2-05.°55555,55555. 055°12552 wn

.unnnntemeemnpmnW
.npnlN..ddn.r

FMt speck WIMP. R nt15

eremryeal. rteswM
gagman pox. omsen

Ktm:lm> AertAVeie sped Po
cwmmes'Decke u amXMwe <Me[Xe.E
rtseüroesW.

20 0
.,mewpmt.s n .wp. even

t:-
em senne 5f Sn ind ,nnsendsf 'satt ne

The xanterfaceelskx, n 55 Spsp port of teeesp
F disweak fente t mntlnsluE one,vento' war m
n ut w Propel, me .cat.nenv» aereetroe Spl
command keaan npmms wan eev.md» cor

. p.eean:.

Navigate and add remove
elements

Summary tables (on the right in Figure 3) are the best place to edit the details of single interfaces.

In the following description (using UML/SysML notation), as well as in the template, ASubsystem is a generic name
to be replaced by the name of the actual subsystem being modeled, for example M4.

ASubsystemLCS_Interfaces is the package grouping together the interfaces of the whole LCS. The package, in
its basic form, contains an «interfaceBlock» element modeling the whole interface according to the structure
defined in section 2 or any other logically defined structure.

According to SysML and OOSEM conventions, interfaces are modeled as «proxy» ports typed as the corresponding
«interfaceBlock». Therefore, in our LCS standard, each sub-component interface ASubComponent_if has two
«proxy» ports, one for Control and one for Safety. Unless reusing interfaces already defined somewhere else, we also
define inside this block two «interfaceBlock» elements that will contain the detailed definition of the specific
interfaces.

Interfaces are modeled by:

• creating an «interfaceBlock» model element, typically
• inside an _Interface package
• or inside another «interfaceBlock»

Interfaces are declared by:

• adding a «proxy» port element to the block exposing that interface and assigning as type to the port the
corresponding «interfaceBlock».

An «interfaceBlock» can be structured in sub-interfaces to model finer granularity.

Typically, the «interfaceBlock» defining the internal sub-interface is created inside the super-interface (unless
reusing something already existing).

An «interfaceBlock» can contain the description for interfaces as:

Figure 3. Interface navigation and editing with tables.

Proc. of SPIE Vol. 10707 1070725-4
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 7/13/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

• Com
A C

• Mon
A M

• Con
A C
exam

Notice that, o
been placed
tables. Tables

Figure 4 show

from the ELT

 The interface
5, that gives a

mmands.
ommand is de
o Adding t
o Applying
o Defining
o Setting th

nitor points (m
Monitor point i
o Adding t
o Setting it
o Applying
o Setting th
o Setting th

setting, i
impleme

figuration.
onfiguration p

mple, will be s
o Adding t
o Setting it
o Setting th

m).
o Setting th

once the corre
inside the «i
s provide a co

ws an excerpt

T SysML Prof

es can also be
an intuitive re

Fi

efined by:
to the «interfa
g the «elt.i
g parameters a
he tags for the

measurements
is defined by:
to the «inter
ts Direction to
g the «elt.i
he logical typ
he tags for the
if necessary a
entation (like i

point, i.e. an e
set in its own
to the «inter
ts Direction to
he logical typ

he tags for the

esponding ope
interfaceB
ompact view o

from the stere

file.

e represented e
presentation o

igure 4. Exam

aceBlock» an
if.command
and return valu
e stereotype, f
and status).

rfaceBlock
o out (we can
if.monitor
e of the Flow
e stereotype, f
and typically j
int, int64, floa

element that i
configuration
rfaceBlock
o inout (we ca
pe of the Prop

e stereotype, a

erations and v
Block»(s), it
of the details o

eotypes typica

effectively usi
of the hierarch

mple of terms

operation with
d» stereotype.
ues.
from the speci

k» a Flow Pro
only access th
r» stereotype.
Property to a

from the speci
just at detaile
at, double).

s part of the c
n database, is d
k» a Flow Pro

an both access
perty Value to

as for Monitor

value propertie
t is possible a
of operations a

ally used to m

ing a SysML
hical structure

s (Stereotypes

h the name of
.

ification panel

operty with th
he value to rea
.
valid Type (ty

ification pane
d design leve

configuration
defined by:
operty with th
 and change a

o a valid Type

r points.

es (see the de
and very conv
and properties

model the inter

Block Definit
e of the interfa

s) defined in t

f the command

l of from the i

he name of the
ad it, we cann

ypically the u
el of from the
el, the implTy

description fo

he name of the
a configuration
e (typically th

escription of th
venient to edi
 of the interfa

rfaces, and the

tion Diagram
aces.

the ELT Prof

d.

interface table

e monitor poin
ot set it).

units, for exam
interface table

ype to the typ

or a subsystem

e configuration
n value).
he units, for e

he interface e
it the values d
aces.

eir documenta

(BDD), as sh

file

e.

nt.

mple rad or m)
e, for example
e used for the

m and that, for

n point.

xample rad or

elements) have
directly in the

ation, as drawn

hown in Figure

.
e
e

r

r

e
e

n

e

Proc. of SPIE Vol. 10707 1070725-5
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 7/13/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

bdd [Package] ASubsystemLCS_Interfaces [TheinterfaceStructure]

aSubCcmpcnment : ASu

control:

«blocks
Subystem

: ASubsystemLCS

: ASubsystemLCS_if

bComponent_if

safety

«proxy»
Conlrol_If

«proxy»
: Safety_if

«interfaceBlock»
ASubsystemLC S_if

Modification date

Last modified by

1015117 9:48 AM

gchiozzi

«proxy»
aSubComponmentl

;<interfaceBlocks
ASubComponent_if

«Proxy»
control

ainterfaceBlocks
Control If
now properties

inout posLimitHigh : rad = 0.0
inout posLimiLow : rad = 0.0
out opened : Boolean = false
out position : rad = 0.0

operanons
«elt.if.cmdnopen()
«ett.if.cmdnclose()

«proxy»
safety

ciderfaceBlocks
Safety_if

flow properties
out brakesStatus : Boolean = false

operamos
«elt. if. cmd n brakesEngage()

Figure 5. Interface structure in a block definition diagram

5. USING INTERFACES IN MODELS

There are different options to model the usage of an interface by a client.

The simplest way, that we are suggesting here, is to:

1. add a «proxy» port element to the block representing the client
2. assign as type to the port the «interfaceBlock» representing the used interface
3. "conjugate" the port (think about the male/female interfaces) to model the fact that you are a user of the

interface and therefore output becomes input and the other way around. Conjugation is displayed with the ~
symbol (see e.g. Figure 6).

4. draw a connector between the port of the server and the one of the client (Figure 7).

Most modeling tools will perform some validation when you draw the connector and will markup the connection in red
color if the ports are not compatible.

Proc. of SPIE Vol. 10707 1070725-6
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 7/13/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

.14

L- D In the case of ICDs for Local Control System, the... -.paragraph. gcn 0,1;

ICS to LSV metamodellexample description .sectol

03.-t1 Modeling rules for interfaces step by step «seam,

1 Specification of Proxy Port pl -111111.111V

r

I

I

i

M

Ti
iM 0
-OH
j EELT1

EaT

ici IV -
rods

iT 't

Specification of Proxy Port properties

Specify properties of the selected Proxy Port in the properties specification table. Choose the Expert or AB
options from the Properties dropdown list to see more properties.

G Ts Et
voit pl : TCS_Prc

Usage in Diagrams

E Connectors
Traceabity

63- Documentabon/Hypeq

[... E Provided/Required bit
Inner Bements

Relations

Tags

ts. E Constraints
0-0 Interface Block Proper

Language Properties

4

tit Properties: Alt

vmmty

Multiplidty

Is Service

Is Behavior

Is Conjugated

Active Hyperlink

Redefinition Context

Redefined Element

Is Leaf

Name Expression

(Unspedfied)

El true
El false

true

ASubsystentSV [EELT_TCS_Profile::Metamo

In false

Name
The name of the NamedElement.

Q Type here to Ste properties

LClose j [Help

EELT_CS_PartsCatalog ,,e2.partscatalogateit (EELT_CS_Parts_Catalog .52]
y ELT Documentation Management [ELT Documentation Management .34]

SESOM6DG Authors Library [ESO WOG Authors Library .24]

,a Classifier Behavi...

Constraint Pere...

1D Port

OOOReadx (Read-0Nyt (ç; SyslemtBD X ,}{, 722fxtema8rnages

6b :,h.- :a 4 Cl i looeA -: pg D.

- Ibd [Block] suoystemlgo systemiso

iijInternal Biock Bo-

Co, ydue Praporly

p Fbx Pa [

Ctxxecta

>F &Wrq CmnectIX

III Item Property

.fin/ormabon Bows

.tCe.LOCaISUpeNbar.
: A SubsystemLSV

IAloditalon dale 10/917 8.d8 AAl I

Last modllad by II WA..

.tu LçSa
:ASubsystemLCS

Figure 6. Adding to a client a port with conjugate interface

Figure 7. Connect client and server interfaces

Proc. of SPIE Vol. 10707 1070725-7
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 7/13/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

ainterfaceBlock»
aCORBAInterface.
:ool in g Syste m_if

bdd [Package] M4LCS_Interfaces [+. ThelnterfaceStrudure]

adaptivelAirror:AdaptrvelAirror_d I

control : Control_if

safety : Safety_if

coolingSystem: CoolingSystem_i

control : Control_l

safety : Safety_if

pow erSuppy: Pow erSuppy_i I

control : Control If

safety : Safety_if E

«interfaceBlocks
«CORBAInterfaces

M4LCS if

aproxy»
adaptiveldirror

«proxy»
coolingSystem

aproxy»
pow erSuppy

ainterfaceBlocks
«CORBAInterfaces
AdaptiveMirror_if proxy»

control

Modification date

Last modified by

10/4/17 10:56 AM

gchiozzi

ainterfaceBlocks
«CORBAInterfaces

Control_if
n>wpropertws

pout posLimitUpper: rad = 0.0
pout posLimitLower: rad = 0.0
out brickstatus : BrickStatus = false
out position : rad = 0.0
lut IoopClosed : Boolean = false
wt mirrorParked : Boolean = false
out mirrorPowered : Boolean = false

e l t. i f. cm d» cl os e Lo o pp
«elt.if.cmd»enablelntegralAction(xsync, qos...

elt.if.cmd»parkMirror(y,gosLatency ='0.01
e l t. i f. cm d» s etp o i nt()

proxy»
safety

xproxys
control

«proxy»
safety

«interfaceBlocks
«CORBAInterface»
Power Supply_if

«proxy»
control

«proxy»
safety

ainterfaceBlocks
aCORBAInterfaces

Safety_if

ainterfaceBlocks
«CORBAInterface»

Control_If
flow propertws

ut setpoint : K = false {qosLatency = '0.025...
out temperature : K = 273.0 {qosLatency ='0...

«elt.if.cmd»on(ysync, gosLatency ='1.0', ra...
«elt.if.cmd»offp(sync, gosLatency ='1.0", ra...

ainterfaceBlocks
aCORBAInterfaces

Safety_if
now propeTiw

out overTemperature : Boolean = false{qos...

«interfaceBlocks 8°
oCORBAInterfaces

Control_If
flow propeees

out voltage : V= false{qosLatency = "0.025 "....
out current : A= 0.0 {qosLatency = "0.025 ", r...

«elt.if.cmd »on(xsync, qosLatency = "1.0", ra...
aelt.if.cmdooff(ysync. qosLatency = "1.0', ra...

ainterfaceBbcks 8°
aCORBAInterfaces

Safety_if
Mw propenias

out overTemperature : Boolean = false {qos...

6. ICD EXAMPLES
As a concrete example, Figure 8 shows the BDD for the interface of the of the M4 LCS. The interface is split in 3
functional groups (Adaptive Mirror, Cooling System and Power Supply), each with a control and a safety interface.

Figure 8. M4 LCS Interface

Figure 9 shows instead the standard interface defined in the Instrumentation Framework for shutter devices.

The ELT Instrumentation Framework defines standard interfaces for the devices commonly used in instruments, like
Lamps, Motors, Shutters, Piezo.

The interfaces defined for these devices are at detailed design level and take into account specific implementation details,
like the fact that communication from the PLCs to the applications using them goes through OPCUA.

The controller for each device has two interfaces:

• an Opcua interface, toward the users, implemented through OPCUA, and

• a Mapping interface directly communicating with the connected hardware through digital, analog or other types
of I/O ports on the PLC.

For the Opcua interfaces it has been decided to separate explicitly control, configuration and monitoring (here called
status) in three separate «interfaceBlock» definitions.

Proc. of SPIE Vol. 10707 1070725-8
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 7/13/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

bdd [Package] SPIE2018- 10707 -78- Designing_ and_ managing _soflware_intertaces_for_the_ELT [r;,

ainterfaceBbcks

Shutter if

uaShutterControl if: uaShutterControl if

opcua_if : Opcu a_if

uaShutterConfig_if : uaShutterConfig_if

uaShutterStatus if:uaShutterStatus if

mapin_if : mapin_if

mapping_if: Mapping_if

map0ut_if : map0ut_if

opcua_if

ShutterinterfaceStructure- simplified
interfaceBbdcs

uaDevControl_if

ainterfaceBlcks

ainterfaceBbcks uaShutterControl_if
Opcua_if uaShutterControl_i f, RPC_Close()

RPC_OpenQ

rnt.pping_i i

ainterfaceBlocks

Mapping_if

uaShutterConfig_if ainterfaceBlocks

uaShutterConfig_if
POW properties

inout bActivityLowClosed : Boolean = false
inout bActivityLowFault : Boolean = false
inout bActivityLow0pen : Boolean = false
inout bActivityLowSwitch : Boolean = false
inout blgnoreFault : Boolean = false
inout blgnore0pen : Boolean = false
inout binitialState : Boolean = false
inout nTimeout : Integer = 3000

ainterfaceBlocks

uaDevStatus_if

uaShutterStatus_if ainterfaceBlocks

' uaShutterStatus_if

map0ut_if
ainterfaceBlock»

mapOut_if
flow properties

out switch : Boolean

ainterfaceBbcks

mapin_if mapin_if
flow properties

in close : Boolean [1]
in fault : Boolean [0..1]
in open : Boolean [1]
r nCouplerState : Integer

Figure 9. Instrumentation Framework Shutter standard interface

7. MODEL TRANSFORMATIONS
At the moment, the primary usage of the interfaces defined in the model is for analysis and design inside the models
themselves and for producing documentation. A documentation engine executed from inside MagicDraw based on a
document generation UML profile is responsible for generating documents in DocBOOK and PDF format[8], but also
the tool’s native reporting engine for PDF can be used to generate customary ICD documentation,

We aim at developing model transformations to generate from XMI exports of the models:

o Stubs and skeletons for the interfaces in the form of IDL files for the CII infrastructure, in the supported
languages.

o Google Protocol Buffer definitions.

o Schema for the configuration database and configuration files.

In parallel to interfaces, we will be using the structural model of the system to generate skeletons of the complete
applications and we are generating already control state machines as described in [3] and [4].

Proc. of SPIE Vol. 10707 1070725-9
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 7/13/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

8. CONCLUSION
Until now we have defined the standard structure, modeling profile and workflow for the definition of interfaces.

We are also generating documentation and we have started prototyping the generation of other artefacts, following the
path adopted with our previous projects. This work will proceed in parallel to the consolidation of the design of CCS
supervisory applications, of the Instrumentation Frameworks and of CII, that will define the targets of the model
transformations.

The process of managing interfaces as being used now still involves manual steps, but most of them can be simplified or
made completely automatized by customizing the elements of the profile or by writing MagicDraw macros. It will have
to be evaluated up to which level automation pays off in pragmatic terms.

We want to be sure that the effort spent in writing each model transformations or modeling support tool will be
abundantly compensated by the saved effort on the side of the users and in maintaining and keeping aligned the
information/documentation and the actual implementation along the lifetime of the project.

ACKNOWLEDGMENTS

We would like to thank here many colleagues who have provided requirements and feedback for the definition of the
ELT control system architecture and in particular R.Karban who played a major role in laying down the foundations of
the concept already several years ago before moving to JPL.

REFERENCES

[1] Tamai, R., et al., "The E-ELT program status", These proc. SPIE 10700, paper 10700-36 (2018)
[2] Chiozzi, G. et al., “The ELT Control System”, These proc. SPIE 10707, paper 10707-31 (2018)
[3] Andolfato, L. et al., “Behavioural Models for Device Control”, Proc. ICALEPCS 2017, Barcelona, Spain (2017)
[4] Chiozzi, G. et al., “A UML Profile for Code Generation of Component Based Distributed Systems”, Proc.

ICALEPCS 2011, Grenoble, France (2011)
[5] Karban, R. et al., Cookbook for MBSE with SysML, MBSE Initiative - SE2 Challenge Team (2011)
[6] Andolfato, L. et al., “Experiences in Applying Model Driven Engineering to the Telescope and Instrument

Control System Domain”, Lecture Notes in Computer Science Volume 8767, 2014, pp 403-419 - Springer
International Publishing Switzerland

[7] Klatt B., “Xpand: A Closer Look at the model2text Transformation Language” 12th European Conference on
Software Maintenance and Reengineering, (2008).

[8] Karban, R., Zamparelli, M., Bauvir, B., Chiozzi, G., “Three years of MBSE for a large scientific programme:
Report from the Trenches of Telescope Modeling”, INCOSE 2012 (Rome, 09-12 July 2012)

Proc. of SPIE Vol. 10707 1070725-10
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 7/13/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

