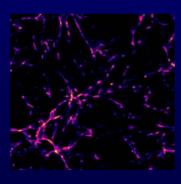
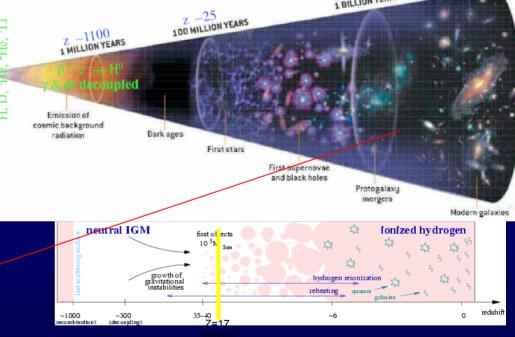
Why the UV Range is Important

- Richness of experimental data for study of plasma with temperatures from 3,000-300,000K.
 - Unmatched by any other domain
- Electronic transitions of most abundant molecules, observed in this range
 - E.g. H₂, OH, or CO: also the most sensitive to the presence of large molecules such as the PAHs.
- Most sensitive spectral tracers of diffuse baryonic matter
 - HI Lya in the nearby Universe and HeII Lya at 2<z<9


Major Science Issues Requiring UV Data

- I. Re-ionization of the Universe
- II. The early evolution of the Sun & its interaction with the young planetary disk
- III. Atmospheres of extrasolar planets

I. Re-ionization of the Universe

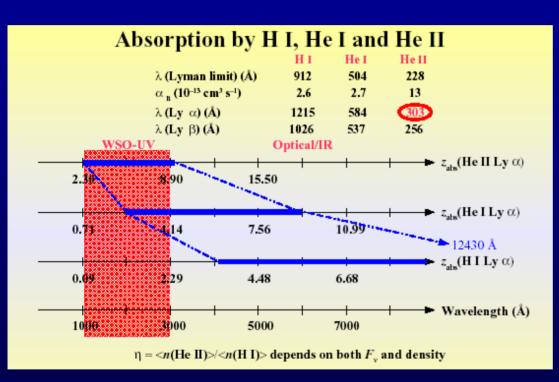

- Determine
 baryonic number
 density of diffuse
 IGM & discrete
 clouds
- Probe cosmic reionization history

COSMIC TIME LINE

Structure formation: the first light

Lyman break galaxies $z \sim 3$ (Steidel et al., 2003); Galaxies at $z \sim 6$ (Stanway et al., 2004; Hu et al., 2004) QSO J114816.64+525150.3 z = 6.43 (Fan et al., 2003) Lensing-magnified galaxy at $z \sim 10$ (Pelló et al., 2004) $Z \sim 0$ $Z \sim 0$ $Z \sim 0$ $Z \sim 5$ 12 TO 14 BILLION YEARS

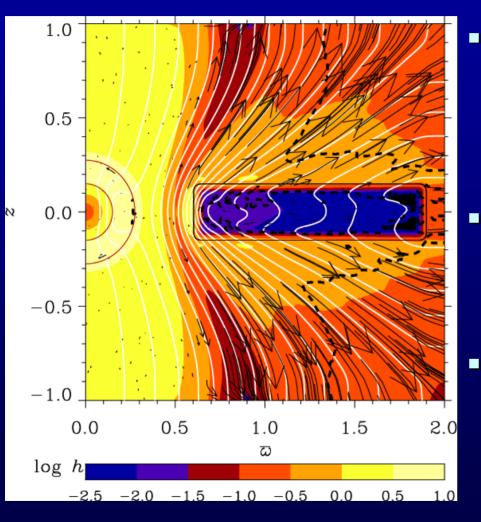
Surveys: SLOAN (10⁵ QSOs z~2-4), GALEX(10⁴ QSOs z~2) He II reionization phase ends at z=2.9 (Reimers, 1997)


(Spergel et al 2003)

Science Vision for European Astronomy – M.A.Barstow Jan 2007

Big

Key scientific objective: Determine ionization & abundances of highly ionized component @ 2nd HeII reionization



 Observe simultaneously, HI & Hell in range 2.1<z<2.9

- Abundances of O, Ne, S for z<2.1
 - Intrinsic wavelength of (OIII-OV, NeIII-NeVII, SIII-SVI) in EUV (300-900A).

II. The Young Solar System

- "Planetary Systems are angular momentum reservoirs produced as a left-over of the formation of stars"
- Young stars are surrounded by very hot plasma emitting UV that interacts with the disk
- Observe ~100 T Tauri stars
 - determine temperature, density & velocity of system

Key scientific objective: Understand source of UV at the early stages of the Solar evolution and its role in planetary disk chemistry

- UV effects on planetary formation
 - UV radiation important photochemical agent... accelerates formation of large organic molecules
 - Evolution of embryonic planetary atmospheres
 - Vertical structure of disk
 - Planet-disk decoupling time

 Young planetary systems

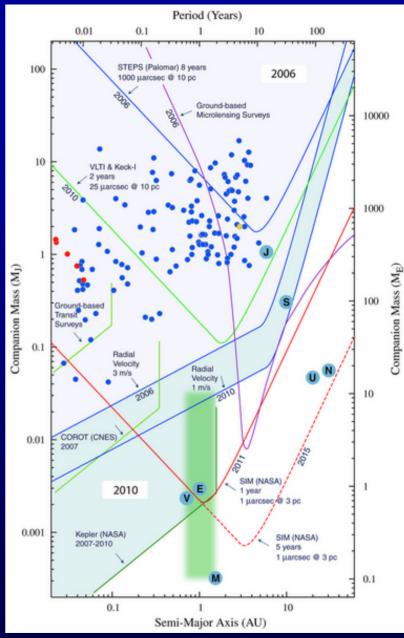
- detection of volatiles
 released by dust,
 planetesimals & comets
 through the stellar
 wind/disk interaction.
- CO from comets

III. Atmospheres of exoplanets

Composition of atmospheres

- Atmospheres out of equilibrium... O3 (life induced?)
- Relative abundances H, H2, O, C, CO, OH, etc.
- Hartley bands of O3 are the main absorbers at 200-350 nm.

Dynamics of atmospheres


 Escaping atmospheres from water rich planets detected in Lyα.

Key Scientific Objective: Follow-up of transiting planets discovered by surveys

- Nature of intermediate mass planets (5-20 Earth mass)
 - Absorption by molecules, haze and atoms
- Atmospheric content of low density planets and satellites of giant planets
 - Ocean planets; Titan-like satellites
 - − Low density → large absorptions in UV
- Evolution of water-rich planets
 - Evaporation of Venus-like planet in the early stage; Evaporation of Earth-like planet in the last Gyr
 - Absorption of H₂O dissociation products: HI in Lyman-alpha, O at 130nm
- Evaporation of gaseous planets
 - Observation in Lyman-alpha, but also C, O, Fell, Mgll, etc.

Other Science Topics

- Planets and the origin of life:
 - Planetary atmospheres, auroral variability, comets
- ISM and Formation and Evolution of Stars:
 - Hot stars atmospheres (and abundance determination) from white dwarfs to hypergiants
 - Cool stars atmospheres and magnetic dissipation phenomena
 - Interacting binaries and accretion physics
 - Circumstellar material and shells in warm environments, jets, shocks and HH objects
 - Chemical abundances in supernovae remnants and in the early phases of supernovae explosions
 - The warm and hot components of the ISM

Other Science Topics

- AGN and Compact Objects:
 - Accretion physics and disk instabilities
 - Reverberation mapping and gas distribution around AGNs
- Universe, Galaxies and Galaxy Evolution:
 - Star formation rates
 - Galactic haloes
 - High velocity clouds, magnetic buoyancy in galactic disks and disk-halo interaction
- Fundamental Physics and Cosmology:
 - Variation of fundamental constants with the gravitational field and redshift

