### Panel D / Chapter 5

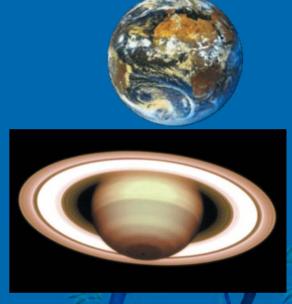
How do we fit in?

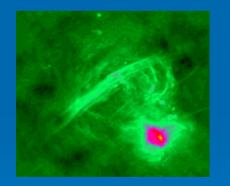
23 January 2007

- Science Questions
- Recommendations
- Input from the Community



### Science Questions


- What can the Sun tell us about fundamental astrophysical processes?
- What drives solar variability on all scales?
- What is the impact of solar activity on life on Earth?
- What is the dynamical history of the Solar system?
- What can we learn from Solar-system exploration?
- Where to look for life in the Solar system?




### Position of Solar System Research

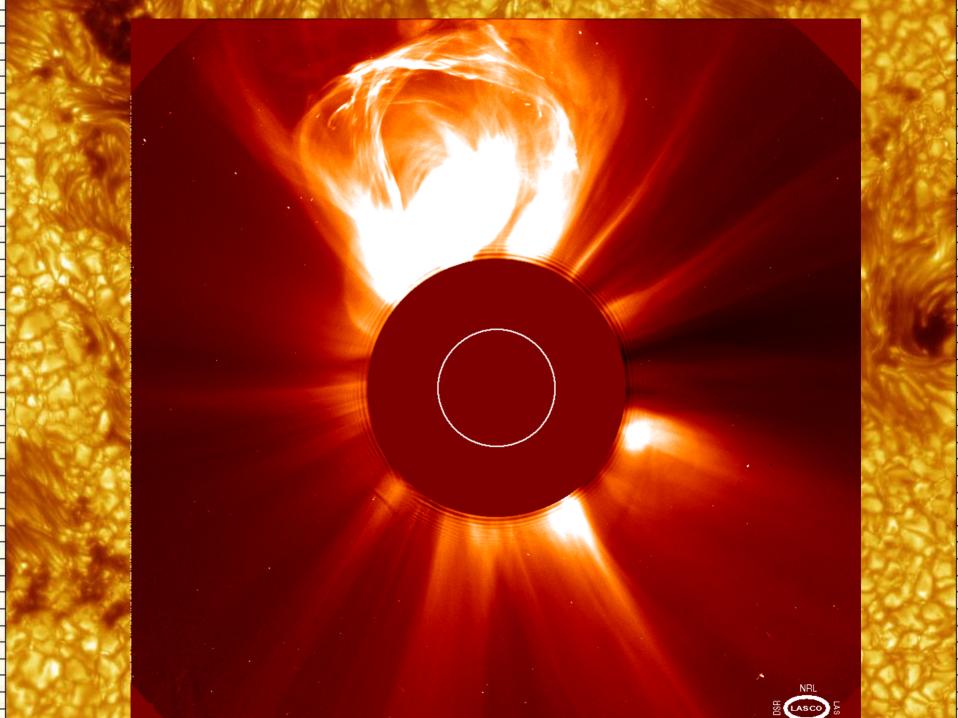








Fundamental Physics
Solar-Stellar Research
Solar-Terrestrial Research
Comparative Planetology
History of the Solar System
Education and Public Outreach




Science Vision for European Astronomy in the Next 20 Years



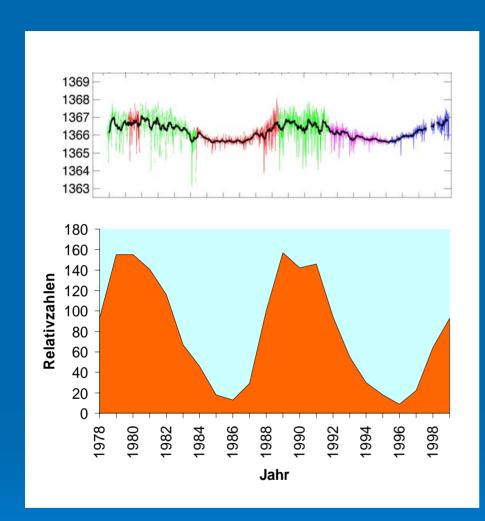
# What can the Sun tell us about fundamental astrophysical processes? (1)

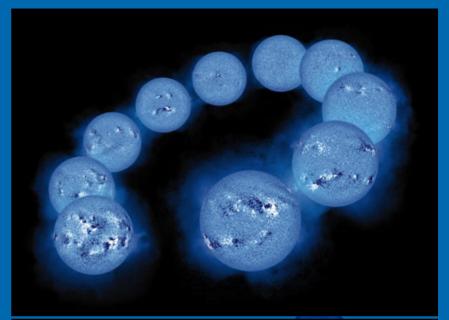
- Solar research has contributed to many fundamental questions: atomic physics, nuclear fusion, particle properties, solar neutrino flux problem ...
- Today, solar physics contributes to MHD in a fundamental way
- Spatial and temporal timescales cover many orders of magnitude
  - A few km to a fraction on a AU
  - Seconds to centuries
- Stellar variability phenomena use the solar paradigm ("chromospheres", "starspots") to describe their likely nature

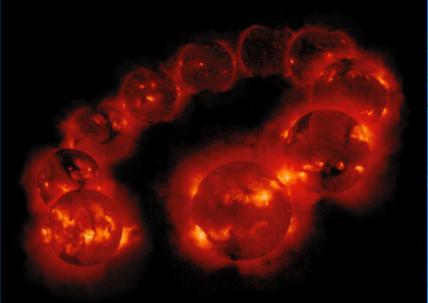


# What can the Sun tell us about fundamental astrophysical processes? (2)

- Key questions and opportunities:
  - Understanding solar magnetic field generation at all scales is essential for understanding stellar magnetic cycles and the origin of solar variability
    - Large aperture (3-5m) telescopes to resolve 20km in the solar atmosphere with sufficient sensitivity
    - Detailed magnetic field measurements outside the ecliptic Solar Orbiter
  - Understanding which global dynamo processes are at work
    - Very detailed MHD models of entire stars
    - Continuous, synoptic measurements of full Sun surface magnetic field – Synoptic telescope network
    - High precision velocity field measurements throughout the solar convection zone - helioseismology
  - Understanding Stars from the Sun and vice versa
    - Stellar rotation high spectral resolution surveys and interferometry
    - Stellar structure asteroseismology


Science Vision for European Astronomy in the Next 20 Years





### What drives solar variability on all scales? (1)

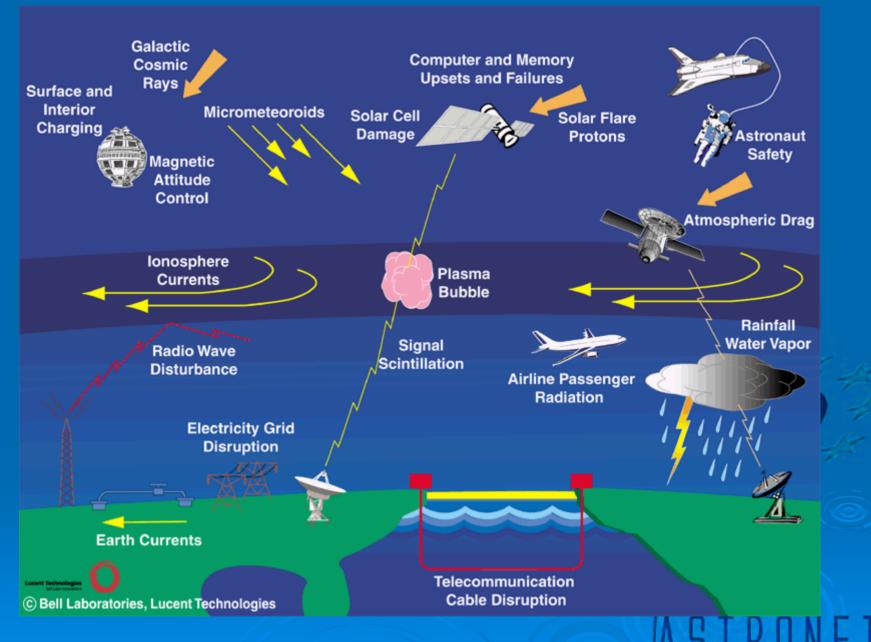
- Solar variability is due to the interaction of the solar magnetic field with the solar atmosphere
  - Small effect for integrated radiative output
  - Huge effect orders of magnitude in UV, EUV and X ray regimes
- The extended solar atmosphere is a system of extremes (in densities and temperatures), with extreme variability at short wavelengths
- Variability affects all spectral regimes and is monitored with
  - UV and X-rays space facilities
  - Optical ground and space facilities
  - Ground-based Radio facilites
  - In-situ measurements in space










### What drives solar variability on all scales? (2)

- Key questions and opportunities:
  - How is energy transferred from the photosphere to the chromosphere and corona?
    - Numerical MHD and plasma physics modeling
    - High spatial and temporal resolution observations of chromosphere and corona with the capability to measure its magnetic field – dedicated meter-class space facility
    - Large aperture Solar telescope with adaptive optics
    - Network of medium-size synoptic telescopes to monitor the evolution of the magnetic flux distribution
  - How can we unravel the magnetic field structure in the chromosphere and corona?
    - Develop new, sophisticated diagnostics, e.g., Hanle effect
  - What determines chemical abundances in the corona?

### What is the impact of solar activity on life on Earth? (1)

- Objective of "space weather": ability to characterize solar energetic events to allow reaction (nowcasting and forecasting)
- The connection between solar variability and Earth climate is complex
- Need for deriving proxies for the climate and the solar output from historical records
- A detailed understanding of the solar dynamo is needed to predict the solar activity for long periods (Maunder minimum and "little ice age")





### What is the impact of solar activity on life on Earth? (2)

- Key questions and opportunities:
  - How can the evolution of the solar magnetic field configuration and abrupt reconfiguration (flares, CMEs) be predicted?
    - Full disk monitoring deliver boundary conditions, proxies for chromosphere and corona magnetic fields
    - Solar Dynamics Observatory and successors complemented by ground-based network of medium-size synoptic telescopes to monitor the evolution of the magnetic flux distribution (SOLIS)
    - Detailed study of coronal events: Hinode, STEREO and successors
  - How can we monitor the Sun's far side?
    - Solar Orbiter
    - Helioseismology far side imaging



# What is the dynamical history of the Solar system? (1)

- It is generally accepted that planets formed within the protosolar disk from the accretion of solid particles
- Planetesimals first grew through multiple collisions, then by gravity
- Giant planets probably formed through the coreaccretion scenario, rather than the direct-collapse model
- There is still a problem with the formation time scale of the giant planets (over 10 My in models)



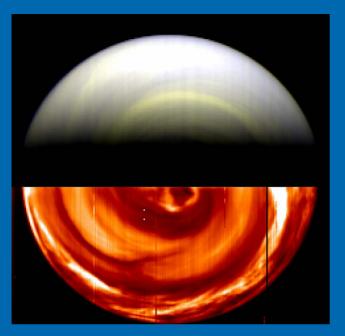


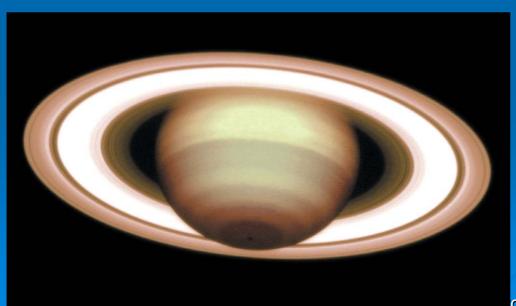
Science Vision for European Astronomy in the Next 20 Years

# What is the dynamical history of the Solar system? (2)

### Key questions :

- How did the first km-sized particles form?
- How did the solar nebula evolve? (vortices, solar waves?)
- What are the interactions of planets and disks (migration)?
- Origin and evolution of Mercury and the Moon (role of giant impacts)?


#### Opportunities:


- Theory and numerical simulations are essential!
- Comparison with other planetary systems is essential
- Mercury: Messenger and BepiColombo (chemical data)

### What can we learn from Solar-system exploration? (1)

- Background: Terrestrial planets
  - Differentiated objects, with iron-rich cores and silicate mantles
  - A large variety of atmospheric conditions (diverging evolutions)
  - An extensive exploration with space missions
- Background: Giant planets and their satellites
  - Enrichments in heavy elements suggest a core-formation model
  - Spectacular diversity among outer satellites
  - Space exploration by Voyager, Galileo and Cassini
- Background: Small bodies and extraterrestrial matter
  - Cometary exploration: Halley, Hale-Bopp, Tempel-1 (DI)
  - TNOs: Ground-based exploration since 1992
  - Analysis of extraterrestrial matter: Moon, meteorites, Stardust, Genesis









the Next 20 Years

Poitiers, 23 January 2007

### What can we learn from Solar-system exploration? (2)

- Key questions: Terrestrial planets
  - What are the internal structures, and how big are the cores?
  - How does the dynamo and the planetary heat engine work?
  - What is the history of the atmospheres and the water inventory?
  - Did liquid water stay on Mars in the past and for how long?
- Key questions: Giant planets and their satellites
  - What was the nature of their planetesimals?
  - Why are Uranus and Neptune so different?
  - What is the origin of Uranus' high obliquity?
  - What is the origin of Titan's atmosphere? (CH4 cycle?)
- Key questions: Small bodies and extraterrestrial matter
  - What is the rate of potential Near-Earth Asteroid encounters?
  - What is the origin and processing of cometary constituents?



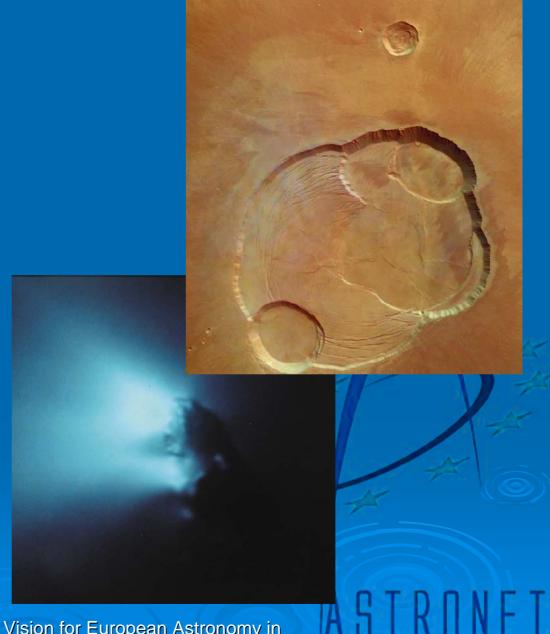
# What can we learn from Solar-system exploration? (3)

- Opportunities: Terrestrial planets
  - Future missions: NASA Mars missions, ExoMars, Messenger, and BepiColombo
  - Mars next step: Station network (geophysics, meteorology)
  - Later on: Sample return
- Opportunities: Giant planets and their satellites
  - Follow-up of Galileo/Cassini: Science Vision (Jupiter, Saturn)
  - Outer satellites: special emphasis on Europa, Titan, Enceladus
  - Use of astronomical facilities: Herschel, ALMA, JWST, ELT
- Opportunities: Small bodies and extraterrestrial matter
  - Space exploration: Rosetta (comet CG), Gaia (NEA)
  - Use of astronomical facilities: Herschel, Alma, JWST, ELT
  - To be studied: Space exploration of a Near-Earth Asteroid



# Where should we look for life in the Solar system? (1)

- A complex prebiotic chemistry, based on carbon, exists in the interstellar medium
- Amino-acids have been found in meteorites
- Liquid water was most likely essential in the apparition of life on Earth
- Carbon and liquid water seem to be the best conditions for extraterrestrial life
- In the Solar system, the best potential sites are Mars (in the past), Europa, possibly Enceladus
- Titan and comets are best potential sites for prebiotic chemistry


# Where should we look for life in the Solar system? (2)

#### Key questions:

- Are amino-acids present in comets?
- How did life appear on Earth? (external/internal origin)
- Could Mars host life in its past history? Could we find fossil traces of it and how?
- How deep is Europa's icy crust? Could life have appeared and developed under the crust? If so, could we detect it?
- Are there other outer satellites which host a water ocean under their surface, and at what depth?







Science Vision for European Astronomy in the Next 20 Years

# Where should we look for life in the Solar system? (3)

### Opportunities:

- Cometary exploration: Rosetta, Herschel, ALMA
- Mars exploration: Mars Sample Laboratory, ExoMars
- Future exploration of Mars: Mars sample return
- In the Cosmic Vision frame: Future space exploration of Europa, Titan, Enceladus



### Recommendations General

- Essential role of theoretical work
  - Comprehensive physical (HD, MHD, plasma physics) simulations of
    - Entire stars
    - Extended stellar atmospheres
    - Heliosphere and stellar environment
  - Dynamical simulation of the solar system: formation of planets and small bodies, evolution of orbits, migration...
  - Models of the internal structures of solar-system bodies (not accessible through observation)
- Importance of laboratory work
  - Equations of state at high pressure and temperature
  - Phase diagrams at high P and T
  - Need for laboratory data for photochemical models (chemical reactions)
  - Analysis of extraterrestrial matter



### Recommendations Requirements for principal facilities (1)

- European large-aperture (3-5m) solar telescope with adaptive optics
  - Interaction magnetic fields/plasma motions in the solar atmosphere
- Solar Orbiter (not exactly in Tim's spirit ...)
  - In situ measurements close to the Sun
  - Remote sensing of polar regions
- Meter class UV space mission with X-ray capabilities
  - Magnetic field dynamics in the chromosphere and inner corona



#### Recommendations

Requirements for principal facilities (2)

- Mars sample return mission
  - Origin and evolution of Mars, search for past traces of life
- Space missions toward Jupiter's and Saturn's systems, with special emphasis to Europa, Titan, and Enceladus
  - Depth of Europa's ocean, origin of Titan's atmosphere, internal structure of Enceladus)
- Space mission toward a Near-Earth asteroid, with lander and (possibly) sample return
  - In-situ analysis of a NEA
- Saturn probe mission
  - Origin of the planetesimals that formed Saturn
- Mission to Venus
  - Atmospheric escape and surface-atmosphere interactions

#### Recommendations

#### Requirements for secondary facilities(1)

- Network of ground-based, synoptic solar instruments
  - > Monitoring of full-disk solar magnetic field and velocity fields
  - > Space weather forecast, magnetic field generation and destruction
- Radio-telescopes arrays, from the sub-mm to meter (ALMA, LOFAR)
  - > Imaging of the Sun at very high resolution
- High-resolution multi-objects spectrographs at 4-8m class telescopes
  - > Monitoring a large number of solar-type stars
  - > Tests theories of stellar magnetic fields
- Numerical simulations:
  - > Large scale numerical MHD models of stellar atmospheres
  - > Climate evolutionsop, short and long time scales

#### Recommendations

#### Requirements for secondary facilities (2)

- Space missions in operation: Mex, MO, MRO, Mars rovers, VEx, Cassini, Rosetta, Stardust, Genesis
  - Exploration of planets and satellites
- In the future: Messenger, BepiColombo
  - Exploration of Mercury
- Access to optical facilities: ELT, JWST
  - All solar-system objects
- Access to sub-millimeter facilities: ALMA, Herschel
  - outer solar-system objects
- Laboratory studies
  - Equations of state, phase diagrams at low T, extraterrestrial matter
- Numerical simulations:
  - dynamical evolution of solar-system-bodies



### Thanks to the Panel D members

- Willy Benz
- Michele Dougherty
- Richard Harrison
- Artie Hatzes

- Christoph Keller
- Hans Rickmann
- Tilman Spohn
- Jose Carlos del Toro Iniesta

Therese Encrenaz and Oskar von der Lühe

