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Distances from parallaxes

In principle, if we have a very good measurement of the parallax, we can simply inverse it to get
the distance (in kpc, i.e in 1000 pc, where 1 pc=1 parsec = 3.26 light-years). This would work
typically if the relative error on the parallax is below 20% at most. If the relative error on the
parallax is larger than, then the distribution of distances is no more Gaussian and we cannot make
such an approximation. You can see this below, by playing with the relative error on the parallax
(relative_error_plx) and see how this changes the distribution of distance.

[7]: import pandas as pd
import numpy as np
from scipy import stats
import pylab as plt
%matplotlib inline

First, we define a function to compute and plot the distribution of the distance, assuming a normal
(i.e. Gaussian) distribution of parallaxes, based on the relative error. The parallax is fixed to 1
mas (i.e. a nominal distance of 1,000 pc), as everything can be scaled to it (this is particularly
true, because the error does not depend on the parallax, but on the brightness of the object, its
colours, the number of observations and the position in the sky). The mean distance should thus
be this nominal distance, and the standard deviation should be given by the error_plx (as the
parallax is 1). Note, however, how quickly the distribution of distances becoms non-Gaussian and
the standard deviation should be asymmetric, and how the mode becomes different from the mean
or median.

[8]: def plotdis(rel_err):
plx = 1. # in mas; this value doesn't really matter, so we can keep as such
print(f'Parallax= {plx}, with a relative error of {rel_err}%')

error_plx = rel_err / 100. * plx
test_par= np.random.normal(plx,error_plx,100000) # Compute a distribution␣

↪→of parallaxes
test_dis = 1000./test_par # Distances is 1000 /␣

↪→parallax in pc
test_dis = test_dis [test_dis > 0.] # Remove the␣

↪→non-physical negative distances

#print the miminum and maximum distances
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print ("Distances vary between ",np.round(test_dis.min(),1),"and",np.
↪→round(test_dis.max(),1)," pc")

# Compare to a Gaussian distribution of distances, centred on 1/plx
# and with an error given by
# error_dis = error_plx / plx**2.
dis = 1./plx
error_dis = error_plx *dis**2.

# this is in kpc, so multiply by 1000.
dis, error_dis = 1000.*dis, 1000.*error_dis

xdis = np.linspace(-3.*error_dis,3.*error_dis,100)
ydis= np.exp(-0.5*(xdis/error_dis)**2)

#Compute the histogramme of distances
bin0 = np.percentile(test_dis,.1)
bin1 = np.percentile(test_dis,99.9)
if rel_err > 20:

bin0 = 0.
bin1 = 3000./plx

z, bin = np.histogram(test_dis,bins=100,range=(bin0,bin1)) #dis-3.
↪→*error_dis,dis+5.*error_dis))

mo = bin[np.argmax(z)] # compute the maximum of the histogram, i.e. the␣
↪→mode

plt.vlines(mo,0,z.max(),color='yellow',label='Mode')
med = np.percentile(test_dis,50) # the median value
plt.vlines(med,0,z.max(),color='magenta',label='Median')

ydis = ydis * z.max()
plt.plot(xdis+dis,ydis, label='Formal Gaussian')

plt.hist(test_dis,bins=bin,label='Distribution')
print("Formal distance: ",np.round(dis,0),"+/-",error_dis," pc")
print("Mean distance: ",np.round(np.mean(test_dis),0),"+/-",np.

↪→round(test_dis.std(),0)," pc")
print ("Median of distance distribution: ",np.round(med,0)," pc")
print ("Mode of distance distribution: ",np.round(mo,0)," pc")

plt.xlim(bin0,bin1)
plt.title(f'Distribution of distances with plx={plx} and error={rel_err}%')
plt.legend();
#print('------------------------------------------')
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relative_error_plx = 1. # in percents
plotdis(relative_error_plx)

Parallax= 1.0, with a relative error of 1.0%
Distances vary between 960.7 and 1045.9 pc
Formal distance: 1000.0 +/- 10.0 pc
Mean distance: 1000.0 +/- 10.0 pc
Median of distance distribution: 1000.0 pc
Mode of distance distribution: 999.0 pc

With a small error, we can see that we have a Gaussian distribution still. Change progressively the
value of the relative error on the parallax (from, say, 5% to 50%) below to see how the distribution
becomes more and more skewed and it is no more possible to use the inverse of the parallax to
define a distance. In particular, when the error is above 33%, it is not improbable that the distance
becomes infinite!

[13]: relative_error_plx = 10. # in percents
plotdis(relative_error_plx)

Parallax= 1.0, with a relative error of 10.0%
Distances vary between 701.3 and 1799.1 pc
Formal distance: 1000.0 +/- 100.0 pc
Mean distance: 1010.0 +/- 105.0 pc
Median of distance distribution: 1000.0 pc
Mode of distance distribution: 968.0 pc
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For the expert:

Given the above issue, it is difficult to estimate the true distance of an object observed by Gaia
if the relative error is larger than 20%. One can estimate some intervals, but the range will be
large. To remedy to this, one can use some priors - for example the fact that the Milky Way has a
given distribution of stars and thus a star is more likely to be somewhere (e.g., in the spiral arms)
than somewhere else. This is the so-called geometric distance. One can also use the fact that a
star occupy a given position in the colour-magnitude diagram (or Hertzsprung-Russell diagram)
and thus needs to be at a given distance. This is the photo-geometric distance. It is, however,
sometimes dangerous as without spectroscopy, we do not know if a star is a main sequence star
or a red giant for example, and this could affect significantly its distance. A reprocessing of all
Gaia EDR3 parallax to use such priors has been done by Coryn Bailer-Jones and colleagues and
is explained at https://www2.mpia-hd.mpg.de/homes/calj/gedr3_distances/main.html. The cor-
responding distances are available via the Gaia science archive or using, for example, the incredible
tool TopCat.
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