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ABSTRACT   

The Extremely Large Telescope (ELT) is a 39-meter optical telescope under construction in the Chilean Atacama desert. 
The optical design is based on a five-mirror scheme and incorporates adaptive optics. The primary mirror consists of 798 
segments. Scientific first light is planned by the end of 2027. The status of the project is described in [1]. 

The major challenges for the control of the telescope and the instruments are in the number of sensors (~25,000) and 
actuators (~15,000) to be controlled in a coordinated fashion, the computing performance and low latency requirements 
for the phasing of the primary mirror, performing adaptive optics and coordinating all sub-systems in the optical path. 

Industrial contractors are responsible for the low-level control of individual subsystems and ESO for the development of 
coordination functions and control strategies requiring astronomical domain knowledge. 

In this paper we focus on architecture and design of the High-Level Coordination and Control (HLCC). It is the component 
of the control software responsible for coordination of all telescope subsystems to properly perform the activities required 
by scientific and technical operations. 

We first identify the HLCC context by introducing the global architecture of the telescope control system and by discussing 
the role of HLCC and its interfaces with the other components of the control system. 

We then analyze the internal architecture of the HLCC, and the primary design patterns adopted. 

We also discuss how the features identified from the requirements and the use cases are mapped into the design. 

Finally, the timeline and the current status of development activities are presented. 

Keywords: ELT, telescope control software, architecture, design 

1. INTRODUCTION  

The ELT is a large segmented telescope. Significant wavefront perturbations are induced first by the atmosphere and then 
by the telescope itself (deformation through gravity, temperature, and wind loads). The goal is to control the telescope 
enabling the delivery of a diffraction-limitable beam at each of the ELT Nasmyth foci, i.e. where the light beam is passed 
over to the instruments. This means that the “spectrum of wavefront aberrations induced by the observatory is below that 
of the free atmosphere.” [2].  

The aim of the ELT is to provide a wavefront with an error in the range of tens of nm in the presence of perturbations that 
can be in the range of mm (in the case of gravity deformation when changing the telescope pointing from zenith to horizon). 
The most important role in the associated control strategy is played by the deformable quaternary mirror (M4). It is 
controlled in an on-sky closed loop with a large temporal and spatial bandwidth. This is possible thanks to a deformable 
mirror of unprecedented size: M4 has 5352 degrees of freedom, with the on-sky loop being closed at rates up to 1 kHz [5]. 
The limited stroke (100um) of the M4 actuators and the limited capture range of the wavefront sensors already exclude 
that the wavefront can be controlled solely by M4. Even if this was feasible, it would not be possible to fix the field 
properties of the telescope by the M4 alone. M4 requires therefore the support of several additional control systems [4]: 

 Feed-forward control is used when on-sky loops are open, to preset the telescope to a new target, and as an 
underlying first order system when tracking. The feed forward model takes into account astrometry and telescope 
deformations due to gravity and temperature to position the telescope within the acquisition range of on-sky 
sensors [6]. 
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 Feedback loops based on telescope internal metrology (as opposed to on-sky loops) are used to control the state 
of the telescope. E.g. the 798 hexagonal segments of the segmented M1 are moved in piston, tip, and tilt (2394 
degrees of freedom) to control the shape of M1 based on measurements of relative displacements between 
segments using 4524 Edge Sensors. The M1 Figure Loop can reduce relative edge displacements to several nm 
and keep low order deformations (in the mm range due to gravity) at levels within the capture range of M4 [7]. 

 Stroke Management is a background task to redistribute the slowly building non-zero-mean components in low 
order modes of M4 to other degrees of freedom:  

o tip and tilt modes are controlled in a collaborative control scheme together with M5 and Telescope Main 
Axes, which desaturates M4 and M5 eventually through a Main Axes guide correction. This process is 
referred to as Field Stabilization [8][9]. 

o focus and coma are transferred to M2 occasionally, on a timescale of a few minutes [2]. 

o higher orders are continuously offloaded to M1, essentially by commanding the low pass filtered modal 
amplitudes accumulated on M4 to the M1 figure loop control system. 

The coordination of all the subsystems involved in these activities and the implementation of the high level strategies that 
define their interactions is the responsibility of the High Level Coordination and Control (HLCC) and of the Telescope 
Real-time Executor (TREx) components of the Central Control System (CCS) 

2. THE ELT CONTROL SYSTEM 

The ELT Control System (CS) implements the overall control of the telescope (and dome), including the computers, 
communication and software infrastructure. The architecture has been described in [3] and since then we have consolidated 
and further developed it in the details, using the feedback from prototypes and the first applications. Here and in the next 
sections we describe just some key aspects to have a context and we summarize the most important developments since 
the publication of [3]. 

Figure 1 shows an overview of the ELT CS, with some simplifications and omissions for readability (numbers circled in 
orange are used to identify items referenced with “Figure 1-(#)” in the text below). 

Figure 1: ELT Control System overview 
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The first breakdown of the ELT CS is into the many individual control systems associated with Telescope subsystems 
(called the Local Control Systems (LCS)) (Figure 1-(1)), and the single system that integrates these, the Central Control 
System (CCS) (Figure 1-(2)), whose internal structure is described below. 

A subsystem is responsible for autonomous control, monitoring and safety through the LCS. An LCS is integrated into the 
ELT Control System via its LCS-CCS interface, implemented via a suite of standard protocols running on switched 
Ethernet. 

The LCS-CCS discrimination separates unit-level from telescope-level safety and control, but it also matches 
organizational boundaries in-line with the ELT procurement strategy: individual subsystems are designed, built and 
delivered by industrial partners; their integration is the responsibility of ESO. 

A subsystem is presented to the CCS via its Subsystem Functions (defined as the operational activities or purposes for 
which that Subsystem was designed. For example, tracking a target, imaging a target, correcting wavefront, and so forth). 
The CCS component integrating the LCS with the CCS is termed the Local Supervisor (LSV). It is within the LSV that 
the Subsystem Functions are implemented (either via interaction with the LCS, or within the LSV itself) and where the 
knowledge of the astronomical domain resides. For example, sky tracking algorithms are implemented inside the Main 
Structure LSV code, that will commands the MS LCS to move the axes to a specific (alt, az) position. 

On the other side of CCS are the instruments (Figure 1-(3)), developed by consortia of ESO partner institutes. Each 
instrument includes an independent Instrument Control System (ICS) developed following the ELT standards, and 
interfacing with the telescope through the CCS interface, split over a control and a deterministic network (Figure 1-(4)). 

The CCS integrates the many LCSs into a single system implementing the coordinated control, system level safety, 
monitoring and user interfaces required to operate the telescope. It provides monitoring, logging and archiving for long 
term trending and configuration control. Control Room terminals, GUIs and tools belong to CCS.  

CCS applications are organized in a shallow hierarchy of loosely coupled cooperating components as can be seen in Figure 
1-(2).  

The architecture enforces a distinction between a telescope device (the System Under Control - SUC, e.g. the M2 unit) and 
the component controlling that device (the Control System - CS). 

All CCS software is built following a set of standards covering hardware, software, documentation, testing, coding and 
development process. Part of these standards is global use of the Core Integration Infrastructure (CII) [3] for interfacing 
with generic control system services such as: communication middleware, logging, configuration, online database and 
error handling. All applications are also based on the Rapid Application Development (RAD) framework [11]. RAD helps 
in the development of event driven applications by imposing a common design and providing tools to quickly produce 
application skeletons ready to use. Anonymous publisher-subscriber communication and shared access to the online 
database are used to keep the coupling as loose as possible. 

3. CCS INTERFACES AND OPERATION WORKFLOW 

The diagram in Figure 2 takes key components from the ELT Control System (CS) and places them in an interface block 
diagram where the interfaces relevant to the telescope during observation are identified. 

The LSVs publish the estimated state of their associated telescope subsystem as a set of State Variables.  

The term State Variable (SV) refers to an element of the CS that represents a physical state of the SUC[14]. For example, 
a limit switch in the SUC will physically be in an opened/closed state and the CS will use evidence such as sensor 
measurements to estimate the state of the switch as opened/closed. SVs are observable by clients. 

The subsystem states may be manipulated through a supervisory command interface exposed on the control network by 
the LSVs. 

The Main Structure, Dome, Prefocal Station (PFS) and Laser Guide Star LSVs track sky coordinates and thus run pointing 
kernels publishing actuator position references at 20Hz. The Main Structure (Alt/Az axes), and Prefocal Station (guide 
probes) may receive deterministic input into the pointing kernel in the form of adjustments to the target position on the 
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focal plane (from the instrument) and the M4 and M5 offload to the Main Structure axes (from TREx as part of guiding 
and stroke management). 

The M4 Adaptive Mirror and M5 Tip-Tilt stage are driven by TREx at rates up to 1kHz. To minimize latency, the 
commands from TREx are published directly to the M4 and M5 Local Control Systems (LCSs), bypassing the respective 
LSVs. 

System-level conditions of the telescope are estimated from the set of subsystem State Variables. These conditions are 
summarized by the Telescope Monitor, for example: “presetting”, “guiding” “ready for INS hand-over”, “observing”. Such 
conditions are not mutually exclusive, and they do not inhibit the function of the telescope, rather they are used to inform 
the operators and coordinate observations with the instruments. 

The telescope subsystems may be initialized and transitioned into night operations by the operators using interactive 
command sequences executed under the control of an interactive sequence execution engine termed the Sequencer (Figure 
1-(8)).  

ESO technical staff (i.e operators, AIV and commissioning scientists and engineers, maintenance engineers or the software 
development team) can interact with the telescope using the operator consoles and engineering GUIs or through Python 
scrips run through the Sequencer or Jupyter-notebooks. 

With the observing doors open and necessary subsystem functions available and enabled, the telescope is ready to observe. 

The primary users of the telescope are the instruments and, through them, the astronomers preparing the observations to 
be run. 

An instrument commences using the telescope by sending the observation specific parameters to the CCS: target, guide 
stars, observing wavelength, AO command base, etc, after which it commands the telescope to Preset. The guide probe 

Figure 2: CCS interfaces 
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(GP) cameras are set up according to the expected guide star characteristics. TREx is configured as to which GP will be 
used for guiding, the AO command base, and other observation parameters. Likewise, the M4 Adaptive Mirror is loaded 
with the AO command base. 

The telescope interface, upon reception of preset, will forward the preset coordinates to the Dome and Main Structure 
pointing kernels, running in the respective LSVs, which commence publishing position and trajectory demands at 20Hz to 
the telescope and dome axes (driven by the corresponding LCSs). The PFS LSV will receive coordinates of up to three 
guide stars (queried from the catalogue, if not provided by the observation) and will likewise commence publishing 20Hz 
position and trajectory data to the guide probe arms (driven by the PFS LCS), and North Angle and Pupil Angle at 20Hz 
to the INS-CCS interface for consumption by instrument tracking functions such as rotators, pupil steering mirrors and 
pointing origin stream. At the time of preset, the instrument will commence publishing its pointing origin stream (i.e. the 
coordinates that define the projection of the instrument’s derotator center onto the PFS straight through focal plane), which 
is received by the Main Structure and PFS pointing kernels. 

When the guiding-designated GP (typically the GP on the brightest star) images the guide star, the exposure (made 
available to the operator via TREx) may be adjusted through usual camera controls such as integration time and windowing, 
to improve the image quality. In addition to image display, TREx is producing image quality metrics, tip, tilt, and rotation 
error estimates based on the three guide stars and publishing these to the CCS (and INS interface). After the operator-
selected guide star is centered on the GP reference pixel, TREx begins computing and publishing tip-tilt commands to M4, 
M5 and MS (via a collaborative control scheme[9]) and guiding commences, with the loop closed on the brightest guide 
star. 

Once guiding, TREx will use sampled images and telescope metrology (published by LSVs state variables) to calculate 
periodic corrections to the telescope optics. The primary goal of these corrections is to maximize stroke on the M4 Adaptive 
Mirror, while improving image quality to a level suitable for instrument AO to begin. The instrument is receiving light at 
all stages and therefore it may commence its setup and acquisition process, but the telescope is not committed to deliver 
and maintain a defined image quality or to accept requests from the instrument in this optimization phase. After one or 
more iterations, the CCS will indicate “ready for handover” to the instrument, at which time the instrument may conclude 
its acquisition and is ready for AO. 

The instrument performs its acquisition procedures concluding in a deterministic signal exchange between the instrument 
AO RTC and TREx, whereupon TREx switches from guiding (based on PFS GP-derived errors), to processing of the 
instrument-published AO commands. The handover lasts a few milliseconds at which time no corrections are sent to M4 
adaptive mirror, M5 tip-tilt and MS axes (MS is still tracking). After successful handover the instrument is performing 
guiding and higher-order AO corrections, and TREx is responsible for mirror stroke optimization, primarily through its 
collaborative control scheme. The PFS guide probes continue tracking the guide stars, the guiding corrections derived from 
the PFS guide star may or may not be incorporated into the collaborative control scheme by TREx depending on the mode 
selected by the instrument: in “Cascade” mode the GP guiding corrections are incorporated with guiding corrections from 
the instrument; in “Sequential” mode, then PFS-derived guiding errors are ignored with tip-tilt and higher order AO modes 
fully driven by the instrument. 

At any time after handover, whether requested by the instrument, the telescope operator, or as a result of an internal alarm 
(e.g. optical unit saturation), the telescope may ignore (not apply) instrument AO corrections and switch back to the PFS-
derived guiding corrections. This event and condition are communicated to the instrument both over the deterministic 
network (to the instrument AO RTC) and the control network (to the instrument supervisory software), where instrument 
acquisition may be repeated if required. 

The transition through acquisition to CCS-driven wavefront control onto INS-driven wavefront control and back is shown 
in the activity diagram in Figure 3. 
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4. HIGH LEVEL COORDINATION AND CONTROL (HLCC) 

The HLCC offers a single interface of the whole telescope toward operators and the instrument control software, except 
for deterministic interfaces that are provided by TREx. Its main task is for supervisory applications to coordinate the 
various telescope subsystems.  

The main challenge for HLCC is to implement a well-structured system that at the same time can be modified to a large 
extent during telescope commissioning. We foresee a long period of integration and commissioning, during which we will 
discover how to optimize the operation of our machine and how the elementary functions provided by the LSVs will be 
better composed together. 

4.1 HLCC Deployment  

The HLCC is C++, Python, and Qt software for Linux (currently CentOS but moving to Fedora) which will be executed 
on a mix of physical and virtual machines in the Armazones Computer Room. The software has only low requirements on 
determinism and synchronization, allowing hosting virtual machine instances on ESX servers with NTP time 
synchronization. Where greater determinism is required (for example for pointing kernels transmitting UDP data at 20Hz), 
physical machines with network connections to the Deterministic Network, and Time Reference Network (PTP) will be 

Figure 3: Transition through acquisition to CCS-driven wavefront control onto INS-driven wavefront control 
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used. UIs will be displayed on terminals in the Armazones Local Control Room, remotely in Paranal Control Room, or on 
other terminals in the telescope area if required. 

Most of the HLCC interfaces to Subsystem Control Systems are present in the Computer Room over 10GbE. Where data 
is exchanged with subsystems in the telescope area (e.g. PLCs of an LCS), an infrastructure of single and multimode fibers 
is available. 

4.2 HLCC architecture 

The HLCC is architecturally composed of several functional building blocks, as can be seen in Figure 1. Among these: 

 The interface toward the instruments, defined in the CCS-INS ICD [17], is allocated to the single component in  
Figure 1-(9), whose responsibility is to filter, validate and re-dispatch all commands received. This gives the 
flexibility to modify the internal structure without impacting the clients. All interfaces in the ELT are defined 
using standard structuring conventions [10]. 

 In order to provide maximum flexibility during AIV and Commissioning, features of the system (see also section 
7) are implemented by independent supervisory applications designed to perform a complete operational 
function/use case of value to the users of the system. These procedures are managed by the SequencerProcedures 
module (Figure 1-(8)) and are written and executed using the Sequencer tool and are decoupled from the rest of 
the system. In this way also members of the AIV and commissioning teams can directly modify them. 

 The Telescope Monitor Status and Configuration component (Figure 1-(14)) is responsible for monitoring all 
components of CCS and consolidating this information to build global status indicators. It manages requests for 
high level changes in the configuration, propagating information to individual subsystems. It makes high level 
status information available to human users as well to other systems, instruments in particular.   

 The PointingKernel (Figure 1-(11)) component coordinates and interacts with the pointing kernel components in 
dome, main structure, PFS and laser systems. It interacts with TREx for most of the pointing logic, but also 
commands the LSVs directly. 

 The CentralFDIR (Figure 1-(12)) application monitors those aspects of quality and failures that involve more than 
a single subsystem. 

 Other dedicated applications exist for star catalogues, monitoring and configuration, alarms, or specific tasks such 
as segment exchanges. 

As a general architecture concept at ELT CCS level,  

 Instructions are given to components using a command/reply pattern, but the reply is only used to acknowledge 
proper reception of a command. 

 A client shall infer the proper execution and completion of a request from status information available through a 
publish/subscribe pattern. 

For example, an instrument will send a Preset command to the HLCC Telescope Interface to request pointing and tracking 
to a new target in the sky and receive an OK if the target is valid. It will know that the telescope is on target and ready for 
the instrument to start exposures when the “ready for handover” status information is published.  

The HLCC architecture relies on the Estimator-Controller-Adapter patterns [14], where the estimation of the status of the 
system that we are controlling (the system under control) is kept clearly separated from the control tasks. 

The Estimator-Controller-Adapter pattern is based on: 

 The Adapter, that allows to communicate with the SUC to command and measure. 

 The Estimator, that receives measurements from the SUC via the Adapter and computes State Variables. 
Estimators do not send commands to the SUC. 

 The Controller, that is responsible to control the SUC via the Adapter. It can read State Variables. Commands 
sent by a Controller affect the SUC and therefore the value of State Variables.  
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4.3 HLCC design and patterns 

Each HLCC component is implemented as one or more software processes, developed in C++ around a state machine 
engine provided by the RAD framework [11] in combination with CII.  

We describe below some characterizing elements of the design (used not only by HLCC but also by other CCS components. 

The software stack of an HLCC process is shown in Figure 4. 

State machine 
All RAD applications in the ELT implement the same basic state machine [12] and a common set of standard commands 
defined in the ICD. The state machine is then extended to the functionality of the specific application (events and 
transitions). The challenge here is to ensure that the extended state machine remains compatible with the standard state 
machine; in simple cases this can be done by adding sub states or parallel regions to the existing ones, but little exists in 
literature and as tools to handle more complex situations: see [13] for an analysis and to see how we are addressing this 
issue. 

When a command or any other external event is received by the application, it is translated into an event for the state 
machine, that in turn will execute the functions associated with transitions, state enter/exit actions and do activities. Figure 
5 shows an example of standard state machine extended to cover the specific needs of one of the processes in the CCS 
Simulator, which provides a simulation of the telescope ICD toward instruments and is described with more details in 
section 4.4. 

From the model of the state machine in SysML, an SCXML file is generated and it is loaded and interpreted at run time 
by the RAD engine [18].  

The code is structured in separate small classes for Actions, Activities, Estimators, guard Conditions, making is easy to 
modify and extend the behavior of the application (even at run time, since the state machine is interpreted). We have seen 
that designing the logic of state transitions using a graphical and formal modeling tool and keeping this logic separate from 
the code if very useful to discuss the behavior of the system and to keep the code simple. One clear example is the handling 
of commands that can be executed only in certain conditions: when these conditions are mapped to states and the commands 
are defined by events only associated to the allowed states, the implementation is transparent and clear to anyone looking 
at the model.   

Figure 4: HLCC process software stack 
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Actions and Activities 
While Actions are supposed to be instantaneous and can therefore be executed in the main thread of the RAD engine (it is 
the responsibility of the developer to ensure that Actions are really considered instantaneous on the timescale of the 
application), Activities last instead for the whole time the system is in the corresponding state. 

Therefore, Actions are spawned in RAD in separate threads whose lifecycle is bounded by the owning state.  

Typical examples of Activities are Estimator and Controller Activities, or initialization that takes an extended amount of 
time, as described below. 

Estimator and Controller 
We want to be able to get information on the status of the system at any time, while we want to be able to control the 
system (i.e. move actuators) only when we are sure that every component is properly initialized and available. 

Therefore Estimators are implemented as Do Activities of the On state and are therefore started as soon as the process is 
started up, and are always running until it is switched off. 

On the other hand, Controllers shall be available only when the application is in the Operational state. When the set value 
for an actuator has to be kept under control by providing updated target positions (like for example when tracking a 
telescope to follow a target in the sky) there shall be a controller thread taking care of calculating and setting the new 
position. In our application we have therefore a DoControl thread that implements the position controller and that is running 
when the application is in the Operational state. A Preset command provides a new target in sky coordinates and the 
Controller converts them in a loop into actuator coordinates. If no sky target is present, the Controller simply ensures that 
the actuator remains at a fixed location under position control. 

Other control tasks might be bound to specific sub-states of Operational or might be even implemented as Actions if they 
have a very short execution time. 

Estimation events 
The state machine (SM) of an application is driven by events.  

External commands issued through the interface are mapped into events. 

In order to also react to changes in State Variables (SVs), i.e. to changes in physical state of the system under control, 
Estimators push internal events to the state machine. Guards can then be used to filter these events and trigger transitions 
of state, matching event data against the guard rules defined for the SM. 

Figure 5: State machine for the CCS Simulator pointing kernel process 
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In the simple example of the state machine of the CCS Simulator in Figure 5, at every iteration of the pointing kernel loop 
the estimator publishes a NewEstimation event. If, for example, the application is in the MovingTo state, but the estimator 
realizes that the telescope is now standing still, the transition to the Idle state is triggered.  

This allows to use effectively the state machine to react to changes in the field, without having to implement loops and 
if/then/else switches that check the different conditions, but just implementing much simpler individual guard conditions. 

Publishing estimated State Variables 
The HLCC makes available the results of the estimation tasks to clients in two ways: 

 Writing the individual values in the Online Database (OLDB) 

 Publishing the values, grouped in topics of logically related SVs, in the publisher/subscriber service. 

The OLDB is a hierarchical database built on top of Redis2, while the publisher/subscriber is based on the Data Distribution 
Services (DDS)3. 

The use of two different publishing technologies covers a range of use cases. Redis suits itself to scripts, GUIs and 
sequencers, requiring no type-specific knowledge to browse and read, and a slower update rate (max 5Hz), nonetheless 
suitable for UIs. It is likewise centralized in the Redis server removing the need for a peer discovery/match phase. DDS 
on the other hand is more suitable for control software to control software communication, being decentralized, strongly 
typed, with high performance and a rich set of quality of service parameters. 

Via subscription to OLDB data points and DDS topics, an HLCC application will be notified of data changes and may 
react. The event could relate to parameters or measurements computed and published by other processes, or a change in 
the runtime configuration. An HLCC application uses subscription to learn of and adapt to external changes. 

Command interface 
The data publishing pattern is not intended as the command interface to the process. 

A command interface to the software combines a set of standard commands applicable to all HLCC software (state query 
and change commands, and other software diagnostics) and application-specific commands applicable to the target 
application. The command interface uses a Request/Reply communication pattern implemented by CII over “ZPB”, a 
combination of ZMQ4 with packet serialization by ProtocolBuffers5. ZPB is also used by the HLCC software to send 
commands to other HLCC processes. 

Initialization and configuration 
When an HLCC Control Software process starts, it reads its configuration from the Configuration Repository. This is a set 
of YAML files available at a URL, typically a set of files stored locally or queried from the Engineering Archive. 

These data form the bases of the Runtime Configuration, which the process mirrors to the Online Database (OLDB) for 
observability and for clients that are interested in knowing the configuration of the system. 

It is possible to ask the system to load a new configuration by forcing a new initiallization or by using specific configuration 
commands, if it makes sense to change some configuration parameters dynamically. 

Subsystem Functions 
An LSV hosts its Subsystem Functions within the ELT CCS, presenting the Subsystem Function as a set of published State 
Variables, a command interface and configuration data. 

Figure 6 shows UI applications interfacing with the CCS via Request/Reply over ZPB and querying of current data from 
the OLDB. The technique is equally applicable to HLCC software or LSV software. HLCC software communicates with 
Subsystem Functions (or other HLCC software) via the same patterns, in addition it may subscribe to DDS topics of other 
control processes. 

 
2 Redis, https://redis.com/  
3 eProsima FastDDS,  https://www.eprosima.com/index.php/products-all/eprosima-fast-dds  
4 ZeroMQ, https://zeromq.org/  
5 Google Protocol Buffers, https://developers.google.com/protocol-buffers  
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The goal is to have the same technologies and patterns applicable to all levels of CCS software, with the interface to the 
subsystem control systems represented as a set of Subsystem Functions. Coordinated supervisory control of the telescope 
is provided by the HLCC by manipulating and monitoring the Subsystem Functions via their State Variables, Command 
Interfaces and Configuration. 

 

Figure 6: HLLC-LSV interfaces 

Time synchronization 
The ELT measures elapsed time from a monotonic clock, and manages time instances, or timestamps from a wall-clock. 

The monotonic clock selected for the ELT Control System is the International Atomic Time (TAI) timescale. The wall-
clock time standard is UTC, with UNIX epoch (Midnight, 1 January 1970). 

The Networking Infrastructure is responsible for the communication of absolute time in a service termed the Time 
Reference System, which includes the Observatory Clock. 

The Time Reference System network protocol is NTP (Network Time Protocol) for accuracy in the tens of milliseconds, 
and PTP (Precision Time Protocol) for accuracy in the sub-microsecond range. 

Where commands require synchronization across distributed systems (Synchronous Commands), they are frequency 
locked to absolute time with zero offset. A Synchronous Command may be received at any time within the time window 
(from TEi to TEi+1) determined by the command rate and latency and is expected to be applied at the next time event 
following the reception of the command (TEi+1). 
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Figure 7: Synchronous Command timing diagram 

 

 

For example, when tracking, the new target ALT/AZ position gets computed and commanded at a time that is aligned to 
the full second, and again at the next global time event 50 ms later.  

For loops running at 20 Hz, our deterministic ethernet connections can be trusted to deliver the command with a latency 
that does not spill over to the next time event. When using commands that are agreed to apply to a future time, we avoid 
problems with the concept of “now”, which would be plagued by varying latencies. 

For tracking, we calculate (right after a time event) the expected position for the time 50 ms in the future, and send it. The 
MS LCS may receive it, say, 10 ms later, and knows that the commanded position applies for the upcoming time event 40 
ms ahead. The same implicit timestamping applies to measurement data published at global time events. Our ICDs define 
for every command and measurement if it synchronizes with global time events in this way. CCS does not only calculate 
commanded positions in the future, but also “measurements” that are used by the instruments. For example, the image 
rotation (“north angle”) can only be measured fully accurately once the telescope has moved to a new position. To help 
the instrument deal with rotations, the telescope nonetheless sends its best effort estimate for the image rotation that will 
be seen 50 ms later. 

No backward calculation of sky positions 
With the complex opto-mechanical system of the ELT, it is not clear if it would be possible to back-calculate the actual 
current position on the celestial sphere where the telescope is looking, based on internal telemetry, i.e. on current telescope 
and mirror encoder readings and pointing models.  

The telescope can only really know where it is pointing by looking at the sky, i.e. by looking at the guide stars in the 
images acquired by the guide probes (the telescope has no access to the center field and therefore cannot see the actual 
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target position requested by the instruments, but can calculate with high precision its relative position with respect to the 
guide stars in the focal plane of the pre-focal station). 

The telescope blind pointing system shall be just good enough to bring the guide stars in the acquisition field of the guide 
probes. At this point the system can measure the positions of the guide stars from the images and perform all optical and 
mechanical corrections needed to place the requested sky coordinates in the pointing origin defined by the instrument.    

Therefore, only when there are known guide stars on the detectors of the guide probes the telescope knows where it is 
pointing and can publish the “true” measured (and not backward-calculated) position. 

Otherwise no position gets published.  

4.4 CCS Simulator 

In the first iterations of the development of HLCC, we have concentrated on the development of the Telescope Interface 
of the CCS Simulator and of a simulation Pointing Kernel, in order to be able to provide our customers (mainly telescope 
integration team and instrumentation development teams) with a usable system. 

To detect interface or implementation issues early (with frameworks and common design choices), the simulator is 
designed to be similar to a real application, rather than using all available shortcuts. The processes that implement the 
simulator are therefore all applying the design described in the previous sections. 

We use independent threads for (a) control and simulation, and (b) estimation and publishing of measurements. In a real 
system, the estimator would likely be a separate process, which is why we keep it rather separated already now. 

Both threads run a loop at 20Hz. Both loops are synchronized to global time events, but not directly between each other. 

The simulator publishes both the non-deterministic and the deterministic data defined in the ICD between CCS and 
instruments, where in the final system the deterministic data will be published by TREx. 

Working on the Telescope Interface and on the simulation Pointing Kernel has, as an additional benefit, given us a practical 
tool to discuss with the users the requirements for the interface, identifying and solving ambiguities at an early stage.  

5. TELESCOPE REAL-TIME EXECUTOR (TREX) 

Both HLCC and TREx implement telescope-level control tasks. While HLCC addresses supervisory monitoring and 
low/slow real-time (up to 20Hz), TREx addresses on-sky loops running at rates up to 1kHz. 

TREx receives sensor data from the PFS guide probe and WFS cameras, as well as from, optionally, the Phasing and 
Diagnostic Station (PDS, an optical sensing subsystem that will be used during optical alignment and commissioning) 
cameras or post-focal AO modules (the PDS WFRTC or an Instrument AO RTC). It produces simultaneous commands to 
the M4, M5, MS and M1 units to achieve system level goals of image stability and image quality, while assuring the M4 
Adaptive Mirror always has sufficient stroke. 

TREx has several key modes: 

 Perform field stabilization or guide probe AO (in the order of 50 modes) based on PFS GP Imager or WFS data. 
(the PDS SH WFS may also be used as a guiding sensor). 

 Support instrument-driven AO, where tip-tilt control is shared between instrument and PFS sensor data, while the 
instrument controls the higher order AO modes (low temporal frequencies) (Cascade mode). 

 Support instrument-driven AO, where tip-tilt and higher order modes are fully driven by the instrument AO 
module (Sequential mode). 

In all cases TREx performs saturation management of the M4 Adaptive Mirror and M5 Tip-Tilt stage through transfer of 
accumulated stroke to the Main Structure and M1.  

TREx is a multicore datacentre-class server running Linux. The software task affinities, interrupts and network stack and 
hardware ensure low-latency, deterministic reception and transmission of UDP/IP data packets over 10GbE. The UDP/IP 
data packets follow the ELT “MUDPI” data format which is used for all distributed control loops in the ELT (camera pixel 
streams, mirror and mount commands and measurements). MUDPI is a very basic protocol, as it contains no transaction 
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or session requirements, it is little more than a standardized wrapper for UDP payloads with some additional constraints. 
The simplicity of MUDPI, a key requirements, makes it suitable for use in Ethernet-based distributed control loops and 
high-performance interfaces of the Control System across languages and architectures [15]. 

TREx, where possible while meeting latency requirements, will use a configurable software framework and a suite of 
building blocks to abstract domain logic from underlying real-time computing infrastructure. After trials of several 
products, GNU Radio6 has been preliminarily selected and successful deeper prototyping was carried out on this 
framework. GNU Radio operates on a flow graph composed of interconnected blocks with streams of items flowing along 
the connections. Blocks encapsulate the processing of items. They can be hierarchical, i.e. contain more interconnected 
blocks themselves, which enables nested flow graphs. 

An example flow graph for TREx is shown below. 

  
 

 

6. ELT CONTROL MODEL 

Testing the high-level coordination of the system (integration of all components, coordination algorithms, operational 
models, performance) while the complete subsystems to be coordinated are not yet fully implemented, and before moving 
on the real telescope in Armazones, requires the availability of an integrated and realistic platform. 

 
6 GNU Radio, https://gnuradio.org     

Figure 8: TREx GNU Radio flow graph 
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The ELT Control Model (ECM) contains hardware, software and networking infrastructure reflecting the designed final 
control system to be deployed at Armazones. 

The ECM is situated at ESO headquarters in Garching, in the Computer Room (representing the Armazones Computer 
Room) and a neighbouring lab (representing the telescope area, or field). Single-mode, multi-mode and Cat5 cables join 
the two rooms reflecting the infrastructure between the computer room and field at Armazones. A time reference system 
(including Precision Time Protocol and Grandmaster clock) is likewise part of the ECM. 

Subsystem suppliers are required to build a simulation mode in the LCS they deliver. The simulation mode allows the use 
of the LCS without requiring the presence of field devices and actuators. While the richness and completeness of the LCS 
simulations to be delivered will vary between suppliers, there are categories of simulation which are expected. These are: 

 No simulation available 

 Communication: the communication layer is covered, i.e. ports, tcp, multicast, content data structure, data-size 
and types. 

 Reaction: if a command is sent, something happens, i.e. when sending the “Close Loop” command the loop closed 
status will change to “true”. 

 Behaviour: the behaviour of the system is simulated, for instance a command might be clipped, or a temperature 
sensor might change over time. 

 Interface performance: for certain commands the interface performance is fulfilled in terms of timings (i.e. 
deterministic communication often requiring systems to be synchronized to the Grandmaster clock). 

The simulations enable the LCS to be run in the ECM, where it may be used for testing and development, offline from the 
production system, and as part of full system test and integration activities. Note that no safety-critical applications (such 
as the safety hardware of an LCS) are to be provided in simulation, and the safety system is not a part of the ECM. 

As each LCS design matures and stabilizes, a copy of the LCS hardware (needed to run the simulation) is procured and 
installed in the ECM. Periodic deliveries of LCS software received from the supplier are then deployed (in simulation 
mode) to this hardware, thereby maintaining the latest LCS software in the ECM. 

As with LCSs, all Central Control System products are likewise deployed to the ECM for test and integration. This includes 
the integration infrastructure (communication middleware, configuration management, logging, online database), HLCC 
and TREx. As new versions of each of these products are released by the respective software teams, the release is installed 
(by the test and integration team) in the ECM and tested in conjunction with the other products. Issues identified in the 
integration tests are reported back to the respective software development team or subsystem supplier. 

The ECM is intended to grow and be maintained to reflect the control system deployment foreseen for Armazones. In 
addition, the test and integration team will build a solid working knowledge of the full control system which can be 
leveraged during AIV. 

7. DEVELOPMENT PROCESS 

The HLCC development follows development standards and a high level development process common to the whole ELT 
project [16], tailored (as foreseen by the process itself) to the specific characteristics of HLCC and supported by tools made 
available by the ELT Development Environment team. 

The adopted process is based on agile/iterative principles (supported by Jira7 for task tracking and planning, with agile 
plugins). 

Requirements and Use Cases developed with the contribution of the different stakeholders of the system (including not 
just scientific and operation personnel, but also development and integration and testing teams) are kept as the basis for 
the identification of the features to be developed. Features are mapped at the higher level into epics and at a smaller 
granularity into stories, to be implemented at each iteration.  

 
7 Jira, https://www.atlassian.com/software/jira  

Proc. of SPIE Vol. 12189  1218919-15
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 09 Sep 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 
 

 

 

 

 

Requirements and Use Cases are traceable from the top-level requirements of the associated subsystem (supported by 
DOORS8 as the ELT project level requirements management tool). They are then traced to the implementation components 
through the system model (implemented using the MagicDraw9 modeling tool, but only to the extent that is necessary to 
document the design and to trace it to requirements). 

At each monthly iteration a set of stories to be implemented for the users is selected from the backlog, together with 
technical activities and findings from previous iterations (i.e. general software infrastructure, implementation of common 
libraries, refactoring, bugs to be fixed, performance to be improved). 

Each iteration shall result in a “potentially shippable product” with new functionality of direct value for the final users. 
This implies that a story is a vertical development, from the external interface to the instruments or operators down to the 
interfaces to the subsystems’ LSVs or TREx (or their simulation). During an iteration, continuous integration and testing 
take place through the integration of Jenkins10 automation server pipelines with our GitLab repository and Jira. Jenkins is 
also running code quality control and coverage testing pipelines. 

In this way the stakeholders see a tangible progress in the development of their product and an increase of value for them. 
They can test new functionality and get acquainted with the system. This fosters a productive discussion and produces very 
useful feedback for the development team to improve the product and adapt to the changing requirements of the final users. 
Indeed, requirements written up front are often generic or ambiguous and get clarified only once a first, even partial, 
implementation is available. 

We are experiencing this very clearly now with the CCS Simulator, that provides a simulation of the ICD toward 
instruments: the ICD document is still very high-level and we have now the chance of clarifying and testing a lot of details 
and identify inconsistencies. 

The “art” of a good iteration is to  

 identify and define stories so that they can be reasonably implemented in the time span of an iteration.  

 Find the right balance between stories and technical tasks, so that users perceive that each iteration has an added 
value, but the development team can at the same time keep under control the code base and extend it without 
having to resort to “spaghetti” code and dirty design solutions. 

For example, an epic might cover the implementation of the preset to a new target on the sky. This shall be split into several 
stories, each of them adding one parameter to the interface or an extension to an underlying algorithm or a new interface 
toward a controlled subsystem. The full preset will be implemented in several iterations, but at each iteration the user will 
have something more available for testing.  

The first things to be implemented are therefore the interfaces toward the user, typically dummy at the beginning. This is 
in contrast, for example, with a process where all the structure of an application is implemented first, but interfaces and 
functionality of interest for the users are provided only much later. The latter allegedly allows to develop a cleaner 
application, able to handle the full complexity of the features to be provided instead of requiring sometimes heavy 
refactoring as the complexity increases. But we think that the risk of delivering an application that does not satisfy the 
needs of the final users is much higher. 

8. TIMELINE AND CURRENT STATUS 

The status of the ELT Control System was presented at this conference in 2018 [3]. 

Since then, 

 Common infrastructure (CII) and development environment have been consolidated and are routinely used. First 
real size applications based on CII have been implemented, providing valuable feedback, in particular for what 
concerns performance and reliability, which are being addressed. 

 
8 Doors, https://www.ibm.com/us-en/marketplace/rational-doors  
9 MagicDraw, https://www.nomagic.com/products/magicdraw  
10 Jenkins, https://www.jenkins.io/  
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 Work on most LCSs from the respective contractors is well advanced. The M1 LCS, developed in house and in a 
well-advanced state, is used now for integration and testing on real hardware and as a testbed for the technologies. 

 Requirements for the LSVs have been collected and a common design has been drawn and tested on prototypes. 
Development of the first LSVs will start in the coming months. 

 Architecture and high-level design for the HLCC has been defined, a prototype has been implemented to verify 
and compare technologies, and a first version of the CCS Simulator has been released for internal usage in the 
ECM. A CCS Simulator for use by instrument builders will be released alongside the next instrumentation 
software framework release. 

 Requirements specifications for TREx are being reviewed and design and development is commencing. 

 First versions of the instrumentation common software have been released to instrument consortia allowing them 
to get acquainted with the technologies and to start prototyping and development. 

For what concerns more specifically HLCC, a first prototype was developed using Java and demonstrated very good results 
and sound design. A project-level decision was then made to move the HLCC programming language to C++ for greater 
uniformity with the LSV, RTC, and the instrumentation teams. It is hoped this change increases synergy across the teams 
and reduces maintenance effort in infrastructure products that currently have to support both Java and C++. 

The timeline of our work is sketched in Figure 9. 

In the last year we have concentrated the HLCC 
development effort on the Telescope Simulator, on the 
telescope interface, and on what is needed by 
instrumentation and ECM. 

We will continue to add features, to reach a complete 
implementation of the interface in the next year. 

In the meantime, we will design interfaces to TREx and 
the LSVs, based on the analysis of operational use cases.  

As TREx and LSV components will become available, 
we will in parallel implement the corresponding 
interfaces, that will be tested on the ECM. 

Features will be developed and released based on the 
priorities defined by the AIV and commissioning teams. 

The initial stages of AIV will focus on telescope 
subsystems, involving then LCSs and LSVs, but not the 
HLCC. One exception to this is the Segment Exchange 
Tool, which is required early as part of integrating the 

segment exchange manipulator and the local coherencer. This tool may be required already in 2024, prior to installation at 
Armazones.  

HLCC will be required once the complete light path will be available and full telescope technical commissioning will 
begin, around 2027. At this point, the commissioning team will need the sequencing capabilities and the subsystem 
coordination functions to characterize the telescope and put in practice and refine the operational procedures defined until 
then mostly on paper. 

9. CONCLUSION 

While the control strategies outlined in section 1 are being simulated and tested in detail, it is important to note that the 
unprecedented size of ELT is expected to lead to surprises during commissioning. Changes in the control strategy are 
hence expected, and therefore the control system is built such that well understood subsystem control is decoupled from 
less defined high-level (on-sky) control, and the latter one is developed in a way that allows for the flexible adjustment of 
algorithms during commissioning 

Figure 9: HLCC development timeline 
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The HLCC in its initial versions must be an adaptable, flexible tool set. While the final goal of the HLCC is to present the 
telescope operator with a uniform and powerful interface to optimize telescope observation and maintenance, the goal 
during this phase (the Construction phase) is a set of tools supporting telescope AIV and capable of capturing and 
implementing new telescope operation and wave front control requirements as they appear in AIV. Along with changes in 
requirements, the HLCC must adapt to changes emerging in the as-built subsystems, delivered be external suppliers, and 
in evolving technologies. As always, we depend on the use of industrial standards and large, open source products to ease 
maintenance during software and hardware upgrades and follow a development process resilient to change. 
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