Panel B, Chapter 3 How Do Galaxies Form and Evolve?

25 January 2007

Conclusions

J. Bergeron, R. Kennicutt, X. Barcons,

F. Bertoldi, A. Ferrara, M. Franx, A. Helmi,

G. Kauffmann, I. Smail, M. Steinmetz

Comments and Parallel Session: General

- General satisfaction with key science questions, opportunities, and objectives
- Several areas for additional objectives or enhanced emphasis identified
- Major revision to facilties recommendation needed (IR telescope)

- Co-Evolution of Galaxies and Central Black Holes (G. Hasinger)
 - importance of black hole formation and growth in galaxy formation/evolution should be amplified
 - future X-ray, radio continuum facilities will provide samples of very early black holes (order 10⁶ M_o) to trace co-evolution
 - broadened Fe K line detectable to z>6
 - emphasize the value of resolving the cosmic backgrounds for understanding early evolution

- The starburst/AGN connection via IR spectroscopy, imaging (L. Spignolio)
 - Future far-infrared interferometer will resolve dusty nuclei from circumnuclear disks at high redshift
 - Large-aperture (>10m) IR telescope enables Spitzerquality spectroscopy of nuclei at high redshift
 - Key scientific need is 10-20m aperture far-infrared telescope and/or interferometer (ground or space, discussed later)

- Evolution of the Cosmic Web
 - (V. D'Odorico, W. Hermsen)
 - visible/infrared absorption line spectroscopy of paired/multiple sightlines
 - arcsecond separations possible with ELT
 - trace correlation of metallicity and structure
 - OVI and OVII gas can be traced in <u>emission</u> to map warm/hot phase at low redshift

- Dark Matter and Dynamics of Nearby Galaxies (G. Gilmore, F. Hammer)
 - ELT multiplex spectroscopy of individual stars, clusters will allow mapping of dark halo structures to Virgo cluster
 - studies of emission-line, CO, and HI kinematics of galaxies valuable even for z < 2

- Properties and Physics of Star Formation, ISM, IMF in Nearby Galaxies (J. Braine, B. Brandl, F. Hammer, F. Boulanger)
 - new facilities such as ALMA, SKA, ELT, etc will provide breakthrough capabilities in studying star formation in nearby galaxies on the scale of individual clusters/starbursts
 - a comprehensive suite of diagnostic features will be accessible (HI, ¹²CO, ¹³CO, C+, O⁰, N+, PAH, H₂, HI, PDR lines, Hα...)
 - Key goal is to calibrate accurate diagnostics (e.g., of H₂ column density)
 - coordinated samples, probing range of metallicity, interstellar pressure

Magnetic Fields (R. Beck)

- play a key role across range of problems in this chapter
- low-frequency radio telescopes (LOFAR) offer especially powerful promise for measuring fields via polarization, Faraday rotation
- roadmapping might include feasibility assessment for key experiments (e.g., measurement of intergalactic fields)

- Stellar Physics from Galactic/Extragalactic
 Studies (A. Korn, P. Groot)
 - data offer important inputs for testing stellar models
 - understanding of binary populations vs metallicity, etc important for understanding SN projenitors, X-ray binaries and IMBHs, and LISA foregrounds
 - full exploitation of Gaia will require a major program of multiplex stellar spectroscopy, perhaps with dedicated 4-8m telescope(s), in advance of mission completion

Facility Recommendations

- UV-Optimized 4-8m Space Telescope
 - strong support voiced in parallel session
- Large Infrared Telescope
 - draft recommendation for cold 4-8m space telescope should be revised
 - biggest science gains in this area will come with larger aperture (10-20m)
 - roadmap should address relative cost/benefit merits of aperture, and ground (South Pole?) vs space telescope, and cooling requirements, in context of current/planned facilities (JWST, APEX, CCAT, ALMA, etc)
 - infrared interferometer remains a long-range priority, but also evaluate merits of ground vs space

Facility Recommendations

- Survey Telescopes (I. Eglitis, others)
 - many survey facilities contemplated (X-rays, OVII/OVIII, H₂, groundbased wide-field synoptic, spectroscopic telescopes)
 - key area of need identified for highly multiplexed spectroscopy in visible and/or near-infrared, with wide-field 4-8m telescope(s)
 - some programs rely on planned US survey telescopes (PanStars, LSST)

