
Tag des Systems Engineering 2019

63

MBSE for the ELT Control Software

Michele Zamparelli1, Luigi Andolfato2, Gianluca Chiozzi3

1European Southern Observatory, Karl-Schwarzschild Strasse 2,
85748 Garching bei München, Deutschland, mzamparelli@eso.org;

2ESO, landolfa@eso.org; 3HYPERLINK "mailto:gchiozzi@eso.org"EHYPERLINK
"mailto:gchiozzi@eso.org"SO, HYPERLINK
"mailto:gchiozzi@eso.org"gchiozzi@eso.org

Abstract: This paper summarizes how Model Based System Engineering (MBSE) methodologies
and tools are used at the European Southern Observatory (ESO) to support in particular software
development but also other SE areas for the construction of our world class ground based
astronomical observatories. In the paper we describe how and based on which considerations we
have decided to integrate different tools in the project development process.

Introduction

ESO is an International Organization building and managing astronomical observatories
on the Chilean Andes. The Extremely Large Telescope (ELT) [Tam18], currently under
construction, is the biggest and more complex optical telescope to be ever built, with a
39m diameter primary mirror, composed of almost 800 segments and controlled by
thousands of high precision actuators and sensors.

The ELT is a project presenting many system engineering challenges and a general
introduction about system engineering at ESO is given in [Eg19] in this conference.

The community involved in the design and construction of the ELT is varied, including
engineers of diverse disciplines (system engineering, mechanics, optics, control,
electronics, software), scientists as well as people responsible for contract procurement
and management, integration and verification or maintenance.

It is natural in this context that different stakeholders show a strong preference for
producing or receiving artefacts using tools or formats they are comfortable with.
Imposing unfamiliar formats has proved to create (at least in our environment) strong
friction among different users.

While consensus is sought on a common tool for each specific activity, we strive at the
same time to have a seamless and transparent synchronization of information across tools
used for different purposes.

Failing to do so would likely produce inconsistent information, and rapidly lead to
divergence.

The strategy followed for the ELT and other ongoing projects is the result of several years
of applying model driven engineering methodologies and tools for the development of the

Tag des Systems Engineering 2019

64

control systems of telescopes and their instruments. Rationale, concrete usage and lessons
learned have been presented in several papers, like [And14] and [And17]. The Active
Phasing Experiment project (APE) was also used by the OMG Telescope Modeling
Challenge Team as a base for writing a cookbook for MBSE with SysML [Kar11].

1 Systems engineering process for large scientific facilities

In a typical cascade process, system requirements are extracted in a formalized way from
the customers, architecture and design are derived from these and finally the system is
implemented, integrated, tested and deployed in operation.

As we all know very well from experience, this process is in principle very good to
formalize contracts with external suppliers, but does not really work in practice for
complex systems: while we proceed with analysis, design and implementation we discover
that the requirements originally written were incomplete or ambiguous and it is therefore
necessary to start over from them.

An iterative process is therefore necessary when developing not trivial systems and very
often requirements can be understood and clarified only by discussing with stakeholders
at intermediate development stages.

This is even more important in domains like our, where we implement scientific facilities
with each new generation consisting of very few instances worldwide and exploring a
much wider parameter space than the previous one, thanks to the adoption of new
technologies: these are “unique machines” with a high margin of uncertainty with respect
to final operational usage and internal efficiency, and a lot of fine-tuning at
commissioning time (in contrast, the development of industrial consumer products like
cars or phones proceeds in much smaller steps and functionality is much more predictable
from one generation to the next).

Our strategy to manage these difficulties consists in:

• Splitting the system hierarchically in subsystems and parts that can be developed
independently

• Contracting out subsystems and parts that we are confident are understood well
enough to be specified in a contract that will not require drastic changes

• Keeping in house, for easy management of tight iterations:
• All coordination functions involving multiple subsystems
• The development of subsystems that are critical with respect to novel

technologies or unexplored functionality
• The components strictly related to the astronomical domain, for which

we have a specific knowhow difficult to find in industry.

This strategy is very well supported by the adoption of MBSE principles and tools. In the
following, general considerations and the chosen tools for MBSE are introduced. Some

Tag des Systems Engineering 2019

65

usage examples are briefly described: requirements import and analysis, documentation
generation, application code generation from state machines, and reliability management.

2 Requirements specifications using IBM Doors

It has been decided at ELT Project level to adopt the IBM Rational DOORS™ [Go16] tool
for managing requirements specification across the whole project, from top level scientific
requirements down to the requirements of specific subsystems or part.

Adopting a tool like DOORS™ allows to manage requirements and their relations without
departing too drastically from the “traditional requirements document” paradigm with
which our stakeholders are comfortable:

• The concept of modules collecting atomic objects that identify requirements can
be easily understood by all stakeholders.

• Editing requirements in modules is very similar also structurally to writing a
document with a word processor or a spreadsheet.

• “Paper documents” can be easily extracted from the Doors database for reviews,
archiving in document-based systems and contractual purposes.

• Dependencies between requirements are managed using the intuitive concept of
“link” and the tool identifies changes in linked requirements.

But this tool cannot and is not meant to support us beyond pure requirements management.

3 SysML modelling and tool

The team responsible for the development of the ELT Control Software has adopted the
System Modelling Language (SysML) [Omg17] for analysis and design; the model is a
hub around which several activities revolve and the ultimate source for automatically
generated artefacts. Still, we do not try to produce a complete model of the system, but we
model only the elements and their details that are necessary for our specific purposes of
documentation, analysis and generation of artefacts. This means that different parts of the
model have less details if these are not necessary for a specific purpose: we want to avoid
“modelling for the sake of modelling”.

The adoption of a modelling language goes side by side with the adoption of a powerful
modelling tool: it is the tool that allows validation, simulation and the integration with
other tools. We have adopted MagicDraw (https://www.nomagic.com), because easily
extensible, open to integration with other tools and with proven standards conformance.

To ensure that the modelling is consistent across the project, we discuss, formalize and
maintain modelling guidelines, starting from the guidelines defined in [Kar11]. We
support the modelling of entities in our domain (control system, telescope and
instrumentation) with SysML profiles that we have developed. In many cases it is then

Tag des Systems Engineering 2019

66

possible to implement validation rules to check the conformance of the models to the
guidelines, but this is not always possible and it does not replace discussions and peer
reviews across the team.

The diagram in Figure 1 describes the dataflow of some of the modelling tools we use to
develop SW. In blue are the tools we have developed in-house, in red the third-party tools.
Some of these will be briefly introduced in the following sections.

Figure 1- Toolchain and code generation.

4 Requirements management beyond specification

In order model the relations between requirements and implementation of the system, we
import them from DOORS™ in MagicDraw using the ReqIF format. The tool is very
good in managing synchronization, and using hyperlinks we can seamlessly navigate
between the tools, so that we do not duplicate information (bi-directional synchronization
is possible, but we have decided to import from DOORS™ unidirectionally).

Once requirements are in the SysML environment we can trace them through all other
phases of development (analysis, design, testing, verification & validation).

5 Document generation

In order to produce “traditional documents” consistent with the model, we have developed
a MagicDraw plug-in based on the DocBook standard [Oas16] that allows modelling a

Tag des Systems Engineering 2019

67

document using the entities in our system model and generating a PDF or word out of it.
We have also agreed on guidelines and a workflow to export from the model diagrams and
tabular information that can be automatically embedded and updated in documents of
various types and in other tools. This is essential to avoid “information rotting”, i.e. to
ensure that documents do not become dangerously obsolete and inconsistent with time.

In general, one of the strengths of MagicDraw is in the ability to collect information from
the model in tables in very powerful ways and to export this information in various
formats: for many stakeholders, tables are more comprehensible than SysML diagrams.

6 Code Generation

To generate code for our SW platforms we have developed a tool called COMODO based
on EMF and Xpand/Xtend[Chi11]. COMODO takes a UML model based on COMODO
Profile exported from MagicDraw in the EMF XMI format and transforms it into a
SCXML model (in case there are UML State Machines) and in source code for one of the
selected platforms (ELT, VLT, ALMA, etc). Generated code is then compiled together
with manually written code linked with platform specific libraries including the SCXML
interpreter.

In addition, COMODO can be used to translate UML state machines into Java code
compliant with jpf-statechart that can be analysed by the JPF model checker.

7 Reliability Modelling

The specification of functional and structural decomposition in a descriptive model using
SysML can be further leveraged to address reliability aspects. In our projects, reliability
plays a significant role throughout the long lifespan of a telescope or instrument.

The language extension capabilities of SysML and the possibility to plug-in external
computational engines may provide a cost-effective alternative to dedicated commercial
tools. A probability-based transition execution in state machines may be simulated to
analyze system behavior, also un-attended. Crucially though, as specified in [Bpd09], all
the known failure modes may be managed in the model at the appropriate level of
decomposition (like in FMECA) and combined to provide system level failures (FTA).
The computational engine allows basic faults with a given probability distribution to be
used in series, parallel or redundancy calculations. While this solution does not offer the
reliability catalogs provided by dedicated applications, the tool’s reporting capabilities
may be used successfully to highlight which faults do not have a matching detection
capability or require architectural change for further mitigation. To this end, a SysML
profile and a corresponding plug-in for the tool were implemented as a proof of concept.

Tag des Systems Engineering 2019

68

Conclusion

ESO’s selective adoption of descriptive SysML/UML models has largely benefitted
software development activities and the choice of the particular tool, with a rich and open
programming interface, has permitted us to demonstrate the inter-operability with other
commercial tools in the wider systems engineering domain.

The learning curve is steep and cultural resistance may only be overcome when adequate
resources are available for mentoring and policing. In the future, we intend to look at how
exploiting the tools’ own engine for customizable validation can provide guidance through
immediate visual cues when modeling guidelines are violated.

Bibliography

[And14] Andolfato, L. et al.: Experiences in Applying Model Driven Engineering to the Telescope
and Instrument Control System Domain, Lecture Notes in Computer Science Volume
8767, 2014, pp 403-419 - Springer International Publishing Switzerland

[And17] Andolfato, L. et al.: Behavioural Models for Device Control, Proc. ICALEPCS 2017,
Barcelona

[Bpd09] Douglass, P., Analyze system safety using UML within the IBM Rational Rhapsody
environment, June 2009

[Chi11] Chiozzi, G. et al.: A UML profile for code generation of component based distributed
systems, ICALEPCS 2011, Grenoble, France.

[Chi18] Chiozzi, G. et al.: Designing and managing software interfaces for the ELT – Proceedings
SPIE 10707-31, Software and Cyberinfrastructure for Astronomy, June 2018

[Egn19] Egner, S. et al.: Systems Engineering bei der Europäischen Südsternwarte, TdSE 2019

[Go16] González-Herrera, J.C. et al.: E-ELT requirements flow down, SPIE 991101, 2016

[Kar11] Karban, R. et al.: Cookbook for MBSE with SysML, MBSE Initiative - SE2 Challenge
Team, 2011

[Oas16] OASIS: DocBook Version 5.1, November 2016

[Omg17] OMG SysML v1.5, 2017

[Tam18] Tamai, R., et al., "The E-ELT program status", Proc. SPIE 10700, paper 10700-36, 2018

