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ABSTRACT
We study the volume-limited and nearly mass-selected (stellar mass Mstars � 6 × 109 M�)
ATLAS3D sample of 260 early-type galaxies (ETGs, ellipticals Es and lenticulars S0s). We
construct detailed axisymmetric dynamical models (Jeans Anisotropic MGE), which allow for
orbital anisotropy, include a dark matter halo and reproduce in detail both the galaxy images
and the high-quality integral-field stellar kinematics out to about 1Re, the projected half-light
radius. We derive accurate total mass-to-light ratios (M/L)e and dark matter fractions fDM,
within a sphere of radius r = Re centred on the galaxies. We also measure the stellar (M/L)stars

and derive a median dark matter fraction fDM = 13 per cent in our sample. We infer masses
MJAM ≡ L × (M/L)e ≈ 2 × M1/2, where M1/2 is the total mass within a sphere enclosing half
of the galaxy light. We find that the thin two-dimensional subset spanned by galaxies in the
(MJAM, σe, R

maj
e ) coordinates system, which we call the Mass Plane (MP) has an observed

rms scatter of 19 per cent, which implies an intrinsic one of 11 per cent. Here, R
maj
e is the

major axis of an isophote enclosing half of the observed galaxy light, while σ e is measured
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within that isophote. The MP satisfies the scalar virial relation MJAM ∝ σ 2
e R

maj
e within our

tight errors. This show that the larger scatter in the Fundamental Plane (FP) (L, σ e, Re) is
due to stellar population effects [including trends in the stellar initial mass function (IMF)]. It
confirms that the FP deviation from the virial exponents is due to a genuine (M/L)e variation.
However, the details of how both Re and σ e are determined are critical in defining the precise
deviation from the virial exponents. The main uncertainty in masses or M/L estimates using
the scalar virial relation is in the measurement of Re. This problem is already relevant for
nearby galaxies and may cause significant biases in virial mass and size determinations at high
redshift. Dynamical models can eliminate these problems. We revisit the (M/L)e−σe relation,
which describes most of the deviations between the MP and the FP. The best-fitting relation
is (M/L)e ∝ σ 0.72

e (r band). It provides an upper limit to any systematic increase of the IMF
mass normalization with σ e. The correlation is more shallow and has smaller scatter for slow
rotating systems or for galaxies in Virgo. For the latter, when using the best distance estimates,
we observe a scatter in (M/L)e of 11 per cent, and infer an intrinsic one of 8 per cent. We
perform an accurate empirical study of the link between σ e and the galaxies circular velocity
Vcirc within 1Re (where stars dominate) and find the relation max (Vcirc) ≈ 1.76 × σ e, which
has an observed scatter of 7 per cent. The accurate parameters described in this paper are used
in the companion Paper XX (Cappellari et al.) of this series to explore the variation of global
galaxy properties, including the IMF, on the projections of the MP.

Key words: galaxies: elliptical and lenticular, cD – galaxies: evolution – galaxies: formation –
galaxies: kinematics and dynamics – galaxies: structure.

1 IN T RO D U C T I O N

Scaling relations of early-type galaxies (ETGs, ellipticals Es and
lenticulars S0s) have played a central role in our understanding
of galaxy evolution, since the discovery that the stellar velocity
dispersion σ (Minkowski 1962; Faber & Jackson 1976) and the
galaxy projected half-light radius Re (Kormendy 1977) correlate
with galaxy luminosity L. An important step forward was made
with the discovery that these two relations are just projections of
a relatively narrow plane, the Fundamental Plane (FP) (Djorgovski
& Davis 1987; Dressler et al. 1987; Faber et al. 1987), relating the
three variables (L, σe, Re). When the plane is used as a distance
indicator, as was especially the case at the time of its discovery, the
luminosity can be replaced by the surface brightness within Re as
�e ≡ L/(2πR2

e ) and the observed plane assumes the form

Re ∝ σ 1.33�−0.82
e , (1)

where the adopted parameters are the median of the 11 independent
determinations tabulated in Bernardi et al. (2003).

It was immediately realized that the existence of the FP could
be due to the galaxies being in virial equilibrium (e.g. Binney &
Tremaine 2008) and that the deviation (tilt) of the coefficients from
the virial predictions Re ∝ σ 2�−1

e , could be explained by a smooth
power-law variation of mass-to-light ratio (M/L) with mass (Faber
et al. 1987). The FP showed that galaxies assemble via regular
processes and that their properties are closely related to their mass.
The tightness of the plane gives constraints on the variation of
stellar population among galaxies of similar characteristics and on
their dark matter content (Renzini & Ciotti 1993; Borriello, Salucci
& Danese 2003). The regularity also allows one to use the FP to
study galaxy evolution, by tracing its variations with redshift (van
Dokkum & Franx 1996).

However, other reasons for the deviation of the coefficients are
possible: the constant coefficients in the simple virial relation only
rigorously apply if galaxies are spherical and homologous systems,
with similar profiles and dark matter fraction. But both galaxies

concentration (Caon, Capaccioli & D’Onofrio 1993) and the amount
of random motions in their stars (Davies et al. 1983) were found to
systematically increase with galaxy luminosity.

The uncertain origin of the tilt led to a large number of investi-
gations about its origin, exploring the effects of (i) the systematic
variation in the stellar population or initial mass function (IMF;
e.g. Prugniel & Simien 1996; Forbes, Ponman & Brown 1998) or
(ii) the non-homology in the surface brightness distribution (e.g.
Graham & Colless 1997; Prugniel & Simien 1997; Bertin, Ciotti
& Del Principe 2002; Trujillo, Burkert & Bell 2004) or (iii) the
kinematics (e.g. Prugniel & Simien 1994; Busarello et al. 1997)
or (iv) the variation in the amount of dark matter (e.g. Renzini &
Ciotti 1993; Ciotti, Lanzoni & Renzini 1996; Borriello et al. 2003)
on the FP tilt and scatter. Those works were all based on approxi-
mate galaxy spherical models, trying to test general hypotheses and
not reproducing real galaxies in detail, which sometimes led to con-
trasting results. What became clear however was that various effects
could potentially influence a major part of the FP tilt. Moreover, it
was found that the small scatter in the FP implies a well-regulated
formation for ETGs.

The next step forward came with subsequent studies, which in-
stead of testing general trends, used small samples of objects and
tried to push to the limit the accuracy of measuring galaxy central
masses, while reducing biases as much as possible. Those accurate
total masses could be directly compared to the simple virial ones,
testing for residual trends. Similar but independent studies were
performed using two completely different techniques, either stellar
dynamics (Cappellari et al. 2006) or strong gravitational lensing
(Bolton et al. 2007, 2008; Auger et al. 2010b). The results from
those efforts agree with each other’s, and showed that the tilt of the
FP is almost entirely due to a genuine M/L variation.

In this paper, we investigate once more the origin of the FP tilt.
This new study is motivated by the dramatic increase in the size
and quality of our galaxy sample, with respect to any previous
similar study. We have in fact state-of-the-art SAURON (Bacon
et al. 2001) stellar kinematics for all the 260 ETGs of the ATLAS3D
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sample (Cappellari et al. 2011a, hereafter Paper I), which constitute
a volume-limited and carefully selected sample of ETGs, down to
a stellar mass of about Mstars � 6 × 109 M�. This fact, combined
with detailed dynamical models for the entire sample, allows us to
test previous claims with unprecedented accuracy. The new models
also include a dark matter halo and give constraints on the dark
matter content in the centres of ETGs. These measurements will be
used in the companion Cappellari et al. (2013, hereafter Paper XX)
to provide a novel view of galaxy scaling relations.

In what follows, in Section 2 we present the sample and data, in
Section 3 we describe the methods used to extract our quantities,
in Section 4 we present our results on the FP tilt, dark matter and
the (M/L)−σ relation, and finally, we summarize our paper in
Section 5.

2 SA M P L E A N D DATA

2.1 Selection

The galaxies studied in this work are the 260 ETGs which consti-
tute the volume-limited and nearly mass-selected ATLAS3D sample
(Paper I). The object were morphologically selected as early type
according to the classic criterion (Hubble 1936; de Vaucouleurs
1959; Sandage 1961) of not showing spiral arms or a disc-scale
dust lane (when seen edge-on). The early types are extracted from
a parent sample of 871 galaxies of all morphological types brighter
than MK = −21.5 mag, using 2MASS photometry (Skrutskie et al.
2006), inside a local (D < 42 Mpc) volume of 1.16 × 105 Mpc3

(see full details in Paper I).

2.2 Comparison to previous samples: dynamics and lensing

Our goal is to measure total masses, or equivalently M/L, in the
central regions of galaxies. M/L of significant samples of individual
ETGs have been previously obtained via dynamical modelling (e.g.
37 ETGs, van der Marel 1991; 36 ETGs, Magorrian et al. 1998;
21 ETGs, Gerhard et al. 2001; 25 ETGs, Cappellari et al. 2006;
16 ETGs, Thomas et al. 2007b; 14 ETGs, Williams, Bureau &
Cappellari 2009; 48 ETGs, Scott et al. 2009) or strong gravitational
lensing (e.g. 22 ETGs, Rusin, Kochanek & Keeton 2003; 15 ETGs,
Koopmans et al. 2006; 53 ETGs, Bolton et al. 2008; 73 ETGs, Auger
et al. 2010b). An important, and perhaps not obvious, difference
between the quantities obtained with the two techniques is that
the dynamical models provide masses enclosed within a spherical
radius, while strong lensing measures the mass inside a cylinder
with axis parallel to the line of sight (LOS). Care has to be taken
when comparing the two methods. An illustration of this fact is
given in fig. 1 of Dutton et al. (2011b).

An advantage of the strong lensing technique is that the recovered
mass inside a cylinder with the radius of the Einstein ring is nearly
insensitive to the mass distribution, and completely independent of
the stellar dynamics. However, the requirement of a galaxy to act
as a strong lens, necessarily imposes biases in the objects selection,
and in particular limits mass measurements via strong lensing to
the most massive nearby ETGs (σ � 200 km s−1 in Auger et al.
2010b).

The dynamical modelling technique has the significant advantage
that it can in principle be applied to any bound system made of stars.
However, it requires a detailed treatment of the observed surface
brightness and orbital distribution, in combination with integral-
field data, for robust and accurate values (e.g. Cappellari et al.
2006).

In this paper, we apply the stellar dynamical modelling tech-
nique to the ATLAS3D sample of 260 ETGs. This increases the
sample size for which accurate total masses have been measured
by a factor of 4. Moreover, the sample is volume limited and sta-
tistically representative of the nearby galaxy population with stellar
mass Mstars � 6 × 109 M� and in particular includes ETGs with
velocity dispersion as low as σ e ≈ 40 km s−1 (see Paper I for an
illustration of the characteristics of the sample).

2.3 Stellar kinematics and imaging

Various multiwavelengths data sets are available for the sample
galaxies (see a summary in Paper I). In this work, we make use of
the SAURON (Bacon et al. 2001) integral-field stellar kinematics
within about one half-light radius Re, which was introduced in
Emsellem et al. (2004), for the subset of 48 early types in the
SAURON survey (de Zeeuw et al. 2002), and in Paper I for the
rest of the ATLAS3D sample. Maps of the stellar velocity for all
the 260 galaxies were presented in Krajnović et al. (2011, hereafter
Paper II).

In this paper, we are not interested in the shape of the stellar LOS
velocity distribution (LOSVD), but we want to approximate veloc-
ity moments which are predicted by the Jeans (1922) equations. In
Cappellari et al. (2007), we used semi-analytic models to compute
a set of realistic galaxy LOSVDs with known velocity moments,
using the Hunter & Qian (1993) formalism, as implemented in Em-
sellem, Dejonghe & Bacon (1999). The models LOSVDs were used
to broaden galaxy spectral templates and noise was subsequently
added. The kinematics was then extracted from the synthetic spec-
tra using PPXF (Cappellari & Emsellem 2004) as done for the real
galaxies. We found that Vrms ≡ √

V 2 + σ 2, where V and σ are the
mean and standard deviation of the best-fitting Gaussian and pro-
vide a better empirical approximation to the velocity second moment
〈v2

los〉1/2 than an integral of a more general LOSVD described by the
Gauss–Hermite parametrization (Gerhard 1993; van der Marel &
Franx 1993). This is due to the large sensitivity of the moments to
the wings of the LOSVD, which are observationally ill determined.
For this reason, all the kinematic quantities used in the paper are
extracted using a simple Gaussian LOSVD in the PPXF software
(keyword MOMENTS=2).

The photometry used in this work comes from the Sloan Digital
Sky Survey (SDSS; York et al. 2000) data release eight (Aihara
et al. 2011) for 225 galaxies and was supplemented by our own
photometry taken at the 2.5-m Isaac Newton Telescope (INT) in the
same set of filters and with comparable signal to noise for the rest
of the sample galaxies (Scott et al. 2013, hereafter Paper XXI).

3 M E T H O D S

3.1 Measuring galaxy enclosed masses

3.1.1 Choosing the dynamical modelling approach

Various dynamical modelling techniques have been developed in
the past. They are all characterized by their ability to reproduce
in detail, in a non-parametric way, the characteristics of the galaxy
surface brightness. This contrasts with a more qualitative toy-model
approach (e.g. Tortora et al. 2009; Treu et al. 2010) that assumes a
spherical shape and a simpler parametrization (e. g. Hernquist 1990
or Sérsic 1968 profile) for the surface brightness of all galaxies.
An accurate description of the galaxy surface brightness is a nec-
essary requirement for quantitative and unbiased measurements of
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dynamical quantities as much of the kinematic information on real
galaxies is contained in the photometry alone (Cappellari 2008). The
state of the art in the field is currently represented by Schwarzschild
(1979) orbit-superposition approach, which was originally devel-
oped to reproduce galaxy stellar densities and was later general-
ized to produce detailed fits to the stellar kinematics (Richstone &
Tremaine 1988; Rix et al. 1997; van der Marel et al. 1998) and
has been widely used for determinations of masses of supermassive
black holes (e.g. van der Marel et al. 1997; Gebhardt et al. 2000a;
Cappellari et al. 2002; Valluri, Merritt & Emsellem 2004; Houghton
et al. 2006), for galaxy mass determinations (e.g. Cappellari et al.
2006; Thomas et al. 2007b) and to recover orbital distributions (e.g.
Krajnović et al. 2005; Cappellari et al. 2007; van den Bosch et al.
2008; Thomas et al. 2009). A close contender technique, but not as
widely used, is the particle-based made-to-measure method of Syer
& Tremaine (1996) as implemented to reproduce kinematical ob-
servables by various groups (de Lorenzi et al. 2007; Dehnen 2009;
Long & Mao 2010). When the gravitational potential is assumed to
be known, and the particles are chosen to fully sample all integrals
of motion, the method effectively corresponds to a particle-based
analogue of Schwarzschild’s method, and is expected to provide
similar results. However, the method may be very useful when the
potential is derived from the particles in a self-consistent way. Not
much however is known about the convergence and uniqueness of
the solution in this case.

The sophistication and generality of the dynamical models has
reached a level that exceeds the amount of information that the
observations of external galaxies can provide. As a result the obser-
vations are unable to uniquely constrain all the model parameters,
which suffer from degeneracies (Dejonghe & Merritt 1992; Gerhard
et al. 1998; de Lorenzi et al. 2009; Morganti & Gerhard 2012). A
key degeneracy is in the deprojection of the observed surface bright-
ness into a three-dimensional stellar mass distribution, which has
been proved to be of mathematical nature (Rybicki 1987; Gerhard
& Binney 1996) and applies even when the galaxy is assumed to
be axisymmetric. However, similar degeneracies are likely to exists
when higher (than zero) moments of the velocity are considered.
This is expected from dimensional arguments: the current data pro-
vide at most a three-dimensional observable (an integral-field data
cube), which is the minimum requirement to constrain the orbital
distribution, which depends on three integrals of motion, for an
assumed potential and known light distribution. It is unlikely for
the data to contain enough information to constrain additional pa-
rameters, like the dark matter halo shape and the viewing angles
(e.g. Valluri et al. 2004). Numerical experiments confirm that even
with the best-available integral-field stellar kinematics, and assum-
ing that the gravitational potential is known and axisymmetric, not
even the galaxy inclination can be inferred from the data using
general Schwarzschild’s models (Krajnović et al. 2005; Cappellari
et al. 2006; van den Bosch & van de Ven 2009). This implies that
the mass distribution is also quite poorly known.

The situation becomes even more problematic when one con-
siders the fact that the majority of ETGs are likely to have bars.
30 per cent have obvious bars (Paper II) in the ATLAS3D sample,
but more must be hidden by projection effects. Bars are character-
ized by figure rotation which is ignored by most popular modelling
approaches. The treatment of bars could be included in the models
as demonstrated in the two-dimensional limit by Pfenniger (1984)
and as done to model the Milky Way in three dimension (Zhao
1996; Häfner et al. 2000; Bissantz, Debattista & Gerhard 2004).
However, no applications to external galaxies exist. This is due to
the extra degeneracy that the addition of at least two extra model

parameters, the bar pattern speed and position angle, will produce
on an already degenerate problem. This combines with the dramatic
increase in the non-uniqueness of the mass deprojection expected
in a triaxial rather than axisymmetric distribution (Gerhard 1996)
and with the additional unavoidable biases introduced by observa-
tional errors. All this is expected to further broaden the minima in
the χ2 distributions of the fits and to increase the uncertainties and
covariances in the recovered parameters.

We chose a different approach. Rather than allowing for the full
generality and degeneracies of the models, we adopt a modelling
method that makes empirically motivated assumptions to restrict
the range of model solutions and improve the accuracy of the mass
recovery. This is motivated by the finding that the kinematics of real
fast-rotator ETGs in the SAURON sample (de Zeeuw et al. 2002) is
well approximated by models characterized by a remarkably sim-
ple and homogeneous dynamics, characterized by a cylindrically
aligned and nearly oblate velocity ellipsoid σφ ≈ σR � σz (Cappel-
lari 2008), as previously suggested by more general Schwarzschild’s
models (Cappellari et al. 2007; Thomas et al. 2009). The models are
called Jeans Anisotropic MGE (JAM), where MGE stands for the
Multi-Gaussian Expansion method of Emsellem, Monnet & Bacon
(1994), that is used to accurately describe the galaxy photometry.
The JAM models can reproduce the full richness of the observed
state-of-the-art SAURON integral-field kinematics of fast-rotator
ETGs using just two free parameters (Cappellari 2008; Scott et al.
2009; Cappellari et al. 2012), providing a compact description of
their dynamics. The JAM models are ideal for this work given that
the nearly axisymmetric fast-rotator ETGs constitute the 86 per cent
of the ATLAS3D sample (Paper II; Emsellem et al. 2011, hereafter
Paper III). Moreover, the JAM models only require the first two
velocity moments (V and σ ), and not the full LOSVD, which is
not available for about half of the sample (see Paper I). The JAM
models do not have the freedom to actually fit small-scale details
of the kinematics, but they make a prediction based on an accu-
rate description of the photometry and a couple of parameters. This
constitutes an advantage in presence of noise and systematics in the
data, as it makes spurious features easy to recognize and automat-
ically exclude from the fit. Moreover, the approach is at least three
orders of magnitudes faster than Schwarzschild’s approach.

However, not all ETGs are well described by the JAM models.
In fact, some of the slow rotators in ATLAS3D are likely nearly
spherical in the region where we have stellar kinematics, but about
10 per cent of the sample galaxies are weakly triaxial or out of equi-
librium (Paper II). For those objects, the modelling results should
be treated with caution. Errors of up to 20 per cent can arise when
measuring masses of triaxial objects with axisymmetric models
(Thomas et al. 2007a; van den Bosch & van de Ven 2009) and this
should be kept in mind when interpreting our results. However, pre-
liminary tests using real galaxies in the SAURON sample indicate
excellent agreement between the M/L recovery using axisymmet-
ric models and triaxial ones with identical data (van den Bosch
2008). Moreover, in what follows, unless explicitly mentioned, we
verified that all conclusion are unchanged if we remove the slow-
rotator galaxies from the sample. Barred galaxies provide a further
complication, which will be discussed in the next section.

3.1.2 JAM models with dark halo

In practice, the modelling approach we use in this paper starts
by approximating the observed SDSS and INT r-band surface
brightness distribution of the ATLAS3D galaxies using the MGE
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parametrization (Emsellem et al. 1994), with the fitting method
and MGE_FIT_SECTORS software package1 of Cappellari (2002). The
choice of the photometric band is a compromise between the need
of using the reddest band, to reduce the contamination by dust, and
the optimal signal to noise in the images. For barred galaxies, the
Gaussians of the MGE models are constrained to have the flatten-
ing of the outer disc, following Scott et al. (2009, their fig. 4). Full
details of the fitting approach and illustrations of the quality of the
resulting MGE fits are given in Paper XXI. The MGE models are
used as input for the JAM method1 (Cappellari 2008) which calcu-
lates a prediction of the LOS second velocity moments 〈v2

los〉1/2 for
given model parameters and compare this to the observed Vrms.

In Cappellari et al. (2006), it was shown that, when the surface
brightness distribution is accurately reproduced and good quality
integral-field data are available, simple two-integral Jeans models
measure masses nearly as accurate as those of Schwarzschild’s mod-
els, with errors of 6 per cent. The agreement can be further improved
by allowing for orbital anisotropy, in which case the two methods
give equally accurate results (Cappellari 2008). We have run an
extensive set of tests using JAM to determine the M/L of realistic
numerical simulations (Lablanche et al. 2012, hereafter Paper XII).
We found that for unbarred galaxies, even when the anisotropy is not
accurately constant inside the region with kinematic data, the M/L
can be recovered with maximum biases as small as 1.5 per cent. The
situation changes when the galaxies are barred. In this case, biases
of up to 15 per cent can be expected for the typical bar strengths we
find in ETGs.

The models we use here were already presented in Cappellari
et al. (2012), where they were used to uncover a systematic variation
of the stellar IMF in ETGs. That paper (their table 1) describes six
sets of JAM models for all the ATLAS3D galaxies, making various
assumptions on the dark matter halo. Given that the SAURON data
are typically spatially limited to 1Re, one cannot expect to be able
to robustly characterize the shape of the dark halo out to large radii
from them (Mamon & Łokas 2005). However, as long as the density
distribution of the halo is not the same as the one of the stars, we
can determine how much room the models allow for a dark matter
halo, within the region constrained by the kinematics. The models
were summarized in Cappellari et al. (2012), but we describe them
here in some more detail using the same lettering notation as that
paper:

(A) Self-consistent JAM model. Here, we assume that the mass
distribution follows the light one as inferred from the deprojected
MGE. In this case, the model has three free parameters. Two pa-
rameters are non-linear: (i) the vertical anisotropy βz = 1 − σ 2

z /σ 2
R

and (ii) the galaxy inclination i, which together uniquely specify
the shape of the second velocity moment 〈v2

los〉, which is then lin-
early scaled by the (M/L)JAM to fit the two-dimensional Vrms data.
We emphasize that, even though the models do not include a dark
halo explicitly, (M/L)JAM does not represent the stellar M/L, as
sometimes incorrectly assumed, but the total one, within a spheri-
cal region which has the projected size of our data (see discussion
in Section 4.1.2). This set of models, like all others, has a central
supermassive black hole with mass predicted by the MBH−σ cor-
relation (Ferrarese & Merritt 2000; Gebhardt et al. 2000b), or a
black holes mass as published, when available. The supermassive
black hole has a minimal effect on M/L in nearly all cases, but we
still exclude the central R < 2 arcsec from the fits, for maximum
robustness. All our best fitting mass-follows-light JAM models are

1 Available from http://purl.org/cappellari/idl

shown in Fig. 1. The inclination and (M/L)JAM of the best-fitting
models are given in Table 1.

(B) JAM with NFW dark halo. This set of models adopts the
approach introduced by Rix et al. (1997) to reduce the halo to a
one-parameter family of models. This approach was already used
with axisymmetric JAM models of disc galaxies, as done here,
by Williams et al. (2009) and to construct spherical toy models
of various stellar systems (Napolitano et al. 2005; Tollerud et al.
2011). We assume the halo is spherical and characterized by the
two-parameters double power-law NFW profile (Navarro, Frenk &
White 1996). We then adopt the halo mass–concentration M200−c200

relation (Navarro et al. 1996) as given by Klypin, Trujillo-Gomez
& Primack (2011) to make the halo profile a unique function of its
mass M200. The latter is not a critical assumption: our observations
only sample a region well inside the predicted halo break radius, so
that all our conclusion are unchanged if we describe the halo with a
simple power-law density profile ρ(r) ∝ r−1, as we numerically ver-
ified. The resulting JAM models have in this case four parameters:
(i) the galaxy inclination i, (ii) the anisotropy βz, (iii) the stellar
(M/L)stars, assumed spatially constant and (iv) the halo virial mass
M200, defined as the mass within the spherical radius r200 at which
the average density is equal to 200 times the critical density of the
Universe. The (M/L)stars and dark matter fraction fDM(r = Re) of
the best-fitting models are given in table 1 of Paper XX.

(C) JAM with contracted NFW dark halo. These models include
a halo which is originally assumed to be of NFW form, with con-
centration specified by its mass via the M200−c200 relation as in (B).
However, during the fitting process, for every choice of the model
parameters, the halo is contracted according to the enclosed stel-
lar mass distribution, which is defined by the (circularized) MGE
and the corresponding (M/L)stars parameter. For the contraction, we
used the prescription of Gnedin et al. (2011), which is an update
of Gnedin et al. (2004). We verified that our IDL code produces the
same output as the C language software CONTRA by Gnedin et al.
(2004), when the same input is given. The resulting JAM model has
the same four free parameters (i, βz, (M/L)stars, M200) as in (B).

(D) JAM with general dark halo (gNFW). These models include
a dark halo that generalizes the NFW profile (see also Barnabè et al.
2012), with density:

ρDM(r) = ρs

(
r

rs

)γ (
1

2
+ 1

2

r

rs

)−γ−3

. (2)

The density has the same large-radii asymptotic power-law slope
β = −3 as the NFW halo, but it allows for a variable inner slope,
which we constrained to the bounds −1.6 < γ < 0, by assigning
zero probability to the prior P(model) = 0 (Section 3.1.3) outside
this parameters range. The ranges include a flat inner core γ = 0
and the NFW γ = −1 as special cases. The upper bound was chosen
as the nearly maximum slope we measured for all contracted haloes
in (C) (top panel of Fig. 2). However, recent simulations suggest
that baryonic effects produce flatter haloes than these predictions
for a broad range of galaxy masses (Duffy et al. 2010; Governato
et al. 2010; Inoue & Saitoh 2011; Laporte et al. 2012; Macciò et al.
2012; Martizzi et al. 2012; Pontzen & Governato 2012). Note that
our adopted maximum halo slope is still generally more shallow
than the typical ‘isothermal’ average power slope γ ′ = 2.0 that we
measure for the stellar density alone within 1Re (bottom panel of
Fig. 2). This fact is important to avoid model degeneracies between
the stellar and halo densities. This model is the most general of all
six and it includes any of the other five models as special cases. It has
five free parameters: (i) the galaxy inclination, (ii) the anisotropy
βz, (iii) the stellar mass Mstars, (iv) the halo inner slope γ and (v) the
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1714 M. Cappellari et al.

Figure 1. Mass-follows-light JAM models of the ATLAS3D sample. In each panel, the top plot shows the by-symmetrized and linearly interpolated SAURON
Vrms ≡ √

V 2 + σ 2, where V is the mean stellar velocity and σ is the stellar velocity dispersion. Vrms ranges are printed. Ticks are separated by 10 arcsec. The
observed galaxy surface brightness is overlaid, in steps of 1 mag. The bottom plot shows the best-fitting JAM model, and the adopted MGE surface brightness.
These models (A) have just two free non-linear parameters, the inclination and the global anisotropy (i, βz), to reproduce the shape of the observed Vrms. Yet,
once the surface brightness is given, most of the variety in our maps can be reproduced. Nearly all significant deviations between data and models are due to
bars, recognizable from the asymmetries in the observed surface brightness, dust, which affects both the mass model and the kinematics, or inferior data. The
predictive power of these simple JAM models qualitatively suggests that the assumed total potential is not significantly in error, which implies that dark matter
is unimportant (or accurately follows the light). The good fits also show that ETGs have a simple dynamics within 1Re.
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Figure 1 – continued

 at E
uropean Southern O

bservatory on A
ugust 13, 2014

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


1716 M. Cappellari et al.

Figure 1 – continued
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Table 1. Scaling relations and mass-follows-light JAM models parameters for the ATLAS3D sample of 260 ETGs (see Supporting Information).

Galaxy log σ e R(σ )/Re log σ kpc Inc log(M/L)JAM log V max
circ qual log R

maj
e log Re log r1/2 log rg conc εe log L

(km s−1) (km s−1) (◦) (M�/L�r) (km s−1) (arcsec) (arcsec) (arcsec) (arcsec) (L�r)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

IC0560 1.879 0.97 1.885 73 0.486 2.114 2 1.352 1.154 1.248 1.659 0.458 0.577 9.566
IC0598 1.996 1.00 1.964 75 0.439 2.215 2 1.148 0.956 1.109 1.551 0.397 0.567 9.828
IC0676 1.806 0.81 1.825 49 0.550 2.059 0 1.460 1.396 1.477 1.989 0.366 0.259 9.660
IC0719 2.108 0.98 2.019 77 0.938 2.341 3 1.301 1.027 1.155 1.663 0.268 0.716 9.697
IC0782 1.870 1.00 1.827 67 0.670 2.086 1 1.303 1.207 1.339 1.853 0.361 0.301 9.645
IC1024 1.892 0.99 1.825 88 0.696 2.133 2 1.332 1.078 1.276 1.807 0.236 0.687 9.471
IC3631 1.551 1.00 1.647 70 −0.155 1.833 0 1.235 1.062 1.188 1.635 0.388 0.535 9.742
NGC 0448 2.047 1.00 2.021 90 0.523 2.276 2 1.235 1.002 1.203 1.664 0.375 0.656 9.919
NGC 0474 2.160 0.69 2.205 51 0.618 2.418 1 1.511 1.472 1.608 2.003 0.519 0.163 10.314
NGC 0502 1.989 1.00 2.058 20 0.465 2.251 1 1.171 1.160 1.191 1.651 0.475 0.041 9.952
NGC 0509 1.852 0.92 1.846 90 0.530 1.958 0 1.393 1.168 1.373 1.931 0.314 0.633 9.512
NGC 0516 1.843 0.95 1.766 89 0.528 2.006 2 1.408 1.142 1.328 1.862 0.287 0.691 9.609
NGC 0524 2.343 0.79 2.370 20 0.857 2.598 0 1.572 1.564 1.613 2.119 0.377 0.038 10.544
NGC 0525 1.902 1.00 1.949 70 0.711 2.158 1 1.088 1.029 1.117 1.593 0.347 0.210 9.457
NGC 0661 2.251 1.00 2.272 87 0.958 2.489 1 1.284 1.210 1.369 1.805 0.457 0.294 9.974
NGC 0680 2.262 0.99 2.292 86 0.750 2.508 1 1.284 1.239 1.401 1.813 0.487 0.178 10.276
NGC 0770 2.038 0.99 2.048 88 0.516 2.248 0 0.921 0.857 1.004 1.503 0.320 0.260 9.767
NGC 0821 2.254 0.69 2.285 75 0.822 2.484 2 1.641 1.541 1.703 2.117 0.471 0.369 10.273
NGC 0936 2.225 1.00 2.288 37 0.719 2.576 2 1.749 1.724 1.516 1.989 0.490 0.090 10.594
NGC 1023 2.222 0.74 2.262 74 0.532 2.479 3 1.666 1.546 1.639 2.130 0.436 0.398 10.287
NGC 1121 2.225 1.00 2.204 82 0.824 2.435 2 1.000 0.814 0.997 1.415 0.408 0.530 9.737
NGC 1222 1.958 0.97 1.900 50 0.700 2.305 0 1.218 1.188 1.303 1.743 0.451 0.120 9.804
NGC 1248 1.906 1.00 1.923 42 0.324 2.168 2 1.191 1.148 1.026 1.535 0.405 0.178 9.894
NGC 1266 1.898 0.98 1.917 51 0.597 2.163 0 1.330 1.280 1.376 1.921 0.319 0.214 9.814
NGC 1289 2.095 0.98 2.130 89 0.634 2.382 1 1.339 1.233 1.407 1.777 0.495 0.384 10.083
NGC 1665 1.958 0.94 1.996 59 0.498 2.220 1 1.526 1.400 1.445 1.888 0.414 0.431 10.102
NGC 2481 2.224 1.00 2.200 81 0.698 2.422 2 1.186 0.962 1.146 1.579 0.367 0.567 9.999
NGC 2549 2.152 0.94 2.149 89 0.782 2.381 3 1.466 1.280 1.475 1.859 0.456 0.539 9.653
NGC 2577 2.293 0.97 2.293 70 0.874 2.470 3 1.347 1.197 1.242 1.713 0.426 0.467 10.047
NGC 2592 2.282 1.00 2.291 48 0.882 2.504 1 1.148 1.086 1.182 1.573 0.482 0.241 9.796
NGC 2594 2.224 0.99 2.229 90 0.731 2.412 1 0.999 0.856 1.011 1.412 0.501 0.461 9.736
NGC 2679 2.005 0.85 1.986 90 0.486 2.183 0 1.448 1.389 1.537 1.953 0.452 0.234 9.914
NGC 2685 2.019 0.99 1.991 76 0.455 2.212 3 1.572 1.344 1.488 1.928 0.432 0.628 9.857
NGC 2695 2.257 0.99 2.292 47 0.736 2.509 2 1.312 1.237 1.235 1.690 0.465 0.283 10.199
NGC 2698 2.285 0.99 2.280 73 0.749 2.528 3 1.278 1.092 1.227 1.646 0.454 0.503 10.075
NGC 2699 2.104 1.00 2.118 36 0.568 2.350 1 1.078 1.046 1.099 1.548 0.418 0.147 9.819
NGC 2764 2.029 0.98 1.948 69 0.648 2.247 2 1.365 1.171 1.267 1.767 0.290 0.594 9.989
NGC 2768 2.297 0.45 2.313 90 0.933 2.523 1 1.948 1.778 1.976 2.434 0.402 0.526 10.601
NGC 2778 2.121 1.00 2.141 41 0.855 2.395 2 1.236 1.185 1.169 1.573 0.451 0.216 9.642
NGC 2824 2.105 1.00 2.109 53 0.628 2.443 0 0.953 0.904 0.977 1.410 0.485 0.211 9.889
NGC 2852 2.196 1.00 2.203 39 0.835 2.461 1 0.931 0.901 0.977 1.410 0.488 0.118 9.622
NGC 2859 2.212 0.77 2.247 59 0.568 2.485 2 1.463 1.441 1.578 1.965 0.517 0.104 10.404
NGC 2880 2.121 0.92 2.124 51 0.680 2.378 1 1.389 1.312 1.346 1.816 0.453 0.259 9.936
NGC 2950 2.193 1.00 2.198 58 0.588 2.450 1 1.306 1.237 1.361 1.756 0.501 0.265 9.887
NGC 2962 2.162 0.68 2.233 74 0.814 2.442 1 1.591 1.463 1.611 2.054 0.445 0.434 10.284
NGC 2974 2.355 0.88 2.364 57 0.981 2.567 3 1.547 1.441 1.424 1.893 0.443 0.391 10.152
NGC 3032 1.914 0.96 1.963 38 0.310 2.307 0 1.316 1.282 1.363 1.603 0.587 0.147 9.687
NGC 3073 1.794 0.93 1.750 80 0.249 1.937 0 1.325 1.304 1.451 1.897 0.437 0.090 9.701
NGC 3098 2.101 0.98 2.055 90 0.677 2.322 0 1.351 1.013 1.218 1.669 0.294 0.703 9.815
NGC 3156 1.837 0.95 1.831 68 0.382 2.074 1 1.403 1.257 1.384 1.850 0.360 0.491 9.690
NGC 3182 2.052 0.89 2.049 80 0.589 2.255 0 1.390 1.350 1.493 1.954 0.409 0.170 10.100
NGC 3193 2.252 0.73 2.292 83 0.558 2.488 2 1.463 1.439 1.582 1.993 0.465 0.117 10.595
NGC 3226 2.183 0.57 2.223 57 0.873 2.402 2 1.601 1.566 1.697 2.161 0.420 0.153 10.120
NGC 3230 2.256 0.96 2.292 69 0.767 2.484 2 1.368 1.224 1.324 1.757 0.407 0.453 10.345
NGC 3245 2.248 0.80 2.257 64 0.637 2.461 3 1.505 1.367 1.491 1.881 0.476 0.461 10.173
NGC 3248 1.944 0.95 1.973 59 0.474 2.239 2 1.394 1.289 1.364 1.789 0.486 0.371 9.805
NGC 3301 2.045 0.96 2.068 76 0.402 2.339 3 1.411 1.270 1.415 1.775 0.442 0.449 10.078
NGC 3377 2.108 0.52 2.129 89 0.580 2.327 1 1.734 1.591 1.766 2.163 0.474 0.487 9.888
NGC 3379 2.269 0.60 2.294 88 0.706 2.519 3 1.705 1.673 1.820 2.221 0.487 0.130 10.209
NGC 3384 2.140 0.55 2.161 62 0.473 2.412 3 1.643 1.563 1.575 1.970 0.531 0.294 10.091
NGC 3400 1.888 1.00 1.883 58 0.619 2.116 2 1.250 1.163 1.188 1.675 0.362 0.319 9.512
NGC 3412 1.967 0.66 1.984 58 0.404 2.274 1 1.560 1.475 1.516 1.899 0.497 0.254 9.758
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Table 1 – continued

Galaxy log σ e R(σ )/Re log σ kpc Inc log(M/L)JAM log V max
circ qual log R

maj
e log Re log r1/2 log rg conc εe log L

(km s−1) (km s−1) (◦) (M�/L�r) (km s−1) (arcsec) (arcsec) (arcsec) (arcsec) (L�r)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

NGC 3414 2.277 0.63 2.327 87 0.779 2.513 1 1.558 1.484 1.642 2.042 0.459 0.226 10.326
NGC 3457 1.861 1.00 1.867 64 0.307 2.122 0 1.068 1.067 1.203 1.598 0.444 0.010 9.534
NGC 3458 2.182 1.00 2.193 52 0.664 2.470 2 0.991 0.973 1.073 1.469 0.463 0.064 9.952
NGC 3489 2.005 0.86 2.009 61 0.260 2.256 2 1.430 1.353 1.378 1.828 0.431 0.273 9.927
NGC 3499 1.856 1.00 1.857 26 0.425 2.204 0 0.907 0.891 0.977 1.320 0.370 0.081 9.489
NGC 3522 1.993 1.00 1.997 89 0.705 2.271 0 1.278 1.147 1.324 1.718 0.470 0.430 9.600
NGC 3530 2.068 1.00 2.052 90 0.718 2.281 0 1.013 0.777 0.974 1.422 0.341 0.628 9.573
NGC 3595 2.129 0.99 2.163 66 0.602 2.355 1 1.287 1.155 1.248 1.688 0.448 0.431 10.064
NGC 3599 1.804 0.73 1.860 26 0.263 2.117 0 1.450 1.449 1.560 1.949 0.475 0.004 9.732
NGC 3605 1.923 1.00 1.932 63 0.460 2.142 1 1.225 1.113 1.220 1.677 0.415 0.394 9.542
NGC 3607 2.315 0.61 2.360 46 0.681 2.580 2 1.693 1.658 1.773 2.175 0.460 0.161 10.661
NGC 3608 2.228 0.68 2.253 88 0.710 2.457 0 1.528 1.472 1.631 2.039 0.462 0.221 10.246
NGC 3610 2.260 1.00 2.266 90 0.496 2.484 3 1.335 1.230 1.397 1.786 0.497 0.391 10.248
NGC 3613 2.294 0.77 2.318 89 0.772 2.523 2 1.554 1.394 1.575 2.021 0.416 0.496 10.456
NGC 3619 2.157 0.63 2.195 42 0.693 2.446 1 1.527 1.504 1.631 2.001 0.509 0.106 10.212
NGC 3626 2.118 0.81 2.119 66 0.437 2.394 1 1.542 1.391 1.513 1.867 0.513 0.495 10.102
NGC 3630 2.195 1.00 2.185 83 0.663 2.443 3 1.233 1.022 1.207 1.607 0.403 0.485 9.957
NGC 3640 2.246 0.69 2.263 68 0.603 2.474 2 1.627 1.585 1.728 2.183 0.432 0.188 10.620
NGC 3641 2.150 1.00 2.165 26 0.949 2.493 0 1.086 1.067 0.937 1.405 0.561 0.084 9.543
NGC 3648 2.224 1.00 2.218 57 0.829 2.475 2 1.195 1.085 1.072 1.494 0.474 0.378 9.910
NGC 3658 2.101 0.93 2.169 42 0.573 2.427 3 1.378 1.326 1.232 1.652 0.538 0.199 10.109
NGC 3665 2.335 0.63 2.354 51 0.796 2.568 2 1.692 1.640 1.750 2.207 0.425 0.218 10.760
NGC 3674 2.268 1.00 2.273 76 0.843 2.504 2 1.126 0.973 1.105 1.529 0.400 0.443 9.984
NGC 3694 1.941 1.00 1.930 42 0.565 2.273 0 1.045 0.984 0.903 1.381 0.361 0.245 9.750
NGC 3757 2.128 1.00 2.121 50 0.673 2.397 0 0.918 0.897 1.022 1.459 0.414 0.103 9.631
NGC 3796 1.916 1.00 1.914 68 0.460 2.185 0 1.151 1.051 1.195 1.602 0.469 0.371 9.527
NGC 3838 2.125 1.00 2.113 79 0.589 2.363 2 1.195 0.974 1.150 1.551 0.423 0.553 9.772
NGC 3941 2.081 0.82 2.089 57 0.400 2.322 1 1.502 1.396 1.487 1.878 0.453 0.378 9.940
NGC 3945 2.249 0.90 2.289 46 0.628 2.534 1 1.506 1.473 1.587 1.954 0.487 0.165 10.394
NGC 3998 2.350 0.82 2.360 38 0.971 2.638 2 1.421 1.380 1.352 1.806 0.472 0.174 9.967
NGC 4026 2.195 0.89 2.199 84 0.675 2.433 2 1.483 1.291 1.464 1.865 0.418 0.535 9.906
NGC 4036 2.260 0.78 2.258 75 0.698 2.478 2 1.619 1.410 1.498 1.954 0.366 0.589 10.463
NGC 4078 2.264 1.00 2.250 90 0.876 2.453 1 1.169 0.940 1.134 1.573 0.402 0.631 9.941
NGC 4111 2.213 0.92 2.208 84 0.652 2.415 2 1.443 1.194 1.382 1.823 0.302 0.639 9.973
NGC 4119 1.838 0.65 1.806 71 0.510 2.064 3 1.837 1.614 1.699 2.240 0.336 0.631 9.849
NGC 4143 2.252 0.99 2.250 64 0.749 2.488 1 1.349 1.255 1.332 1.740 0.453 0.324 9.911
NGC 4150 1.915 0.92 1.914 52 0.416 2.180 3 1.365 1.282 1.337 1.748 0.469 0.305 9.521
NGC 4168 2.232 0.58 2.241 87 0.902 2.483 0 1.566 1.537 1.681 2.175 0.398 0.109 10.398
NGC 4179 2.224 0.87 2.222 86 0.772 2.455 3 1.518 1.282 1.463 1.884 0.404 0.580 9.981
NGC 4191 2.095 1.00 2.109 90 0.658 2.366 1 1.231 1.156 1.311 1.728 0.440 0.295 10.046
NGC 4203 2.111 0.53 2.155 85 0.537 2.347 0 1.603 1.585 1.753 2.126 0.505 0.100 10.067
NGC 4215 2.124 0.94 2.142 90 0.609 2.401 2 1.402 1.171 1.368 1.747 0.424 0.600 10.126
NGC 4233 2.288 1.00 2.313 66 0.834 2.538 2 1.244 1.205 1.251 1.682 0.414 0.148 10.238
NGC 4249 1.901 0.99 1.880 85 0.540 2.122 0 1.174 1.167 1.295 1.740 0.432 0.037 9.671
NGC 4251 2.110 0.86 2.104 80 0.405 2.324 1 1.499 1.316 1.468 1.942 0.371 0.492 10.211
NGC 4255 2.203 0.99 2.206 70 0.811 2.483 3 1.142 1.030 1.176 1.555 0.457 0.294 9.905
NGC 4259 2.036 1.00 2.025 89 0.641 2.242 0 1.099 0.907 1.093 1.529 0.396 0.543 9.681
NGC 4261 2.424 0.46 2.466 89 0.929 2.671 1 1.687 1.651 1.808 2.229 0.456 0.169 10.793
NGC 4262 2.207 1.00 2.201 26 0.753 2.563 2 1.076 1.066 1.087 1.462 0.468 0.061 9.726
NGC 4264 2.029 1.00 2.027 38 0.603 2.280 0 1.161 1.126 1.172 1.693 0.350 0.151 9.952
NGC 4267 2.092 0.70 2.138 26 0.598 2.384 1 1.581 1.576 1.494 1.915 0.583 0.025 9.975
NGC 4268 2.188 0.99 2.174 88 0.853 2.408 1 1.250 1.104 1.299 1.709 0.407 0.426 9.889
NGC 4270 2.096 0.97 2.145 80 0.541 2.284 1 1.396 1.232 1.416 1.859 0.373 0.503 10.204
NGC 4278 2.328 0.79 2.358 88 0.829 2.561 1 1.542 1.524 1.672 2.084 0.458 0.087 10.247
NGC 4281 2.357 0.81 2.379 71 0.956 2.584 2 1.564 1.389 1.536 1.959 0.435 0.542 10.263
NGC 4283 2.000 1.00 1.994 26 0.570 2.242 1 1.078 1.076 1.192 1.656 0.381 0.022 9.457
NGC 4324 1.956 0.95 1.945 66 0.476 2.207 1 1.389 1.280 1.355 1.814 0.389 0.349 9.735
NGC 4339 1.980 0.69 2.044 26 0.685 2.275 0 1.489 1.475 1.553 1.974 0.444 0.068 9.748
NGC 4340 2.027 0.74 2.044 53 0.600 2.293 0 1.590 1.565 1.680 2.065 0.483 0.133 9.966
NGC 4342 2.384 0.99 2.374 90 1.017 2.610 3 0.975 0.757 0.954 1.345 0.411 0.558 9.504
NGC 4346 2.104 0.89 2.101 77 0.635 2.357 3 1.466 1.272 1.410 1.810 0.448 0.503 9.756
NGC 4350 2.242 0.86 2.223 89 0.771 2.472 3 1.502 1.229 1.435 1.860 0.393 0.662 9.949
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Table 1 – continued

Galaxy log σ e R(σ )/Re log σ kpc Inc log(M/L)JAM log V max
circ qual log R

maj
e log Re log r1/2 log rg conc εe log L

(km s−1) (km s−1) (◦) (M�/L�r) (km s−1) (arcsec) (arcsec) (arcsec) (arcsec) (L�r)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

NGC 4365 2.345 0.43 2.403 88 0.741 2.565 2 1.839 1.778 1.945 2.380 0.452 0.250 10.784
NGC 4371 2.158 0.60 2.171 76 0.705 2.382 1 1.559 1.544 1.685 2.165 0.419 0.106 10.106
NGC 4374 2.412 0.50 2.453 88 0.816 2.658 1 1.803 1.787 1.928 2.368 0.462 0.082 10.769
NGC 4377 2.092 1.00 2.093 41 0.514 2.344 0 1.190 1.162 1.279 1.641 0.503 0.120 9.732
NGC 4379 1.994 0.96 2.007 58 0.600 2.253 1 1.335 1.273 1.410 1.845 0.412 0.245 9.669
NGC 4382 2.253 0.31 2.269 90 0.629 2.512 0 1.978 1.918 2.067 2.530 0.416 0.240 10.819
NGC 4387 1.998 0.99 2.004 71 0.574 2.195 1 1.295 1.181 1.325 1.794 0.350 0.397 9.608
NGC 4406 2.280 0.21 2.342 89 0.754 2.519 1 2.154 2.095 2.267 2.713 0.440 0.239 10.846
NGC 4417 2.133 0.90 2.130 84 0.644 2.360 2 1.486 1.291 1.480 1.901 0.404 0.541 9.904
NGC 4425 1.918 0.79 1.915 90 0.606 2.089 0 1.619 1.349 1.552 2.032 0.331 0.683 9.612
NGC 4429 2.248 0.56 2.298 70 0.788 2.458 0 1.819 1.690 1.834 2.319 0.398 0.443 10.379
NGC 4434 1.999 1.00 2.038 43 0.417 2.223 1 1.175 1.163 1.297 1.710 0.441 0.067 9.793
NGC 4435 2.184 0.80 2.177 68 0.592 2.402 3 1.530 1.371 1.478 1.940 0.422 0.479 10.096
NGC 4442 2.231 0.83 2.259 72 0.672 2.469 3 1.472 1.377 1.485 1.932 0.404 0.344 10.145
NGC 4452 1.901 0.73 1.864 88 0.705 2.165 3 1.676 1.257 1.459 1.970 0.277 0.840 9.554
NGC 4458 1.947 0.90 1.967 84 0.527 2.136 1 1.359 1.332 1.474 1.900 0.433 0.119 9.505
NGC 4459 2.199 0.63 2.231 48 0.646 2.441 1 1.680 1.634 1.730 2.152 0.451 0.187 10.273
NGC 4461 2.106 0.86 2.124 71 0.642 2.368 3 1.476 1.356 1.461 1.861 0.438 0.385 9.910
NGC 4472 2.398 0.28 2.460 43 0.746 2.657 1 2.059 2.019 2.107 2.559 0.448 0.168 11.029
NGC 4473 2.271 0.81 2.277 81 0.715 2.517 2 1.604 1.473 1.652 2.048 0.481 0.436 10.213
NGC 4474 1.930 0.78 1.944 89 0.502 2.185 2 1.587 1.330 1.504 1.936 0.429 0.590 9.685
NGC 4476 1.880 0.99 1.886 88 0.464 2.115 0 1.318 1.222 1.384 1.855 0.407 0.367 9.537
NGC 4477 2.173 0.46 2.213 27 0.721 2.464 1 1.659 1.643 1.649 2.105 0.469 0.069 10.222
NGC 4478 2.140 0.98 2.156 41 0.714 2.424 3 1.241 1.198 1.259 1.735 0.327 0.189 9.854
NGC 4483 1.941 0.99 1.939 70 0.630 2.171 1 1.336 1.256 1.394 1.824 0.405 0.289 9.508
NGC 4486 2.422 0.39 2.487 84 0.858 2.647 2 1.917 1.897 2.043 2.522 0.403 0.083 10.869
NGC 4486A 2.091 1.00 2.089 42 0.656 2.345 1 0.979 0.935 1.000 1.474 0.365 0.159 9.535
NGC 4489 1.832 0.88 1.818 87 0.442 2.059 0 1.377 1.356 1.502 1.929 0.435 0.088 9.424
NGC 4494 2.176 0.59 2.196 86 0.599 2.394 1 1.704 1.670 1.813 2.283 0.403 0.148 10.394
NGC 4503 2.128 0.73 2.140 67 0.733 2.362 3 1.593 1.449 1.571 2.035 0.417 0.468 9.955
NGC 4521 2.269 0.97 2.237 90 0.851 2.466 3 1.368 1.168 1.356 1.811 0.346 0.553 10.269
NGC 4526 2.320 0.64 2.368 77 0.748 2.539 1 1.749 1.610 1.741 2.195 0.396 0.447 10.495
NGC 4528 2.007 1.00 2.001 57 0.583 2.264 2 1.149 1.064 1.073 1.541 0.376 0.254 9.540
NGC 4546 2.274 0.86 2.273 69 0.736 2.501 3 1.518 1.347 1.474 1.908 0.437 0.515 10.021
NGC 4550 2.062 0.93 2.036 81 0.706 2.289 3 1.434 1.195 1.374 1.836 0.296 0.653 9.690
NGC 4551 1.971 0.96 1.986 63 0.697 2.235 2 1.310 1.236 1.367 1.853 0.351 0.287 9.565
NGC 4552 2.351 0.49 2.388 90 0.811 2.606 2 1.629 1.613 1.752 2.153 0.493 0.073 10.391
NGC 4564 2.189 0.90 2.184 76 0.683 2.397 3 1.486 1.288 1.450 1.870 0.427 0.555 9.900
NGC 4570 2.223 0.88 2.217 88 0.689 2.472 3 1.503 1.253 1.460 1.859 0.410 0.621 10.073
NGC 4578 2.028 0.81 2.023 48 0.640 2.281 1 1.596 1.521 1.574 2.006 0.483 0.287 9.811
NGC 4596 2.099 0.50 2.165 37 0.677 2.392 2 1.767 1.730 1.660 2.157 0.450 0.160 10.237
NGC 4608 2.040 0.43 2.100 26 0.633 2.310 2 1.676 1.666 1.523 1.997 0.561 0.029 9.985
NGC 4612 1.935 0.83 1.936 58 0.403 2.194 0 1.506 1.459 1.577 2.020 0.432 0.191 9.862
NGC 4621 2.296 0.57 2.330 88 0.765 2.526 3 1.750 1.649 1.812 2.227 0.453 0.368 10.354
NGC 4623 1.884 0.82 1.856 89 0.657 2.076 1 1.582 1.315 1.520 1.986 0.350 0.684 9.513
NGC 4624 2.090 0.46 2.140 27 0.635 2.357 1 1.780 1.768 1.828 2.294 0.474 0.057 10.233
NGC 4636 2.259 0.27 2.297 89 0.905 2.502 0 2.034 1.972 2.133 2.601 0.432 0.231 10.491
NGC 4638 2.134 0.95 2.114 78 0.469 2.309 3 1.411 1.167 1.304 1.780 0.371 0.650 9.939
NGC 4643 2.171 0.56 2.205 25 0.682 2.490 2 1.565 1.555 1.671 2.051 0.459 0.050 10.210
NGC 4649 2.428 0.35 2.488 47 0.838 2.687 2 1.932 1.884 1.987 2.444 0.446 0.196 10.881
NGC 4660 2.263 1.00 2.259 74 0.688 2.475 2 1.242 1.111 1.252 1.666 0.442 0.409 9.811
NGC 4684 1.847 0.85 1.840 75 0.365 2.078 2 1.523 1.320 1.456 1.893 0.352 0.607 9.622
NGC 4690 1.991 0.97 2.036 51 0.590 2.264 1 1.352 1.290 1.388 1.846 0.421 0.247 10.030
NGC 4694 1.728 0.67 1.760 69 0.148 1.929 0 1.659 1.478 1.585 2.052 0.384 0.558 9.751
NGC 4697 2.229 0.39 2.256 70 0.704 2.439 3 1.959 1.851 1.990 2.429 0.433 0.400 10.364
NGC 4710 2.020 0.75 2.014 88 0.647 2.265 1 1.870 1.507 1.721 2.201 0.283 0.784 10.114
NGC 4733 1.717 0.78 1.739 88 0.339 1.909 0 1.567 1.554 1.682 2.205 0.331 0.076 9.538
NGC 4753 2.241 0.47 2.267 58 0.604 2.467 1 1.852 1.762 1.828 2.336 0.382 0.321 10.784
NGC 4754 2.204 0.85 2.231 60 0.679 2.446 2 1.551 1.486 1.542 2.008 0.462 0.260 10.132
NGC 4762 2.126 0.66 2.095 90 0.563 2.419 3 2.018 1.545 1.780 2.222 0.396 0.855 10.543
NGC 4803 2.023 1.00 2.011 89 0.685 2.277 0 1.044 0.943 1.094 1.591 0.328 0.376 9.753
NGC 5103 2.046 0.98 2.025 90 0.540 2.284 0 1.320 1.082 1.258 1.671 0.447 0.598 9.747
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Table 1 – continued

Galaxy log σ e R(σ )/Re log σ kpc Inc log(M/L)JAM log V max
circ qual log R

maj
e log Re log r1/2 log rg conc εe log L

(km s−1) (km s−1) (◦) (M�/L�r) (km s−1) (arcsec) (arcsec) (arcsec) (arcsec) (L�r)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

NGC 5173 1.986 1.00 1.993 44 0.413 2.270 0 1.082 1.050 1.157 1.592 0.433 0.140 10.002
NGC 5198 2.228 0.86 2.296 35 0.793 2.481 1 1.388 1.357 1.409 1.871 0.390 0.137 10.393
NGC 5273 1.824 0.70 1.851 35 0.517 2.159 1 1.620 1.580 1.454 1.931 0.389 0.165 9.732
NGC 5308 2.315 0.92 2.327 86 0.814 2.549 3 1.475 1.171 1.375 1.795 0.367 0.675 10.343
NGC 5322 2.351 0.58 2.391 90 0.688 2.589 1 1.730 1.646 1.813 2.233 0.464 0.318 10.844
NGC 5342 2.189 1.00 2.177 74 0.836 2.417 0 1.038 0.867 1.004 1.454 0.382 0.475 9.760
NGC 5353 2.449 0.89 2.427 80 0.838 2.642 2 1.474 1.278 1.438 1.931 0.342 0.557 10.665
NGC 5355 1.943 1.00 1.944 69 0.553 2.186 0 1.083 1.043 1.180 1.639 0.377 0.170 9.765
NGC 5358 1.938 1.00 1.897 81 0.678 2.189 0 1.105 0.935 1.112 1.581 0.351 0.456 9.598
NGC 5379 1.956 0.92 1.840 89 0.875 2.153 1 1.438 1.240 1.422 1.960 0.294 0.598 9.557
NGC 5422 2.197 0.88 2.209 90 0.785 2.450 1 1.486 1.251 1.453 1.852 0.417 0.584 10.164
NGC 5473 2.257 0.87 2.297 39 0.684 2.532 0 1.385 1.351 1.378 1.811 0.494 0.142 10.404
NGC 5475 2.061 0.96 2.010 79 0.678 2.291 2 1.410 1.153 1.319 1.731 0.380 0.644 9.887
NGC 5481 2.085 0.87 2.134 53 0.776 2.379 0 1.401 1.348 1.450 1.854 0.486 0.203 9.837
NGC 5485 2.223 0.69 2.241 87 0.847 2.443 0 1.511 1.461 1.617 2.078 0.409 0.206 10.208
NGC 5493 2.296 0.95 2.248 76 0.471 2.460 3 1.389 1.161 1.291 1.695 0.458 0.626 10.494
NGC 5500 1.924 0.99 1.937 88 0.713 2.171 0 1.266 1.212 1.360 1.808 0.429 0.221 9.618
NGC 5507 2.216 0.99 2.235 63 0.825 2.472 3 1.117 1.078 1.086 1.501 0.441 0.157 9.904
NGC 5557 2.306 0.71 2.386 88 0.662 2.531 1 1.480 1.449 1.598 2.010 0.459 0.139 10.671
NGC 5574 1.907 0.99 1.913 89 0.399 2.100 0 1.307 1.120 1.301 1.784 0.355 0.571 9.705
NGC 5576 2.191 0.70 2.242 62 0.453 2.442 2 1.526 1.448 1.587 1.976 0.513 0.306 10.426
NGC 5582 2.170 0.69 2.172 55 0.722 2.418 1 1.551 1.461 1.563 1.944 0.508 0.336 10.140
NGC 5611 2.138 0.99 2.125 74 0.697 2.360 3 1.114 0.936 1.082 1.488 0.437 0.528 9.652
NGC 5631 2.176 0.79 2.196 87 0.626 2.439 0 1.434 1.408 1.552 1.931 0.481 0.119 10.261
NGC 5638 2.160 0.70 2.188 66 0.667 2.387 0 1.472 1.455 1.593 2.054 0.415 0.077 10.260
NGC 5687 2.216 0.74 2.244 87 0.907 2.454 1 1.537 1.420 1.602 1.995 0.489 0.397 10.064
NGC 5770 1.905 0.99 1.933 26 0.385 2.213 0 1.205 1.205 1.354 1.687 0.473 0.003 9.603
NGC 5813 2.324 0.51 2.355 89 0.875 2.589 0 1.792 1.727 1.884 2.322 0.440 0.247 10.717
NGC 5831 2.158 0.85 2.204 86 0.667 2.380 0 1.468 1.441 1.587 2.021 0.445 0.129 10.203
NGC 5838 2.350 0.81 2.391 70 0.900 2.592 3 1.483 1.374 1.424 1.886 0.449 0.362 10.257
NGC 5839 2.098 0.98 2.131 88 0.720 2.360 0 1.270 1.256 1.400 1.763 0.529 0.079 9.700
NGC 5845 2.357 1.00 2.327 63 0.695 2.530 3 0.764 0.706 0.825 1.278 0.353 0.254 9.792
NGC 5846 2.349 0.52 2.364 89 0.908 2.558 1 1.787 1.773 1.919 2.398 0.407 0.059 10.665
NGC 5854 2.020 0.96 2.009 74 0.421 2.223 3 1.375 1.200 1.303 1.751 0.368 0.502 10.025
NGC 5864 2.035 0.85 2.044 74 0.570 2.260 3 1.525 1.283 1.397 1.849 0.323 0.647 10.136
NGC 5866 2.196 0.52 2.212 76 0.665 2.428 0 1.775 1.582 1.743 2.224 0.335 0.579 10.336
NGC 5869 2.224 0.89 2.242 80 0.849 2.462 1 1.405 1.343 1.505 1.899 0.471 0.247 10.033
NGC 6010 2.202 0.91 2.179 90 0.772 2.428 1 1.454 1.147 1.377 1.759 0.415 0.687 10.045
NGC 6014 1.946 0.85 1.951 32 0.649 2.273 0 1.398 1.372 1.232 1.746 0.369 0.114 9.929
NGC 6017 2.051 1.00 2.058 74 0.447 2.257 1 1.072 0.922 1.067 1.483 0.442 0.481 9.734
NGC 6149 2.021 1.00 2.016 66 0.663 2.271 0 1.119 1.039 1.191 1.611 0.427 0.305 9.772
NGC 6278 2.295 1.00 2.307 66 0.741 2.526 0 1.274 1.149 1.296 1.646 0.493 0.411 10.283
NGC 6547 2.257 1.00 2.231 84 0.824 2.520 1 1.264 1.023 1.231 1.617 0.459 0.598 10.091
NGC 6548 2.153 0.65 2.210 19 0.867 2.430 1 1.562 1.554 1.551 2.028 0.558 0.030 10.001
NGC 6703 2.178 0.63 2.236 18 0.776 2.468 1 1.489 1.485 1.604 1.976 0.474 0.020 10.200
NGC 6798 2.114 1.00 2.121 84 0.660 2.349 2 1.226 1.093 1.267 1.729 0.404 0.415 10.028
NGC 7280 2.024 0.92 2.039 58 0.545 2.322 1 1.423 1.331 1.470 1.809 0.514 0.350 9.853
NGC 7332 2.097 0.97 2.106 84 0.336 2.339 1 1.426 1.194 1.385 1.778 0.413 0.590 10.201
NGC 7454 2.058 0.85 2.065 88 0.733 2.272 0 1.462 1.379 1.530 2.017 0.388 0.330 9.894
NGC 7457 1.873 0.67 1.870 74 0.482 2.065 1 1.712 1.574 1.736 2.278 0.348 0.462 9.736
NGC 7465 1.981 1.00 1.991 88 0.373 2.213 0 1.054 0.964 1.119 1.588 0.356 0.311 9.827
NGC 7693 1.763 1.00 1.766 42 0.588 2.045 1 1.150 1.092 1.039 1.541 0.384 0.214 9.409
NGC 7710 1.957 1.00 1.954 77 0.536 2.173 1 0.960 0.784 0.903 1.399 0.302 0.487 9.523
PGC 016060 2.043 1.00 1.963 77 0.651 2.240 2 1.203 0.940 1.016 1.486 0.277 0.661 9.795
PGC 028887 2.109 1.00 2.122 90 0.876 2.373 0 1.085 1.012 1.183 1.554 0.525 0.297 9.658
PGC 029321 1.822 1.00 1.802 32 0.492 2.078 0 0.860 0.837 0.908 1.317 0.336 0.113 9.350
PGC 035754 2.015 1.00 2.031 58 0.578 2.264 1 1.009 0.942 1.064 1.469 0.491 0.291 9.658
PGC 042549 2.009 1.00 1.992 54 0.500 2.278 1 1.003 0.921 0.954 1.398 0.429 0.318 9.806
PGC 044433 2.087 1.00 2.075 89 0.790 2.355 1 0.936 0.762 0.957 1.374 0.373 0.466 9.643
PGC 050395 1.909 1.00 1.860 86 0.574 2.146 0 1.058 0.996 1.147 1.594 0.430 0.248 9.571
PGC 051753 1.949 1.00 1.912 89 0.686 2.156 1 1.103 0.926 1.095 1.596 0.291 0.548 9.535
PGC 054452 1.803 0.98 1.800 41 0.562 2.061 1 1.173 1.121 1.091 1.601 0.379 0.212 9.429
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Table 1 – continued

Galaxy log σ e R(σ )/Re log σ kpc Inc log(M/L)JAM log V max
circ qual log R

maj
e log Re log r1/2 log rg conc εe log L

(km s−1) (km s−1) (◦) (M�/L�r) (km s−1) (arcsec) (arcsec) (arcsec) (arcsec) (L�r)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

PGC 056772 1.932 1.00 1.915 64 0.621 2.163 1 1.129 0.982 1.062 1.559 0.324 0.486 9.623
PGC 058114 2.004 1.00 2.021 – – – – – – – – – – –
PGC 061468 1.884 1.00 1.823 86 0.841 2.141 0 1.090 1.029 1.188 1.781 0.280 0.248 9.397
PGC 071531 1.979 1.00 1.968 – – – – – – – – – – –
PGC 170172 1.836 1.00 1.901 88 0.245 2.072 0 0.893 0.835 0.978 1.379 0.461 0.250 9.559
UGC 03960 1.919 0.88 1.939 87 0.738 2.171 0 1.396 1.340 1.498 1.910 0.475 0.203 9.652
UGC 04551 2.219 1.00 2.223 76 0.687 2.445 2 0.936 0.902 1.024 1.477 0.326 0.146 9.878
UGC 05408 1.781 1.00 1.780 26 0.197 2.086 0 0.768 0.765 0.729 1.227 0.429 0.012 9.655
UGC 06062 2.125 1.00 2.148 60 0.764 2.362 1 1.069 1.018 1.133 1.595 0.409 0.216 9.864
UGC 06176 1.984 0.99 1.991 63 0.685 2.320 0 1.014 0.988 1.005 1.504 0.398 0.102 9.751
UGC 08876 2.105 1.00 2.114 90 0.759 2.405 1 0.984 0.835 1.040 1.413 0.440 0.421 9.686
UGC 09519 2.001 1.00 1.990 68 0.559 2.239 1 1.008 0.870 1.007 1.425 0.427 0.451 9.504

Note. – column (1): the Name is the principal designation from LEDA (Paturel et al. 2003), which is used as standard designation for our project. Column (2):
effective stellar velocity dispersion (1σ error of 5 per cent or 0.021 dex). This is measured by co-adding all SAURON spectra contained within the ‘effective’
ellipse with area Ae = πR2

e (column 10) and ellipticity εe (column 14), with major axis aligned along the kinematic position angle PAkin from table D1 of Paper
II. The velocity dispersion is measured on that single spectrum using PPXF. For this reason σ e includes both the effects of stellar rotation and random motions.
Column (3): R(σ )/Re ≡ √

Aobs/Ae, where Aobs ≤ Ae is the area of the effective ellipse covered by the SAURON observations. When this ratio is <1 then σ e

was corrected with equation 1 of Cappellari et al. (2006). Column (4): same as in column 2 (same error as σ e), for the σ measured within a fixed circular aperture
of radius R = 1 kpc. Column (5): Inclination of the best-fitting mass-follow-light JAM models. Errors are dominated by systematics and difficult to asses on an
individual basis. For good models (column 8), the inclination errors are generally smaller than 5◦ (also see Paper XII). Column (6): Mass-to-light ratio (1σ error
of 6 per cent or 0.027 dex) of the best-fitting self-consistent JAM model (A) for the assumed distance and extinction of table 3 of Paper I. This is the scaling
factor by which the surface brightness in solar luminosities has to be multiplied, to best reproduce the observed stellar kinematics. (M/L)JAM ≈ (M/L)(r = Re)
approximates the total M/L measured within a spherical region of radius Re (Section 4.1.2). By definition the quantity MJAM ≡ (M/L)JAM × L (column 15).
Column (7): maximum value of the circular velocity predicted by the best-fitting mass-follow-light JAM model. Although the model does not explicitly include
dark matter, Vcirc is due to the total mass density, not by the stars alone. Column (8): visual description of the quality of the self-consistent JAM model fit (see
Fig. 1). qual = 0 indicates inferior data quality (low S/N) or a problematic model (e.g. due to the presence of a strong bar or dust, or genuine kinematic twists).
The (M/L)JAM may be less accurate in this case (see Paper XII). qual = 1 indicates and acceptable fit to the Vrms. qual = 2 indicates a good fit to the Vrms.
Every feature of the data is accurately predicted by the JAM model. qual = 3 indicates that not only the data and the fit to the Vrms are good, but also both V and
σ (not shown) can be accurately predicted by the JAM model, without more free parameters. Column (9): maximum dimension (major axis) of the isophote
containing half of the analytic total light of the MGE models of Paper XXI (1σ error of 10 per cent or 0.041 dex). Column (10): Re ≡ √

Ae/π where Ae is the
area of the effective isophote containing half of the analytic total light of the MGE models (same error as R

maj
e ). Column (11): radius r1/2 = [3Ve/(4π)]1/3

of a sphere that has the same volume Ve of the isosurface enclosing half of the total galaxy light. Column (12): gravitational radius calculated from the MGE
model using equation (18). Column (13): Galaxy concentration conc ≡ L(Re/3)/L(Re) (Trujillo et al. 2001), where L(R) is the light of the circularized MGE
model contained within the radius R. Column (14): ellipticity of the galaxy light distribution. This is calculated from the moment of inertia of the MGE model
within the effective isophote using equation (12). Column (15): analytic total luminosity (1σ error of 10 per cent or 0.041 dex) of the MGE model in the SDSS
r band at the assumed distance and extinction given in table 3 of Paper I, for an assumed absolute solar magnitude M�r = 4.64 mag (Blanton & Roweis 2007).
Table 1 is also available from our project website http://purl.org/atlas3d.

halo density ρs at rs, which we parametrized using the dark matter
fraction fDM(r = Re) to reduce the strong correlation between ρs

and γ during the parameter estimation. The break radius rs of the
halo was not included as a free parameter given that it is (in models
E) generally three to five times larger than Re and it is completely
unconstrained by our data. We fixed rs = 20 kpc, which is the
median value for all models E, but we verified that nearly identical
results are obtained if we describe the halo with a simple power-law
density profile ρ(r) ∝ r−γ . Examples of model fits are shown in
Fig. 3.

(E) JAM with fixed NFW dark halo. The halo has an NFW profile
without any free parameter. During the fitting process the halo mass
M200 is determined from the enclosed stellar mass Mstars, which
is given by the total luminosity of the MGE model multiplied by
its current (M/L)stars. This is done using the M200−Mstars relation
derived by Moster et al. (2010) (see also Moster, Naab & White
2013), which matches the observed galaxy luminosity functions to
the simulated haloes mass function. However, negligible differences
would have been obtained using e.g. the similar relations derived
by Behroozi, Conroy & Wechsler (2010) or Guo et al. (2010). For
a given halo mass, the concentration is specified by the M200−c200

relation as in (B). The only free model parameters are the three of

the stellar component (i, βz, (M/L)stars) as in (A). This fixed-halo
assumption, in combination however with equally fixed spherical
and isotropic Hernquist (1990) galaxy models, was also used by
Auger et al. (2010a) and Deason et al. (2012).

(F) JAM with fixed contracted dark halo. The halo has a con-
tracted profile without any free parameter. For a given stellar mass,
the halo has initially the same NFW form as in (E), but the pro-
file is contracted as in (C) using the prescription of Gnedin et al.
(2011). The only free model parameters are the three of the stellar
component (i, βz, (M/L)stars) as in (A). This fixed-halo assumption,
in combination however with equally fixed spherical and isotropic
Hernquist (1990) galaxy models, was also used by Auger et al.
(2010a).

3.1.3 Bayesian inference of the JAM model parameters

The determination of the JAM model parameters for the 260
ATLAS3D galaxies in Cappellari et al. (2012) was done using
Bayesian inference (Gelman et al. 2004). The same approach was
adopted using JAM models in Barnabè et al. (2012) in combina-
tion with gravitational lensing. From Bayes theorem, the posterior
probability distribution of a model, with a given set of parameters,
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Figure 2. Inner slope of contracted dark haloes and luminous matter. Top
panel: histogram of the halo slope of contracted haloes for all 260 ATLAS3D

galaxies in model (C). The slopes were determined by fitting a power-
law relation ρDM(r) ∝ rγ inside the radius r < rs/4, where we verified
that the contracted halo profiles are accurately described by a power law.
Bottom panel: histogram of the slope of the deprojected stellar mass density
distribution from the MGE models. The slope was fitted inside a spherical
radius r = Re. Although the stellar density ρ�(r) ∝ rγ ′

inside that radius
is not always accurately described by a power law, on average the stellar
slope peaks with high accuracy at the ‘isothermal’ value γ ′ ≈ 2.0, with an
intrinsic scatter of just σ = 0.24 for our entire sample.

given our data is

P (model | data) ∝ P (data | model) × P (model). (3)

Here, we make the rather common assumption of Gaussian errors,
in which case the probability of the data, for a given model is given
by

P (data | model) ∝ exp

(
−χ2

2

)
, (4)

with

χ2 =
∑

j

(
〈v2

los〉1/2
j − Vrms,j

�Vrms,j

)2

. (5)

We further assume a constant non-informative prior P(model) for
all variables within the given bounds.

The calculation of the posterior distribution is performed using
the adaptive Metropolis et al. (1953) (AM) algorithm of Haario,

Saksman & Tamminen (2001). The AM method adapts the mul-
tivariate Gaussian proposal distribution during the Markov chain
Monte Carlo sampling, in such a way that the Gaussian proposal
distribution has the same non-diagonal covariance matrix as the
posterior distribution accumulated so far by the algorithm. This
natural idea is similar to what is routinely done e.g. in the deter-
mination of cosmological parameters, where the covariance matrix
of the posterior is calculated after a burn-in phase (e.g. Dunkley
et al. 2005). However, the adaptive approach converges much more
rapidly as the proposal distribution starts approaching the posterior
already after a few points have been sampled. We found the adaptive
approach absolutely critical for the speed up of our calculation by
orders of magnitudes, given the strong degeneracies between the
model parameters producing inclined and narrow posterior distri-
butions. Some examples of the posterior distributions obtained with
our approach are shown in Fig. 3. Although the adaptive nature
of the AM algorithm makes the resulting chain non-Markovian,
the authors have proven that it has the correct ergodic properties
(Haario et al. 2001) and for this reason it can be used to estimate
the posterior distribution as in standard Markov chain Monte Carlo
methods (Gilks, Richardson & Spiegelhalter 1996).

Moreover, to basically eliminate the burn-in phase of the AM
method, we use the efficient and extremely robust DIRECT de-
terministic global optimization algorithm of Jones, Perttunen &
Stuckman (1993) to find the starting location without the risk for
the Metropolis stage to be stuck in a possible secondary minimum
in multidimensional parameter space.

An important addition to the fitting process is an iterative
σ -clipping of the kinematics, to remove spurious features in the data,
for example stars or problematic bins at the edge of the SAURON
field of view. This is important for a sample of the size of ATLAS3D,
where the quality of every Voronoi bin cannot be assessed manually
for all galaxies. After an initial fit the few bins deviating more than
3σ of the local rms noise are excluded from the fit and a new fit is
iteratively performed, until convergence.

3.2 Robust fitting of lines or planes to the data

3.2.1 Goodness-of-fit criteria

The apparently simple task of fitting linear relations or planes to a set
of data with errors does not have a well-defined and obvious solution
and for this reason has continued to generate significant interest. A
number of papers have discussed the solution of the corresponding
least-squares problem (Isobe, Feigelson & Nelson 1986; Feigelson
& Babu 1992; Akritas & Bershady 1996; Tremaine et al. 2002; Press
et al. 2007), while more recent works have addressed the problem
using Bayesian methods (Kelly 2007; Hogg, Bovy & Lang 2010).
A popular method is the least-squares approach by Tremaine et al.
(2002), which is an extension of the FITEXY procedure described
in Press et al. (2007, section 15.3). The method defines the best
fit of the linear relation y = a + b(x − x0) to a set of N pairs of
quantities (xj, yj), with symmetric errors �xj and �yj, as the one
that minimizes the quantity

χ2 =
N∑

j=1

[a + b(xj − x0) − yj ]2

(b�xj )2 + (�yj )2 + ε2
y

. (6)

Here, x0 is an adopted reference value, close to the middle of the
xj values, adopted to reduce uncertainty in a and the covariance
between the fitted values of a and b. While εy is the intrinsic scatter
in the y-coordinate, which is iteratively adjusted so that the χ2 per
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Figure 3. Examples of JAM dynamical modelling with general dark halo using an AM approach. Each panel shows the corner-plots of the posterior probability
distribution for the non-linear model parameters (q, βz, fDM, γ ), of galaxy models (D), marginalized over two dimensions (colour contours) and one dimension
(blue histograms). The symbols are coloured according to their likelihood: white corresponds to the maximum value and dark blue to a 3σ confidence
level. The vertical dashed green line indicates the maximum allowed q, which corresponds to an edge-on view. For each combination of the non-linear
parameters, the linear parameter (M/L)stars is fitted to the data. We assumed ignorant (constant) priors on all model parameters. The name of the galaxies is
written at the top of each panel. The symmetrized Vrms SAURON data, and the best-fitting model are shown on the right (as in Fig. 1). This plot illustrates
a variety of situations and shapes of the kinematic field: (i) some models (NGC 2685, NGC 3610, NGC 3674, NGC 4350) have best-fitting halo parameters
within the explored parameters boundaries; (ii) others (NGC 2974, NGC 3607, NGC 3630, NGC 4179, NGC 4435, NGC 4461, NGC 4473, NGC 5493) prefer
a flat γ ≈ 0 inner halo slope; (iii) others (NGC 4638, NGC 4660) have nearly unconstrained halo slope; (iv) others (NGC 2549, NGC 4452) prefer steep
halo slopes at the boundary γ = −1.6 of our allowed parameter range. In all cases, the halo slope is weakly constrained by the SAURON data, but the dark
matter fraction is tightly constrained by the data to be small (fDM � 25 per cent in these examples). To include significant dark matter within 1Re in some of
the models, while still reproducing the kinematic observations, the inner dark halo slope would have to be as steep as the characteristic stellar density slope
γ ′ ≈ −2.0 (Fig. 2).
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degree of freedom ν = N − 2 has the value of unity expected for
a good fit. As recognized by Weiner et al. (2006), minimizing the
above χ2 corresponds to maximizing the likelihood of the data for
an assumed intrinsic probability distribution of the observables de-
scribed by the linear relation y = a + b(x − x0) + εy, where εy is the
Gaussian scatter projected along the y-coordinate, and one assumes
a uniform prior in the x-coordinate. Equation (6) is only rigorously
valid when the errors in x and y are Gaussian and uncorrelated
(have zero covariances). A term −2b Cov(xj, yj) should be included
in the denominator if the covariances are known and non-zero (e.g.
Falcón-Barroso et al. 2011). The 1σ confidence interval in εy can be
obtained by finding the values for which χ2 = ν ± √

2ν, as done by
Novak, Faber & Dekel (2006). The apparent asymmetry of equa-
tion (6) with respect to the x and y variables does not imply we
assume only the y variable has intrinsic scatter. In fact, the assumed
intrinsic distribution has a Gaussian cross-section along any direc-
tion non-parallel to the ridge line y = a + b(x − x0). The value εy

merely specifies the dispersion along the arbitrary y-direction. The
formula would give completely equivalent results by interchanging
the x and y variables if the distribution of x values was uniform and
infinitely extended as assumed. Any difference in the fitting results
when interchanging the x and y coordinates are due to the breaking
of the uniformity assumptions.

Equation (6) can be generalized to plane fitting by defining the
best-fitting plane z = a + b(x − x0) + c(y − y0) to a set of N triplets
of quantities (xj, yj, zj), with symmetric errors �xj, �yj and �zj, as
the one that minimizes the quantity

χ2 =
N∑

j=1

[a + b(xj − x0) + c(yj − y0) − zj ]2

(b�xj )2 + (c�yj )2 + (�zj )2 + ε2
z

, (7)

Here, x0 and y0 are adopted reference values, close to the middle of
the xj and yj values, respectively, adopted to reduce uncertainty in a
and the covariance between the fitted values of a, b and c. While εz is
the intrinsic scatter in the z-coordinate, which is iteratively adjusted
so that the χ2 per degrees of freedom ν = N − 3 has the value of
unity expected for a good fit. As in the two-dimensional case, the
minimization of equation (7) is equivalent to the maximization of
the likelihood of the data, for an underlying probability distribution
of the observables described by the relation z = a + b(x − x0) +
c(y − y0) + εz, where εz is the dispersion of the Gaussian intrinsic
scatter in the plane, projected along the z-coordinate, for a uniform
prior in the x and y coordinates and assuming uncorrelated and
Gaussian errors in the x, y and z observables (zero covariances).
Equation (7) reduces to the so-called orthogonal plane fit when the
measurements errors are ignored and one simply assumes �xj =
�yj = �zj. This latter form is the one generally used when fitting
the FP (e.g. Jorgensen, Franx & Kjaergaard 1996; Pahre, Djorgovski
& de Carvalho 1998; Bernardi et al. 2003). Contrary to the popular
approach, equation (7) allows for intrinsic scatter in the relation,
which is important for deriving unbiased parameters (Tremaine
et al. 2002).

Recently, Kelly (2007) proposed a Bayesian method to treat the
linear regression of astronomical data in a statistically rigorous
manner, allowing for intrinsic scatter, covariance between measure-
ments and providing rigorous errors on the parameters in the form
of random draws from the posteriori distribution (see also Hogg
et al. 2010). He pointed out that the Tremaine et al. (2002) approach
to linear fitting can lead to biased results in some circumstances.
For this reason, in all our fits we used both the results and errors
derived from equations (6) and (7), and the corresponding results
obtained with the Bayesian method and software by Kelly (2007),

which was kindly made available as part of the IDL NASA Astron-
omy Library (Landsman 1993). In all cases, differences between
the two method were found to be insignificant, in both the fitted
values and the errors, confirming the near-conceptual equivalence
of the two technically very different approaches.

3.2.2 Least trimmed squares robust fits

A general issue when fitting linear relations to data using least-
squares methods is the presence of outliers, which can dominate
the χ2 and bias the parameter recovery. This is the reason why a
number of previous studies have determined the parameters of the
FP using the more robust method of minimizing absolute instead of
squared deviations (e.g. Jorgensen et al. 1996; Pahre et al. 1998), at
the expense of decreasing the statistical efficiency, namely larger er-
rors on the fitted parameters. An alternative simple solution, which
maintains the efficiency of the least-squares method for Gaussian
distributions, consists of removing outliers by iteratively clipping
points deviating more than 3σ from the currently best-fitting re-
lation. A problem with the σ -clipping approach is that it is not
guaranteed to converge to the desired solution in the presence of
significant outliers. Alternative robust methods have been proposed
(see Press et al. 2007, section 15.7). However, they complicate the
error estimation and like the standard σ -clipping do not always
converge.

After some experimentation with different robust approaches the
only fully satisfactory solution we found is the least trimmed squares
(LTS) regression approach of Rousseeuw & Leroy (1987). The
reason for its success is that the method, as opposed to other robust
approaches, finds a global solution. The approach consists of finding
the global minimum to

χ2
h =

h∑
j=1

(r2)j :N, (8)

where (r2)1: N ≤ (r2)2: N ≤ . . . ≤ (r2)N: N are the ordered square
residuals from the linear regression of a subset of N/2 < h < N
data points. In other words, the LTS method consists of finding
the subset of h data points providing the smallest χ2

h , among all
possible h-subsets. It is easy to realize that this approach is robust
to the contamination of up to half of the data points, when h ≈ N/2.
This is a computationally very expensive combinatorial problem for
which however a fast and nearly optimal solution (FAST-LTS) has
recently been proposed by Rousseeuw & Van Driessen (2006).

In our implementations,2 which we called LTS_LINEFIT and
LTS_PLANEFIT for the line and plane case, respectively, we combine
the robust approach to outliers with a fitting method which allows
and fits for intrinsic scatter. We proceed as follows:

(i) we adopt as initial guess ε = 0 for the intrinsic scatter in the
y (for LTS_LINEFIT) or z coordinate (for LTS_PLANEFIT);

(ii) we start by default with h = (N + p + 1)/2, where p is
the data dimension, and use the FAST-LTS algorithm to produce a
least-squares fit3to the set of points characterized by the smallest
χ2

h (defined by equation 6 or 7);

2 Available from http://purl.org/cappellari/idl
3 In all the non-linear fits, the minimization was performed with the IDL pro-
gram MPFIT by Markwardt (2009), which is in an improved implementation
of the MINIPACK Levenberg–Marquardt non-linear least-squares algorithm by
Moré, Garbow & Hillstrom (1980).
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(iii) we compute the standard deviation σ of the residuals for
these h values and extend our selection to include all data point
deviating no more than 2.6σ from the fitted relation (99 per cent of
the values for a Gaussian distribution);

(iv) we perform a new linear fit to the newly selected points;
(v) we iterate steps (iii)–(iv) until the set of selected points does

not change any more;
(vi) we calculate the χ2 for the fitted points;
(vii) the whole process (i)–(vi) is iterated varying ε using Brent’s

method (Press et al. 2007, section 9.3) until χ2 = ν.
(viii) the errors on the coefficients are computed from the covari-

ance matrix;
(ix) the error on ε is computed by increasing ε until χ2 = ν −√
2ν (we do not decrease it to avoid problems when ε ≈ 0).

This method was used to produce all fits in this paper and au-
tomatically exclude outliers. Note that although the approach may
appear similar to the standard σ -clipping one, and produces similar
results in simple situations, the key difference is that in LTS_LINEFIT

and LTS_PLANEFIT the clipping is done from the inside-out instead
of the opposite. This was found to be the essential feature for the
resulting extreme robustness, which was essential in particular to
objectively select Virgo members in Fig. 16. Once the outliers are
removed, the same set of points was used as input to Kelly (2007)
Bayesian algorithm.

3.3 Measuring scaling relations parameters

3.3.1 Determination of L, Re and r1/2 from the MGE

Galaxy photometric parameters are generally determined using
three main approaches: (i) fitting growth curves, where one con-
structs profiles of the enclosed light within circular annuli and ex-
trapolates the outermost part of the galaxy profile to infinite radius,
typically using the analytic growth curve of the R1/4 (de Vaucouleurs
1948) profile (e.g. the Seven Samurai: Burstein et al. 1987; Faber
et al. 1989; the RC3: de Vaucouleurs et al. 1991; Jorgensen, Franx
& Kjaergaard 1995a); (ii) fitting an R1/n (Sérsic 1968) profile (e.g.
Graham & Colless 1997), possibly including an exponential disc
(e.g. Saglia et al. 1997), to the circularized profiles and finding the
half-light from the models; (iii) fitting flattened two-dimensional
models directly to the galaxy images, where the profile of the mod-
els is again parametrized by an R1/4 (e.g. Bernardi et al. 2003), or
by an R1/4 bulge plus exponential disc (e.g. Gebhardt et al. 2003;
Bernardi et al. 2010; Saglia et al. 2010).

Here, we have MGE photometric models for all the galaxies in
the sample based on the SDSS+INT photometry (Paper XXI). Due
to the large number of Gaussians used to fit the galaxy images,
the MGE models provide a compact and essentially non-parametric
description of the galaxies surface brightness, which reproduces the
observations much more accurately than the simpler bulge and disc
models, but more robustly than using the images directly. Our MGE
fitting approach (Cappellari 2002) is in fact an efficient analogue to
the popular GALFIT (Peng et al. 2002) software, when it is used to
match every detail of a galaxy image using multiple components.
Here, we use the MGE models to measure the photometric param-
eters (L and Re) in our scaling relations as done in Cappellari et al.
(2009). A key difference between this MGE approach and all the
ones previously mentioned is that it does not extrapolate the galaxy
light to infinite radii. Outside three times the dispersion 3 max (σ j)
of the largest MGE Gaussian, the flux of the model essentially drops
to zero. No attempt is made to infer the amount of stellar light that

we may have observed if we had much deeper photometry. For this
reason, this Re must be necessarily smaller than the ones obtained
via extrapolation to infinite radii.

The extrapolation method depends on the assumed form of the
unobservable galaxy profile out to infinite radii. One may argue that
an extrapolation of the galaxy profile using a Sérsic (1968) function
should provide a better estimate of the total luminosity (and Re) than
the observed luminosity. This is in general likely correct; however,
the accuracy of the extrapolation depends on galaxy properties in a
unknown systematic manner. Our volume-limited sample of ETGs
is dominated by fast rotators (Paper II; Paper III), characterized
by the presence of discs (Krajnović et al. 2013, hereafter Paper
XVII) and closely linked to spiral galaxies (Cappellari et al. 2011b,
hereafter Paper VII; Paper XX). Given the variety in the outer
profiles of spiral galaxies (van der Kruit & Searle 1981; Pohlen
& Trujillo 2006) it is unclear how profiles should be extrapolated.
Using Re and luminosities derived via extrapolation makes any
derived trend necessarily assumption dependent. As we show in
Section 4.4, the differences between different assumptions are quite
significant. One can obtain different trends in scaling relations and
reach different conclusions about their interpretation.

We argue that to make progress one should base conclusions on
directly observable quantities. So for this work we define Re as the
radius containing half of the observed light, not half of the ill-defined
amount of total light we think the galaxy may have. Of course even
our approach does not solve the problem of determining an absolute
normalization of Re, and our sizes appear well reproducible only in
a relative sense. The only real solution to the problem is to obtain
deeper photometry so that Re values converge and become essen-
tially independent of the adopted profiles (Kormendy et al. 2009;
Ferrarese et al. 2012). However, for massive galaxies in clusters, the
distinction between galaxy light and intracluster light may become
an issue. Earlier indications using deeper MegaCam photometry,
which we have acquired for many of the galaxies in our sample
(Duc et al. 2011, hereafter Paper IX), confirm that Re determina-
tions depend sensitively on the depth of the adopted photometry as
expected.

If the x-axis is aligned with the galaxy photometric major axis,
and the coordinates are centred on the galaxy nucleus, the surface
brightness of an MGE model at the position (x′, y′) on the plane
of the sky, already analytically deconvolved for the atmospheric
seeing effects, can be written as (Emsellem et al. 1994)

�(x ′, y ′) =
M∑

j=1

�j exp

[
− 1

2σ 2
j

(
x ′2 + y ′2

q ′2
j

)]
, (9)

where M is the number of the adopted Gaussian components, having
peak surface brightness �j, observed axial ratio 0 ≤ q ′

k ≤ 1 and
dispersion σ k along the major axis. The total luminosity of the
MGE model is then

L =
M∑

j=1

Lj =
M∑

j=1

2π�jσ
2
j q ′

j , (10)

where Lj are the luminosities of the individual Gaussians.
In Cappellari et al. (2009), the effective radius of the MGE model

was obtained by circularizing the individual Gaussians of the MGE,
while keeping their peak surface brightness. This was achieved by
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replacing (σj , q
′
j ) with (σ

√
q ′

j , 1). The luminosity of the circular-

ized MGE enclosed within a cylinder of projected radius R is then

L(R) =
M∑

j=1

Lj

[
1 − exp

(
− R2

2σ 2
j q ′

j

)]
. (11)

The circularized effective (half-light) radius Re was found by solv-
ing L(R) = L/2, using a quick interpolation over a grid of log R
values. When the MGE has constant axial ratio q ′

j = q ′ for all Gaus-

sians, this approach finds the circularized radius Re = √
ab = a

√
q ′

of the elliptical isophote containing half of the analytic MGE light,
where a is the major axis of the isophote. This is the quantity almost
universally used for studies of scaling relations of ETGs. When the
axial ratios of the different Gaussians are not all equal, the approach
finds an excellent approximation for the radius Re = √

Ae/π of a
circle having the same area Ae as the isophote containing half of
the MGE light. In fact, we verified that for all the MGE of the
ATLAS3D sample, the two determinations agree with an rms scatter
of just 0.17 per cent and only for four of the flattest galaxies the
difference is larger than 3 per cent.

Hopkins et al. (2010) pointed out the usefulness of adopting
as size parameter the major axis Rmaj

e of the half-light isophote
instead of the circularized radius Re, when analysing results
of simulations. The motivation is that Rmaj

e is more physically ro-
bust and less dependent on inclination. Here, we also calculate Rmaj

e
for our observed galaxies as follows:

(i) we construct a synthetic galaxy image from the MGE using
equation (9), with size max (σ j) × max (σ j) (only one quadrant is
needed for symmetry);

(ii) we sample a grid of surface-brightness values μk = μ(xk, 0)
along the MGE major axis, and for each value we calculate the light
enclosed within the corresponding isophote;

(iii) we find the surface brightness μe of the isophote containing
half of the analytic MGE total light by solving L(μ) = L/2 using
linear interpolation;

(iv) Rmaj
e is the maximum radius enclosed inside the isophote μe

(the largest x-coordinate).

We also calculate the circularized effective radius of the isophote
Re = √

A/π of area A and the effective ellipticity εe of the MGE
model inside that isophote as (Cappellari et al. 2007)

(1 − εe)2 = q ′2
e = 〈y2〉

〈x2〉 =
∑P

k=1 Fk y2
k∑P

k=1 Fk x2
k

, (12)

where Fk is the flux inside the kth image pixel, with coordinates
(xk, yk) and the summation extends to the pixels inside the isophote.
A similar quantity was calculated from the original galaxy images
in Paper III, but we use here this new determination for maximum
consistency between our εe and the ellipticity of the MGE models
in the tests of Fig. 4.

We studied the dependence on inclination of the two definitions
of effective radii using the photometry of real galaxies. For this, we
selected the 26 flattest galaxies in our sample, all having axial ratio
q′ < 0.4. These galaxies are likely to be close to edge-on. We assume
that they are exactly edge-on and we then use the MGE formalism
(equations 9, 13 and 14) to deproject the surface brightness and cal-
culate the intrinsic luminosity density. We then project it back on the
sky plane at different inclinations, from edge-on (i = 90◦) to face-on
(i = 0◦). At every inclination, we calculate the two effective radii Re

and Rmaj
e (Fig. 5). The comparison shows that, as expected, the Re

of flattened objects can be much smaller when objects are edge-on

Figure 4. Different definitions of Re as a function of the galaxy ellipticity.
The red filled circles represent the projected radii Re of a cylinder with the
same area of the half-light isophote. The blue filled diamonds indicate the
radii r1/2 of a sphere with the same volume as the half-light isosurface. In

both cases, the radii are normalized to R
maj
e , which is the projected semimajor

axis of the half-light isophote, having ellipse of inertia of ellipticity εe.
The red and blue dashed lines represent the relations f (εe) = 1.42

√
εe and

f (εe) = √
εe , respectively. The horizontal dashed line marks the theoretical

value 4/3, which approximates the ratio r1/2/Re for a number of simple
theoretical profiles.

Figure 5. Inclination dependence for different definitions of the effective
radius. The red lines show the change in the measured circularized Re,
normalized to the face-on value, when the inclination is changed from edge-
on (i = 90◦) to face-on, for the 26 flattest ATLAS3Dgalaxies. The blue
diamond marks the median (43 per cent) of the maximum variation. The
blue lines show the same variation with inclination of the major axis R

maj
e

of the half-light isophote. The red circle represents the median (5 per cent)
of the maximum variation.

than face-on, with a median decrease of 43 per cent (0.24 dex). The
opposite is true for Rmaj

e , but the variations are dramatically smaller,
with a median increase of 5 per cent (0.02 dex). The two effective
radii of course are the same for intrinsically spherical objects. The
use of Rmaj

e instead of Re is especially useful when one considers that
86 per cent of the galaxies in ATLAS3D (and in the nearby Universe)
are disc like (Paper II, III and VII).

In what follows, we also need the radius r1/2 of a sphere en-
closing half of the galaxy light. For this, we need to derive the
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intrinsic galaxy luminosity density from the MGE, assuming the
best-fitting inclination of the JAM models. A possible deprojection
of the observed MGE surface brightness can be derived analytically
by deprojecting the individual Gaussians separately (Monnet, Ba-
con & Emsellem 1992). The solution is only unique when the galaxy
is edge-on (Rybicki 1987). The deprojected luminosity density ν is
given by

ν(R, z) =
M∑

k=1

�jq
′
j√

2π σjqj

exp

[
− 1

2σ 2
j

(
R2 + z2

q2
j

)]
, (13)

where the individual components have the same dispersion σ j as in
the projected case (9), and the intrinsic axial ratio of each Gaussian
becomes

qj =
√

q ′2
j − cos2 i

sin i
, (14)

where i is the galaxy inclination (i = 90◦ being edge-on). To calcu-
late r1/2 from the intrinsic density of equation (13) one can proceed
analogously to the approach used to measure the circularized Re.
This is done by making the three-dimensional MGE distribution
spherical, while keeping the same total luminosity and peak lumi-
nosity density of each Gaussian. This is achieved by replacing (σ j,
qj) with (σ q

1/3
j , 1). The light of this new spherical MGE enclosed

within a sphere of radius r is given by

L(r) =
M∑

j=1

Lj

[
erf(hj ) − 2hj exp(−h2

j )/
√

π
]
, (15)

with hj = r/(
√

2 σj q
1/3
j ) and erf the error function. And the half-

light spherical radius r1/2 is obtained by solving L(r) = L/2 by
interpolation. As in the projected case, when all Gaussians have the
same qj = q, which means that the density is stratified on similar
oblate spheroids, the method gives the geometric radius r1/2 =
(abc)1/3 = a q1/3, where a is the semimajor axis of the spheroid.
While when the qj are different, this radius provides a very good
approximation to the radius r1/2 = [3Ve/(4π)]1/3 of a sphere that
has the same volume Ve of the isosurface enclosing half of the total
galaxy light.

In Fig. 4, we compare the three definitions of Re as a function of
the observed effective ellipticity εe of the MGE, for all the galaxies
in the ATLAS3D sample. Even though the galaxy isophotes are in
most cases not well approximated by ellipses, and the galaxies are
intrinsically not oblate spheroids, the ratio between Re and Rmaj

e

follows the relation for elliptical isophotes. When the galaxies are
very close to circular on the sky, Re and Rmaj

e agree by definition.
The situation is very different regarding the relation between r1/2

and Rmaj
e . In this case, when the galaxy is edge-on, there is a simple

ratio r1/2/Re ≈ 1.42, but when the galaxies have lower inclinations,
large variations in the ratio are possible, so that r1/2 cannot be in-
ferred from the observations, without the knowledge of the galaxy
inclination, which generally require dynamical models. The situa-
tion is of course much simpler for spherical objects, in which case
r1/2/Re ≈ 1.42 as in the edge-on case. For comparison, Hernquist
(1990) found the theoretical value r1/2/Re ≈ 1.33 for his spherical
models, while Ciotti (1991) has shown that for an R1/m model the
ratio is confined between 1.34 and 1.36, when m = 2−10, and the
same applies to other simple profiles (Wolf et al. 2010). As expected
our ratio is slightly larger, given that our models, like real galaxies,
do not extend to infinite radii.

3.3.2 Comparing effective and gravitational radius

For an isolated spherical system in steady state one obtains from
the scalar virial theorem (Binney & Tremaine 2008)

M = rg〈v2〉∞
G

, (16)

where rg is defined as the gravitational radius, which depends on the
total and luminous mass distribution, M is the galaxy total luminous
plus dark mass and 〈v2〉∞ is the mean-square speed of the galaxy
stars, integrated over the full extent of the galaxy. In the spherical
case 〈v2〉∞ = 3〈σ 2

los〉∞ and

M = 3
rg〈σ 2

los〉∞
G

. (17)

This formula is rigorously independent of anisotropy and only de-
pends on the radial profiles of luminous and dark matter (Binney &
Tremaine 2008, section 4.8.3).

When the spherical system is self-consistent [L(r) ∝ M(r)] the
gravitational radius can be easily calculated as

rg = 2L2∫ ∞
0 [L(r)/r]2dr

. (18)

Here, we evaluate this expression using a single numerical quadra-
ture via equation (15), from the same spherical deprojected MGE we
used in the previous Section to calculate r1/2. The MGE is obtained
by deprojecting the observed surface brightness at the JAM inclina-
tion and subsequently making the MGE spherical while keeping the
same peak stellar density and luminosity of every Gaussian. In this
way, our calculation of rg is rigorously accurate when the MGE is
already spherical, while the formula provides a good approximation
for flattened galaxies.

In Fig. 6, we plot the ratio r1/2/rg, for the full ATLAS3D sample
as a function of the non-parametric Third Galaxy Concentration
(TGC) defined in Trujillo, Graham & Caon (2001) as the ratio
between the light L(Re) = L/2 enclosed within an isophote of ra-
dius Re and the one L(Re/3) enclosed within an isophote with
radius Re/3. Graham, Trujillo & Caon (2001) have shown that this

Figure 6. The black filled circles mark the ratio r1/2/rg between the radius
of the half-light sphere and the gravitational radius for all the galaxies in
the sample. For comparison, the solid red line indicates the same ratio for a
spherical galaxy with an R1/m surface brightness profile. From left to right,
the red diamonds mark the locations m = 1, 2, 4, 6, 8, 10, respectively. The
green dashed horizontal line indicates the theoretical value for a Hernquist
(1990) profile.
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choice leads to a more robust measure of concentration than popular
alternatives (e.g. Doi, Fukugita & Okamura 1993). We compute the
TGC from the circularized MGE using equation (11), as done for
Re. We find a trend in the ratio for the galaxies in our sample
that varies between r1/2/rg ≈ 0.3 and 0.4 for the range of galaxy
concentrations we observed. For comparison, we also calculate the
TGC and the corresponding rg for spherical models described by
the R1/m profile (Sérsic 1968). This was done by constructing an-
alytic profiles, truncating them to R < 4Re, to mimic the depth of
the SDSS photometry, before fitting them with the one-dimensional
MGE-fitting procedure of Cappellari (2002). Both TGC and r1/2/rg

span the ranges predicted for profiles with m = 2−6. Our trend
in the ratio is more significant than the generally assumed near
constancy around 0.40 ± 0.02, first reported by Spitzer (1969)
for different polytropes, which agrees with the theoretical value
r1/2/rg = (1 + √

2)/6 ≈ 0.402 for a Hernquist (1990) profile (Ma-
mon 2000; Łokas & Mamon 2001). However, the variation is indeed
rather small, being only at the ±15 per cent level around a median
value of 0.35 in our sample.

The relatively small variations of the ratio between the gravi-
tational and intrinsic r1/2 or projected Re half-light radii, explain
the usefulness of the latter two parameters in measuring dynamical
scaling relations of galaxies. This fact, combined with the rigorous
independence from anisotropy, also explains the robustness of a
mass estimator like

M1/2 = k
r1/2〈σ 2

los〉∞
G

, (19)

when the stellar systems can be assumed to be spherical and kine-
matics is available over the entire extent of the system, as pointed
out by Wolf et al. (2010). Assuming the measured ratio r1/2/rg ≈
0.4 for galaxies with the approximate concentration of an R1/4 pro-
file, already in the self-consistent limit the expected coefficient is
k ≈ 3/0.4/2 = 3.75, which is close, but 25 per cent larger than the
corresponding coefficient k = 3 proposed by Wolf et al. (2010).
However, the ratio r1/2/rg we empirically measured on real galax-
ies does not assume that the outermost galaxy profiles are known
and can be extrapolated to infinity, so it weakly depends on the
depth of the photometry. For example, for a spherical galaxy that
follows the R1/4 profile to infinity, we obtain r1/2/rg = 0.456, which
would imply k = 3.29 in the self-consistent limit. The remaining
10 per cent difference from Wolf et al. (2010) is easily explained by
the small increase of 〈σ 2

los〉∞ due to the inclusion of a dark halo.

3.3.3 Determination of σ e

Unfortunately the quantities 〈v2
los〉∞, or 〈σ 2

los〉∞ are currently
only observable via discrete tracers in objects like nearby dwarf
spheroidal galaxies (e.g. Walker et al. 2007), but it is still not a
directly observable quantity in ETGs. Nonetheless, Cappellari et al.
(2006) showed that in practice 〈v2

los〉e, as approximated by σ 2
e , which

can be empirically measured for large samples of galaxies, can still
be used to derive robust central masses when applied to real, non-
spherical ETGs, with kinematics extended to about 1Re:

(M/L)(r = Re) ≈ 5.0 × Reσ
2
e

GL
, (20)

where (M/L)(r = Re) is estimated inside an isosurface of volume
V = 4πR3

e /3 (a sphere of radius Re if the galaxy is spherical), and
σ e is the velocity dispersion calculated within a projected circular
aperture of radius Re. In this paper, we improve on the previous ap-
proach by measuring σ e inside an effective ellipse instead of a circle.

The ellipse has area A = πR2
e and ellipticity εe. The measurement

is done by co-adding the luminosity-weighted spectra inside the
elliptical aperture and measuring the σ of that effective spectrum
using PPXF (Cappellari & Emsellem 2004) and assuming a Gaussian
LOSVD (keyword MOMENTS=2). Due to the co-addition, the re-
sulting spectrum has extremely high S/N (often above 300) and this
makes the measurement robust and accurate. When the SAURON
data do not fully cover Re, we correct the σ e to 1Re using equation
1 of Cappellari et al. (2006). σ e has the big advantage over 〈v2

los〉e
that it can also be much more easily measured at high redshift, as
it does not require spatially resolved kinematics. Integrated stellar
velocity dispersions have started to become measurable up to red-
shift z ≈ 2 (Cappellari et al. 2009; Cenarro & Trujillo 2009; van
Dokkum, Kriek & Franx 2009; Onodera et al. 2010; van de Sande
et al. 2011). Moreover, the advantage of σ e over the traditional cen-
tral dispersion σ c, is that it is empirically closer to the true second
velocity moment 〈v2

los〉∞ that appears in the virial equation (17)
and is directly proportional to mass. Making the good approxima-
tion (M/L)(r = Re) ≈ (M/L)(r = r1/2), where r1/2 ≈ 1.33Re, one
can rewrite equation (20) in a form that is directly comparable to
equation (19)

M1/2 ≈ 2.5 × Reσ
2
e

G
≈ 1.9 × r1/2 σ 2

e

G
. (21)

Note that the empirical coefficient 1.9 is significantly smaller than
the value around 3.0 one predicts when using 〈σ 2

los〉∞ in equa-
tion (19) and we will come back to this point in Section 4.4.

4 R ESULTS

4.1 Uncertainty in the scaling relations parameters

4.1.1 Errors in L, Re and σ

In the study of galaxy scaling relations, formal errors on L, Re and σ

are often adopted, as given in output by the software used for their
extraction. These errors assume the uncertainties are of statistical
nature. However, in many realistic situations the systematic errors
are significant, but difficult to estimate. In this work, the availability
of a significant sample of objects, with similar quantities measured
via independent data or methods, allows for a direct comparison of
quantities. This external comparison permits us to include system-
atic errors into our adopted errors, instead of just using formal or
Monte Carlo errors.

In Paper XXI, we compare the total magnitude Mr of the MGE
model, as derived from the SDSS+INT r-band photometry to var-
ious other sources in the literature. We conclude that our total Mr

are accurate at the 10 per cent level, in the relative sense. This is the
error we adopted in what follows. This accuracy is comparable to
other state-of-the-art photometric surveys.

A comparison between the circularized half-light radii Re of Pa-
per I and the circularized Re from the r-band MGE is shown in
Fig. 7. In this case, the rms scatter is of � = 0.058 dex, which
would imply errors of �/

√
2 = 10 per cent in the individual Re.

This is the error we adopt for our Re determination. This must still
be a firm upper limit to the errors, given that any relative variations,
among galaxies, in the colour gradients in r and Ks will increase the
scatter. Remarkably in this case our scatter between SDSS r-band
and 2MASS Ks bands, for the entire sample, is as small as the best
agreement (0.05 dex) reported by Chen et al. (2010, their fig. 8),
when comparing their Re determinations versus those of Janz &
Lisker (2008), using the very same SDSS g-band photometry and
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Figure 7. Testing the relative accuracy of size measurements. A comparison
between the Re from 2MASS plus RC3, matched to RC3 as described in
Paper I, and the Re from the MGEs. For a good match, the MGE values have
been increased by a significant factor of 1.35. In what follows, the effective
radii will always already include this multiplicative factor. The coefficients
of the best-fitting relation y = a + b(x − x0) and the corresponding observed
scatter � in y are shown at the top left of the plot. The two red dashed
and dotted lines mark the 1σ bands (enclosing 68 per cent of the values for
a Gaussian distribution) and 2.6σ (99 per cent), respectively. The outliers
automatically excluded from the fit by the LTS_LINEFIT procedure are shown
as green diamonds.

curve-of-growth technique. We are not aware of other published
independent Re determinations from different data that agree with
such a small scatter, and for such a large sample. The rms scatter
we measure is twice smaller that the Chen et al. (2010) comparison
in the same band between SDSS and ACS Virgo Cluster Survey
(ACSVCS). Our scatter is also twice smaller than a similar com-
parison we performed in Paper I between the Re of 2MASS and
RC3. We interpret the excellent reproducibility of our MGE Re

values, and the agreement with the values of Paper I, to the fact
that in both 2MASS and our MGE models the total luminosities
are not computed via a extrapolation of the profile to infinity, but
simply measured from the data. This result is a reminder of the fact
that extrapolation is a dangerous practice, which should be avoided
whenever possible.

A very important feature of Fig. 7 is the significant offset by
a factor of 1.35 between the MGE Re and the values of Paper I,
with the MGE values being smaller. In what follows, all our MGE
effective radii will always already include this multiplicative factor.
The values of Paper I were determined from a combination of
2MASS (Skrutskie et al. 2006) and RC3 (de Vaucouleurs et al.
1991) Re measures. But they were scaled to match on average the
values of the RC3 catalogue, which were determined using growth
curves extrapolated to infinity. The RC3 normalization agree within
5 per cent with the SAURON determinations in Cappellari et al.
(2006), Kuntschner et al. (2006) and Falcón-Barroso et al. (2011).
Part of the 1.35 offset is simply due to the extrapolated light in an
r1/4 profile, outside the region where our galaxy extend on the SDSS
or INT images. But the source of the remaining offset is unclear
and confirms the difficulty of determining Re. For comparison, in
Paper I we showed that the 2MASS and RC3 values correlate well,
but have an even more significant offset of a factor of 1.7!

Various comparisons of the accuracy of kinematic quantities have
been performed in the literature (e.g. Emsellem et al. 2004). The
general finding is that the measurements of the galaxies velocity dis-

Figure 8. Testing the relative accuracy of σ e determinations. Top panels:
same as in Fig. 7 for the comparison between the dispersion σ e, as measured
with PPXF from the spectrum inside an elliptical aperture of area A = πR2

e ,
and the quantity σ kpc measured on a spectrum extracted inside a fixed
circular aperture of radius R = 1 kpc. Bottom panels: same as in the top
panel, for the comparison between our σ kpc and the central σ provided by
the HyperLEDA data base.

persion can be reproduced at best with an accuracy of ≈5 per cent,
mainly due to uncertainties in the stellar templates and various sys-
tematic effects that are difficult to control. Here in Fig. 8 we test
the internal errors of our kinematic determination by comparing σ e

against the velocity dispersion σ kpc measured within a circular aper-
ture of radius R = 1 kpc (close to the radius R = 0.87 kpc adopted
in Jorgensen, Franx & Kjaergaard 1995b). This aperture is always
fully contained in the observed SAURON field of view. We measure
an rms scatter of � = 0.025 dex between the two quantities, which
corresponds to a 1σ error of 4 per cent in each value. The two val-
ues do not measure the same quantity, as the two adopted apertures
and fitted spectra are different, and for this reason both the actual
velocity dispersion and the stellar population change in the two PPXF

fits. For this reason, the observed scatter provides a firm upper limit
to the true internal uncertainties in σ e. However, in what follows,
we still assume a conservative error of 5 per cent in σ e and σ kpc, to
account for possible systematics. The same choice was made e.g.
in Tremaine et al. (2002) and Cappellari et al. (2006). We further
compared our σ kpc values against the literature σ compilation in
the HyperLEDA data base (Paturel et al. 2003), for 207 galaxies
in common with our sample. A robust fit between the logarithm of
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the two quantities eliminating outliers with LTS_LINEFIT gives an ob-
served rms scatter of 9 per cent (� = 0.038 dex), likely dominated
by the heterogeneity of the HyperLEDA values, and no significant
offset (1 per cent) in the overall normalization. Apart from placing a
very firm upper limit to our errors, this provides an external estimate
of the typical uncertainties in the HyperLEDA values.

4.1.2 Errors in mass or M/L

To obtain an estimate of our mass and M/L errors for the full
sample, we proceed similarly to Cappellari et al. (2006), namely we
compare mass determinations using two significantly different mod-
elling approaches. In Section 3.1.2, we described the six modelling
approaches that were presented in Cappellari et al. (2012) and we
also use in this paper. For this test, we compare the self-consistent
model (A) and the models (B) which include an NFW halo with
mass as free parameter. For the model with NFW halo, we then
compute the (M/L)e ≡ (M/L)(r = Re) by numerically integrating
the luminous and dark matter distribution of the models. The to-
tal M/L enclosed within an isosurface of volume V = 4πR3

e /3 is
defined as follows

(M/L)(r = Re) ≡ L(Re) × (M/L)stars + MDM(Re)

L(Re)
, (22)

where MDM is the mass in the dark halo. This quantity is compared
with the (M/L)JAM of the self-consistent model in the top panel
of Fig. 9. The agreement is excellent, with no offset or systematic
trend, and an rms scatter � = 0.038 dex, consistent with errors
of �/

√
2 = 6 per cent in each quantity. This value is the same we

estimated as modelling error in Cappellari et al. (2006) and confirms
the original estimate of the random modelling uncertainties.

Importantly, this result clarifies a misconceptions regarding the
use of self-consistent models to measure the M/L inside r ≈ Re

in galaxies. Self-consistent models, like the one used in Cappellari
et al. (2006), do not underestimate the total M/L as it is sometimes
stated (e.g. Dutton et al. 2011a, section 3.7). Even though the model
with dark halo has a total galaxy mass typically an order of magni-
tude larger inside the virial radius, and has a dramatically different
mass profile at large radii, the model still measures an unbiased
total M/L within a sphere of radius r ≈ Re, corresponding to the
projected extent of the kinematical data. The robustness in the re-
covery of the enclosed total mass, in the region constrained by the
data, even in the presence of degeneracies in the halo profile, was
already pointed out by Thomas et al. (2005) and is demonstrated
here with a much larger sample.

Of course the self-consistent (M/L)JAM is larger than the purely
stellar one (M/L)stars if dark matter is present, according to the
relation

(M/L)JAM ≈ (M/L)(r = Re) = (M/L)stars

1 − fDM(r = Re)
, (23)

where the fraction of dark matter contained within an isodensity
surface of mean radius Re is defined as

fDM(r = Re) ≡ MDM(Re)

L(Re) × (M/L)stars + MDM(Re)
. (24)

The difference between (M/L)JAM and the stellar M/L inferred from
population models can then be used to give quantitative constraints
on the dark matter content and the form of the IMF, as done in
Cappellari et al. (2006). Moreover, the self-consistent models do
not imply or require the dark mass to be negligible inside r ≈ Re as
sometimes stated (e.g. Thomas et al. 2011). Although a number of

Figure 9. Accuracy of M/L and mass. Top panel: same as in Fig. 7 for the
comparison between the (M/L)JAM of the best-fitting self-consistent (mass-
follows-light) models, and the (M/L)e , integrated within an isosurface of
volume V = 4πR3

e /3 (for a spherical galaxy a sphere of radius r = Re),
including the contribution of both the stellar and the dark matter component.
There is no bias or systematic offset between the two determinations, which
are consistent with an error of �/

√
2 = 6 per cent in each quantity. Bottom

panel: same as the top panel for the comparison between the total mass of
the self-consistent JAM model and twice the mass M1/2 within the half-light
isosurface, for the model with dark matter halo.

galaxies has non-negligible dark matter fraction, the total (luminous
plus dark) M/L within 1Re is still accurately recovered by the
simple self-consistent models, without detectable bias. This makes
the self-consistent models well suited to determine unbiased total
M/L within 1Re at high redshift (van der Marel & van Dokkum
2007; van der Wel & van der Marel 2008; Cappellari et al. 2009),
where high-quality integral-field stellar kinematics still cannot be
obtained and dark matter fractions cannot be extracted.

Using integral-field data the error in this measure of enclosed
mass is as small as the one that can be obtained from strong lensing
studies. The important difference between the two techniques is
that the lensing results measure the total mass inside a projected
cylinder (or elliptical cylinder), while the stellar kinematics gives
the total mass inside a spherical (or spheroidal) region. The lensing
mass should be larger than the dynamical one if dark matter is
present in the galaxy. The difference between these two quantities
provides a measure of the dark matter content along the LOS and
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can be exploited to get some constraints on the dark matter profiles
(Dutton et al. 2011b; Thomas et al. 2011).

In the bottom panel of Fig. 9, we compare the mass MJAM ≡
L × (M/L)JAM, which we use extensively in this and in other papers
of this ATLAS3D series, with the total mass M1/2 enclosed within
an isosurface enclosing half of the total light, which is sometimes
advocated to compare observations to galaxy simulations (e.g. Wolf
et al. 2010). The plot illustrates the equivalence of the two quanti-
ties, for all practical purposes. It clarifies the physical meaning of
MJAM:

MJAM ≈ 2 × M1/2. (25)

The JAM models with dark halo additionally provide an estimate
of the dark matter fraction fDM (equation 24) enclosed within the
region constrained by the data r = Re. For the galaxies where our
kinematics does not cover 1Re, our fDM will be more uncertain. The
results is presented, as a function of galaxy stellar mass Mstars in
Fig. 10 for the set of models (B), with an NFW halo, with mass
as free parameter, and for the set of models (E), which have a
cosmologically motivated NFW halo, uniquely specified by Mstars.
We find a median dark matter fraction for the ATLAS3D sample
of fDM = 13 per cent for the full sample and fDM = 9 per cent for
the best (qual > 1 in Table 1) models (B) and 17 per cent with
models (E). These value are broadly consistent, but on the lower
limit, with numerous previous stellar dynamics determinations in-
side 1Re from much smaller samples and larger uncertainties: Ger-
hard et al. (2001) found fDM = 10−40 per cent from spherical dy-
namical modelling of 21 ETGs; Cappellari et al. (2006) inferred a
median fDM ≈ 30 per cent by comparing dynamics and population
masses of 25 ETGs, and assuming a universal IMF; Thomas et al.
(2007b, 2011) measured fDM = 23 ± 17 per cent via axisymmetric
dynamical models of 16 ETGs; Williams et al. (2009) measured a
median fraction fDM = 15 per cent with JAM models of 15 ETGs, as
done here, but with more extended stellar kinematics to ≈2−3 Re.
The results of Tortora et al. (2009) are not directly comparable,
as they used spherical galaxy toy models and inhomogeneous lit-
erature data from various sources; however, they are interesting
because they explored a sample of 335 ETGs, comparable to ours,
and report a typical fDM = 30 per cent by comparison with stellar
population.

The quite small fDM that we measure seems also consistent with
the fact that the strong lensing analysis of the about 70 galaxies of
the Sloan Lenses ACS sample Bolton et al. (2006) finds a logarith-
mic slopes for the total (luminous plus dark matter) density close
to isothermal. Subsequent re-analyses of their data all confirmed a
trend ρ tot(r) ∝ r−2.0, with an intrinsic scatter of ≈0.2 (Koopmans
et al. 2006, 2009; Auger et al. 2010b; Barnabè et al. 2011). In Fig. 2,
we derive the same slope and intrinsic scatter for the stellar density
alone, inside a sphere of radius r = Re. This fact seems to suggest
that dark matter does not play a significant role in galaxy centres and
that the measured isothermal density slope is essentially due the stel-
lar density distribution. Only a very steep dark matter slope close
to isothermal ρDM(r) ∝ r−2.0 like the average stellar distribution
could allow for significant dark matter fractions, while still being
consistent with these observations. We are not aware of any theoret-
ical or empirical evidence for these very steep dark matter cusps in
galaxies.

4.2 The classic FP

Since the discovery of the FP relation between luminosity, size
and velocity dispersion, in samples of local elliptical galaxies

Figure 10. Dark matter fraction for ATLAS3D galaxies. The open circles
indicate the fraction fDM of dark matter enclosed within the isosurface of
volume V = 4πR3

e /3 (in the spherical case within a sphere of radius Re),
for the best-fitting JAM models, as a function of the galaxy stellar mass
Mstars inferred by the models. The blue filled circles are for the subset of
103 galaxies with the best models and data (qual > 1 in Table 1), while
the red crosses indicate less good model fits or inferior data. The top panel
corresponds to the results for models (B), with an NFW halo having mass
as free parameter. The median is fDM = 13 per cent for the full sample and
fDM = 9 per cent for the best models. In a number of cases, the model without
dark matter is preferred. The solid green line indicates the mean for four
mass bins. The bottom panel is the same as the top one, for the set of models
(E) which has a cosmologically motivated NFW halo. The median fDM =
17 per cent for all models. The green line represents a robust parabolic fit
(written in the figure) to all the data. The robust result is that dark matter
fractions are small, for halo slopes not steeper than NFW. fDM < 21 per cent
in 90 per cent of the best models.

(Djorgovski & Davis 1987; Dressler et al. 1987; Faber et al. 1987),
numerous studies have been devoted to the determination of the
FP parameters either including fainter galaxies (Nieto et al. 1990),
fast rotating ones (Prugniel & Simien 1994) or lenticular galax-
ies (Jorgensen et al. 1996). The dependence of the FP parameters
have been investigated as a function of the photometric band (Pahre
et al. 1998; Scodeggio et al. 1998) or redshift (van Dokkum &
Franx 1996). Moreover, galaxy samples of more than 104 galaxies
have been studied (Bernardi et al. 2003; Graves, Faber & Schiavon
2009; Hyde & Bernardi 2009). In this section, before presenting our
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result, we study the consistency of our FP parameters with previous
studies.

Nearly all previous studies have used as variables the logarithm
of the effective radius Re, the effective surface brightness �e and the
(central) velocity dispersion σ . One of the reasons for this choice
comes from the emphasis of the FP for distance determinations.
Both �e and σ are distance independent, so that all the distance
dependence can be collected into the Re coordinate by writing the
FP as

log Re = a + b log σ + c log �e. (26)

In the top panel of Fig. 11, we present the edge-on view of our
ATLAS3D FP, obtained with the LTS_PLANEFIT routine, where we
use as velocity dispersion σ e (Section 3.3.3) as done in Cappellari
et al. (2006) and Falcón-Barroso et al. (2011), but here measured
within an elliptical rather than circular isophote. Our best-fitting
parameters b = 1.063 ± 0.041 and c = −0.765 ± 0.023 are formally
quite accurate, but significantly different from what is generally
found by other studies: the median of the 11 determinations listed
in table 4 of Bernardi et al. (2003) is b = 1.33 and c = −0.82,
with an rms scatter in the values of σ b = 0.12 and σ c = 0.03. The
observed scatter we measure � ≈ 0.091 dex in log Re is very close
to what has been found by other studies (e.g. Jorgensen et al. 1996
find 0.084).

To understand the possible reason of this disagreement we test
the sensitivity of our estimate to the sample selection and the size of
the kinematical aperture used for the σ determinations. For this, we
measure the velocity dispersion σ kpc inside a circular aperture with
radius R = 1 kpc (close to the radius R = 0.87 kpc adopted in the
classic study by Jorgensen et al. 1995b). We also select the massive
half of our sample by imposing a selection σ kpc > 130 km s−1. The
resulting FP is shown in the middle panel of Fig. 11, and now both
the fitted values and the observed scatter agree with previous values.
For comparison, we also show in the bottom panel of Fig. 11 the
determination of the FP parameters, when using σ e instead of σ kpc,
but keeping the same selection of the massive half of our ATLAS3D

sample σ e > 130 km s−1. These values are also consistent with
the literature. This illustrates the importance of sample-selection
and σ extraction in the derivation of FP parameters. The increase
of b as a function of the lower σ cut-off of the selection is fully
consistent with the same finding by Gargiulo et al. (2009) and Hyde
& Bernardi (2009) and we refer the reader to the latter paper for
a more complete study of the possible biases in the FP parameters
due to sample selection. The reason for the sensitivity of the FP
parameters to the selection is a result of the fact that the FP is not
a plane, but a warped surface, as we demonstrate in Paper XX by
studying the variation of the (M/L)JAM on the Mass Plane (MP).
So that the FP parameters depend on the region of the surface
one includes in the fitting. This was also tentatively suggested by
D’Onofrio et al. (2008).

Having shown that with our sample and method we can derive
results that are consistent and at least as accurate as previous de-
terminations, we now proceed to study the MP, by replacing the
traditionally used stellar luminosity with the total dynamical mass.
A similar study was performed by Bolton et al. (2007, 2008), and
updated by Auger et al. (2010b), using masses derived from strong
lensing analysis. They also call their plane the ‘Mass Plane’. Al-
though our studies are closely related, one should keep in mind that,
while the lensing masses are measured within a projected cylinder
of radius R = Re/2, parallel to the LOS, and for this reason they
include a possible contribution of dark matter at large radii, our
dynamical masses are measured within a sphere of radius r = Re.

Figure 11. Classic FP. Top panel: edge-on view of the FP for all the
ATLAS3D galaxies. The coefficients of the best-fitting plane z = a + b(x −
x0) + c(y − y0) and the corresponding observed scatter � in z are shown at
the top left of the plot. The two dashed lines mark the 1σ bands (enclosing
68 per cent of the values for a Gaussian distribution) and 2.6σ (99 per cent).
The outliers excluded from the fit by the LTS_PLANEFIT procedure are shown
with green symbols. The errors are the projection of the observational errors,
excluding intrinsic scatter. Middle panel: same as in the top panel, with σ kpc

measured within a circle of radius R = 1 kpc. Only galaxies with σ kpc >

130 km s−1 are included. Bottom panel: same as in the top panel using σ e,
but only including galaxies with σ e > 130 km s−1.
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4.3 From the FP to the MP

The classic form for the FP is ideal when the FP is used to determine
distances. However, a different form seems more suited to studies
where the FP is mainly used as a mass or M/L estimator. For this,
we rewrite the FP as

log

(
L

L�,r

)
=a+b log

( σe

130 km s−1

)
+c log

(
Re

2 kpc

)
. (27)

Here, we normalized the σ e and Re values by the approximate
median of the values for our sample, to reduce the covariance in
the fitted parameters and the error in a. Using L instead of �e

has the advantage that it reduces the covariances between the pairs
of observables (�e, Re). Here, in fact, as opposed to when �e ≡
L/(2πR2

e ) is used, there is no explicit dependence between the
three axes, which become independently measured quantities. The
new fit to the FP is shown in the top panel of Fig. 12. In agreement
with all previous authors, the fitted parameters are very different
from the values b = 2 and c = 1 expected in the case of the
virial equation (20). The relation shows a negligible increase in
the observed rms scatter, from � = 0.091 dex (23 per cent) to � =
0.10 dex (26 per cent). This may be due to the reduced covariances
between the adopted quantities: the new scatter is now a better
representation of the true scatter in the FP relation.

In the bottom panel of Fig. 12, we show for comparison the
relation obtained by replacing the total galaxy luminosity with the
dynamical mass

MJAM ≡ L × (M/L)JAM ≈ 2 × M1/2 ≈ Mstars, (28)

where (M/L)JAM is the total (luminous plus dark) dynamical M/L
obtained using self-consistent JAM models (A), L is the total galaxy
luminosity and M1/2 is the total mass within a sphere of radius r1/2

enclosing half of the total galaxy light, where r1/2 ≈ 1.33Re (Hern-
quist 1990; Ciotti 1991; Wolf et al. 2010; Fig. 4). The correctness
of the MJAM ≈ 2M1/2 approximation is illustrated in the bottom
panel of Fig. 9. While the 2M1/2 ≈ Mstars approximation is due
to the relatively small amount of dark matter enclosed within r =
r1/2 (Fig. 10). This is only approximately true, generally within
20 per cent, but much larger errors are generally made when de-
termining stellar masses from stellar population models, due the
assumption of a universal IMF, which was recently shown not to
represent real galaxies (van Dokkum & Conroy 2010; Cappellari
et al. 2012). None of our conclusions is affected by the last approx-
imation, which only serves to allow for comparisons of our results
to previous similar studies that use stellar mass as parameter.

Two features are obvious from the plot: (i) there is a dramatic
reduction of the observed scatter from � = 0.10 dex (26 per cent)
to � = 0.062 dex (15 per cent). This shows without doubt that a
major part of the scatter in the FP is due to variations in the M/L,
in agreement with independent results from strong lensing (Auger
et al. 2010b); (ii) the b coefficient substantially increases and is
now much closer to the virial value b = 2, while the c coefficient
remains nearly unchanged. The coefficients become consistent with
the virial ones when using the effective radius Rmaj

e , which is insen-
sitive to projection effects, instead of Re. This confirms that much
of the deviation of the FP from the virial predictions is due to a
systematic variation in M/L along the FP, not to non-homology in
the luminosity profiles or kinematics, also in agreement with pre-
vious dynamical (Cappellari et al. 2006) and strong lensing results
(Bolton et al. 2008; Auger et al. 2010b).

Galaxies are seen at random orientations so that projection effects
should affect the measured σ e. Given that the velocity ellipsoid in

Figure 12. From the FP to the MP. Top panel: edge-on view of the FP.
Symbols and lines are as in Fig. 11. Middle panel: edge-on view of the
MP. Note the decrease in the scatter, when making the substitution L →
M, and the variation in the coefficients, starting to approach the virial ones
b = 2 and c = 1. Bottom panel: same as in the middle panel, but using
as effective radius the major axis R

maj
e of the effective isophote rather than

the circularized radius. The scatter increases slightly, but the tilt is further
decreased and now is consistent with the virial prediction.
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ETGs is generally not too far from a sphere (Gerhard et al. 2001;
Cappellari et al. 2007; Thomas et al. 2009), the velocity dispersion
changes weakly with inclination, while the LOS velocity varies as
V = v sin i, where i is the galaxy inclination and v is the edge-on
(i = 90◦) velocity. In this work, we have an estimate of the galaxy
inclination for every galaxy in our sample, as measured via the
JAM models. Although the inclination may not be always accurate,
Cappellari (2008) showed that it agrees with the inclination inferred
from dust discs, for a sample of four galaxies. Here, we extend the
comparison to an additional sample of 22 galaxies with regular
dust discs. The JAM inclination is found to always agree within
the relative errors, with the inclination inferred from the dust discs,
assumed to be circular and in equilibrium in the galaxies equatorial
plane. Moreover, our tests using JAM to recover the inclination of
N-body simulated galaxies also shows excellent agreement between
the recovered values and the known ones (Paper XII). Our estimator
of the ‘deprojected’ second velocity moment is then defined as

〈v2
rms〉e = 〈v2 + σ 2〉e ≡

∑P
k=1 Fk(V 2

k / sin2 i + σ 2
k )∑P

k=1 Fk

, (29)

where i is the inclination of the best-fitting JAM models (A), Vk

and σ k are the stellar velocity and dispersion, extracted via PPXF

adopting a Gaussian LOSVD, and Fk is the flux contained within
that bin, for the P Voronoi bins (Cappellari & Copin 2003) falling
within the ‘effective’ ellipse of major axis Rmaj

e and ellipticity εe

(Table 1). We found that 〈v2
rms〉e agrees with σ e with an rms scatter

of � = 0.025 dex, consistent with our random errors. 〈v2
rms〉e did not

improve any of our correlations with respect to the much simpler and
robust σ e, which also has the key advantage of not requiring spatially
resolved integral field unit (IFU) kinematics. For this reason, we will
not present any relation using 〈v2

rms〉e.
The result of this exercise clearly shows that the existence of

the FP is due to the fact that galaxies can be remarkably well
approximated by virialized stellar systems with an M/L that varies
systematically with their properties. These facts have been clearly
realized since the discovery of the FP (Faber et al. 1987) and have
been generally assumed in most recent studies (see Ciotti 2009 for
a full discussion). The new findings on the tilt of the FP agree with a
similar study of scaling relations in ETGs using accurate dynamical
models and integral-field kinematics of a sample of just 25 galaxies
(Cappellari et al. 2006) and with independent confirmations using
strong gravitational lensing (Bolton et al. 2007, 2008; Auger et al.
2010b). Galaxy structural non-homology has a minor effect at best,
when the determination of galaxy scaling parameters is pushed to
the maximum accuracy and an attempt is made to remove the most
important biases.

The level of accuracy at which the simple structural and dy-
namical homology approximation holds is not entirely expected,
however, given the apparent complexity of galaxy photometry and
kinematics. Of course the dynamical models assume equilibrium
and rigorously satisfy the virial equations. One may think that a
tight relation is a necessary feature of the approach. This is how-
ever not correct. It is true in fact that the models satisfy the scalar
virial equation 2T + W = 0 by construction, where T is the total
kinetic energy and W is the total potential energy. However, given
the complex multicomponent nature of galaxies, the presence of
bars, the importance of projection and the fact that the potential
energy should include dark matter, it is far from obvious that one
should be able to define any simple empirical measure of projected
radius on the galaxy, and a measure of velocity dispersion within
a limited region, so that the virial equation can be written in the

Figure 13. Accuracy of the simple virial estimate. A comparison between
the virial estimator of Cappellari et al. (2006) and the more accurate JAM
values. The inferred rms errors in the estimation of M/L are 15 per cent.
Symbols and lines are as in Fig. 11.

simple form M1/2 = k σ 2R/G (designed for spherical homologous
systems), with fixed exponents and nearly constant coefficient for
the entire population!

4.4 Simple mass estimators

In Fig. 13, we present a direct comparison between the new
(M/L)JAM estimates, which approximate the total M/L within an
isosurface with volume V = 4πR3

e /3, and the simple virial estimate
of equation (20) taken from Cappellari et al. (2006). Considering
the modelling errors of 6 per cent in M/L estimated in this paper,
we infer an error of 15 per cent in the virial estimates. This shows
that, although the virial estimates do not suffer from strong biases,
they provide errors about a factor of 3 larger, even when using our
good data.

Our finding does not seem to agree with the small systematic
offsets recently reported by Thomas et al. (2011). The disagreement
may be an effect of small sample statistics and larger errors, given
that they studied only 16 objects and did not use integral-field data.
However, even more likely is that the difference they find may
be due to a systematic difference in their Re determination, with
respect to the SAURON ones. Our new empirical confirmation of
the scaling of the coefficient in Cappellari et al. (2006), even in the
presence of dark matter, also emphasizes the importance of using
virial coefficients that are calibrated to the extent of the available
kinematic data. The coefficient k = 3.75 given by Spitzer (1969) or
k = 3 proposed by Wolf et al. (2010) for equation (19) should not be
used to estimate central masses in ETGs, where stellar kinematics
out to at most a couple of Re is available and the corresponding
value k ≈ 1.9 of equation (21) applies. The difference of the two
coefficients is due to the fact that, while the estimator of Wolf et al.
(2010) is a theoretical one, designed for spherical geometry, very
extended kinematics, and assumes galaxy profiles are known to
infinite radii, the one by Cappellari et al. (2006) is an empirical
one, designed for quantitative measures of masses in the central
regions of ETGs. Both estimators are useful in their own range of
applicability, but they should not be used interchangeably, unless
one can tolerate systematic biases of ≈60 per cent in the absolute
mass normalization.

In Fig. 14, we compare the ability of different simple mass es-
timators Mvir, all based on the scalar virial equation, to properly
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Figure 14. Comparing simple mass estimators. The ratio between the mass
predicted by different estimators (written in blue in the panels), all based on
the scalar virial equation, is compared to the rigorous determination using
JAM models, and plotted as a function of the Sérsic index n from Paper XVII.
The best estimator is the one in the top-left panel, which measures Re from
the data without extrapolation, and uses a fixed virial coefficient. When Re

is measured from a Sérsic fit to the profile extrapolated to infinite radii, the
virial coefficient β(n) needs to vary as a function of n, but the scatter in the
recovered mass is large, especially for large n (bottom-right panel). Here,
we used the theoretical prediction for β(n) of equation (20) in Cappellari
et al. (2006).

reproduce MJAM. We show trends as a function of the Sérsic (1968)
index n obtained for our galaxies by fitting a single Sérsic pro-
file to the entire galaxy (for both E and S0 galaxies) and given
in table C1 of Paper XVII. Our preferred estimator, which uses a
fixed virial coefficient and the semimajor axis Rmaj

e of the effective
isophote, reproduces MJAM better than any alternative one. It has
no detectable trend with the Sérsic index and presents the smallest
scatter (0.08 dex rms; top-left panel). The best-fitting coefficient of
this estimator is smaller that the value 5.0 determined in Cappellari
et al. (2006). This accounts for the fact that Rmaj

e is systematically
larger than the circularized radius Re. In the bottom-left panel, we
change the virial coefficient β(n) according the predictions of spher-
ical isotropic models with a Sérsic profile (e.g. Prugniel & Simien
1997; Bertin et al. 2002). For this, we adopt the expression in equa-
tion (20) of Cappellari et al. (2006), which was calculated for σ e

measured in an aperture of radius Re as adopted here. The plot
shows a clear trend as a function of n, with a systematic bias of
up to a factor of 3 for the largest n. This confirms that when Re is
measured without extrapolation of the data as done here, or in the
‘classic’ way (Burstein et al. 1987; Jorgensen et al. 1995a; Cappel-
lari et al. 2006), using growth curves with fixed n = 4, a constant
virial coefficient performs better than one that changes with n.

The opposite is true when RSer
e is the value obtained from Sérsic

fits of the galaxy profile, assuming that the galaxy is described
by that functional form out to infinite radii (from table C1 of Pa-
per XVII). These Re can be significantly different from the non-
extrapolated values. Given that for both the RSer

e and Rmaj
e determi-

nations we used the very same images, the differences are entirely
due to the assumed functional form of the surface brightness beyond
the region where we have data. In this situation, adopting a fixed
virial coefficient causes severe biases. The systematic bias in the
virial estimator can be essentially removed adopting for β(n) the

analytic prediction of Cappellari et al. (2006). However, the scatter
in this estimator is significantly larger (0.13 dex rms) than the non-
extrapolated one. Moreover, deviations are particularly large (up to
a factor of 3) at the largest n, where a larger fraction of the total
galaxy light is not actually observed on the images, but just extrap-
olated. Also note that an extra factor of 0.70 is needed in addition
to the theoretically predicted coefficient β(n). This factor must be
calibrated empirically and makes the absolute normalization of the
masses determined with this simple estimator rather uncertain.

These tests illustrate the extreme sensitivity of the reliability of
masses estimated using the scalar virial equation on the technique
adopted to measure Re. They also show the difficulty of obtain-
ing masses that are properly normalized. Ultimately the general
unreliability and poor reproducibility of effective radii determined
from photometry of different quality is the main limiting factor to
a quantitative use of the scalar virial relations to measure accurate
masses or M/L, when a proper absolute normalization is essential,
like in IMF studies of distant galaxies (Cappellari et al. 2009). If
different methods or extrapolations, applied to different, but high-
quality photometric data of local galaxies, can produce revisions
in Re by as much as a factor of 2 (Kormendy et al. 2009; see also
Chen et al. 2010), more significant biases should be expected when
comparing local and high-redshift observations, as already pointed
out by Mancini et al. (2010). When biases in Re are present, only
dynamical models can still provide robust central masses and M/L,
due to the near insensitivity of the models to the shape of the outer
mass and light profiles (van der Marel & van Dokkum 2007; van
der Wel & van der Marel 2008; Cappellari et al. 2009).

4.5 The (M/L)−σe relation

In the previous sections, we showed that the existence of the FP
can be accurately explained by the virial relation combined with a
smooth variation of the M/L. Here, we study the previously reported
correlation (M/L) ∝ σ 0.8

e (in the I band) between the effective ve-
locity dispersion and the dynamical M/L within a sphere of radius
Re (Cappellari et al. 2006; van der Marel & van Dokkum 2007).
This relation was previously found to provide the tightest relation
among other parameters of scaling relations (dynamical mass, lu-
minosity or size), with an observed scatter of 18 per cent and an
inferred intrinsic one of just ∼13 per cent, when using integral-field
kinematics.

The (M/L)−σe relation for the full ATLAS3D sample is shown
in the top-left panel of Fig. 15. Our new relation has an observed
scatter of 29 per cent, from which we infer an intrinsic scatter of
23 per cent, when combining our 6 per cent errors in the models
with the distance errors for the various subsamples as described in
section 2.2 of Paper I. We adopted as distance errors the median one
for each given class of determinations reported in Paper I, instead of
the individual errors, which are not easy to trust in every case, and
that are likely dominated by systematics. The scatter is significantly
larger than the previously reported one. The new relation has a
formally accurate power slope of b = 0.720 ± 0.043, which is a bit
shallower than the previous one, based on a sample 10 times smaller
than the current one.

To understand the reason for the differences between our
(M/L)−σe slope and previous determinations, in the top-right panel
Fig. 15, we plot the (M/L)−σe relation for the subset of 78 galax-
ies with SBF distances from Tonry et al. (2001), as done in both
Cappellari et al. (2006) and van der Marel & van Dokkum (2007).
The relation for this subset now steepens and becomes even steeper
than the previous determinations. The reason for this is likely
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Figure 15. The (M/L)−σe relation. From left to right and from top to bottom the relation is shown (i) for all ATLAS3D galaxies, (ii) for the subset in Tonry
et al. (2001), (iii) for the subset of slow rotators (from Paper III), (iv) for the subset of fast rotators, (v) for the subset of galaxies in the Virgo cluster (from
Paper I) and (vi) for subset not in the Virgo cluster. In all plots the blue symbols represent fast rotators, while the red symbols slow rotators. The green symbols
represent outliers excluded from the fit by LTS_LINEFIT.

related to the fact that the Tonry et al. (2001) subsample is bi-
ased towards elliptical galaxies, which tend to be the brightest in
our sample. A change in slope is then expected from the curvature of
the (M/L)−σe relation, which is not clearly visible in our range of σ

values, but is implied by the deviations from our relation when other
classes of objects with smaller of larger σ are considered (Zaritsky,
Gonzalez & Zabludoff 2006; Zaritsky, Zabludoff & Gonzalez 2008;
Tollerud et al. 2011). A small but systematic increase in the slope is
indeed visible when we select subsamples within different σ ranges
from our ATLAS3D sample. We conclude that the minor difference
between our newly fitted value and the previous works is due to
the difference in the sample selection. The present sample is not
only much large than the one used in previous studies, but also

volume limited so it provides a statistically representative view of
the scaling relations in the nearby Universe.

In the middle panel of Fig. 15, we show the (M/L)−σe of the
36 slow-rotator ETGs defined in Paper III and for the fast rotators.
We confirm a detectable offset in the relation, with the slow rotators
having slightly larger M/L than fast rotators, as previously reported
in Cappellari et al. (2006). However, the difference is just at the
9 per cent level. There is also a change in the slope, with the slow
rotators defining a more shallow relation that the full population.
We also confirm the smaller scatter in the relation, as reported by
Falcón-Barroso et al. (2011) for the colour–σ and FP relations.
The slow rotators have an observed scatter of 22 per cent, and an
inferred intrinsic one of 15 per cent in the (M/L)−σe relation. This
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is likely due to the fact that significant amounts of cold gas and
star formation, which affect the M/L but not σ , are in fast rotators
(Paper IV; McDermid et al., in preparation). The relation for the fast
rotators (middle-right panel) agrees with the global one, as expected
from the fact that they dominate the ATLAS3D sample.

The dependence of the slope and zero-point of the (M/L)−σe

relation on environment effects is shown in the bottom panels of
Fig. 15. As discussed in Paper VII, most of the environmental
differences in the ATLAS3D sample can be characterized by whether
a galaxy belongs to the Virgo cluster or not. The left-hand panel
shows the 58 ATLAS3D galaxies in Virgo. They follow the same
shallow relation as the slow rotators, but with the zero-point of the
global relation. The observed scatter decreases to just 14 per cent, in
part due to the accurate distances from ACSVCS (Mei et al. 2007).
However, the intrinsic scatter εM/L also further decreases to just
10 per cent. This is consistent with the intrinsic scatter measured by
Cappellari et al. (2006), using a radically different set of models
and different distance estimates (no ACSVCS), but on a sample
that, contrary to the ATLAS3D sample, was dominated by Virgo
galaxies. The decrease in the scatter must be related to the decrease
in the fraction of young objects in Virgo (Kuntschner et al. 2010;
McDermid et al., in preparation). It again confirms that the scatter of
the (M/L)−σe relation is dominated by stellar population (including
IMF) effects, as previously demonstrated for the FP. The two results
are two ways of looking at the same thing, given that the (M/L)−σe

relation is the projection of the differences between the FP and MP
along the σ e axis. For completeness, we also show in the bottom
right the relation for non-Virgo galaxies, which dominate the sample
and again are consistent, albeit a bit steeper, than the global relation.

In the top panel of Fig. 16, we show how the tightness of the
(M/L)−σe relation can be used to cleanly select galaxies belong-
ing to the Virgo cluster. Here, we selected all ATLAS3D galaxies
contained within a cylinder of radius of R = 12◦ centred on the
Virgo cluster (approximately at the location of the galaxy M87) and
assigned to all of them the cluster distance of D = 16.5 Mpc from
Mei et al. (2007). We then used the LTS_LINEFIT routine to fit a line.
Even in the presence of 20 dramatic outliers out of 79 objects, the
method is able to robustly converge to a clean relation.4 The method
selects 59 galaxies within the 99 per cent (2.6σ ) confidence bands
from the best-fitting relation. The plot reveals a tight sequence in
the (M/L)−σe, which corresponds to galaxies in the Virgo cluster,
with an observed scatter of �(M/L) = 0.071 (18 per cent). It is re-
assuring to see that this relation, which uses no individual distance
information for the galaxies, agrees both in the slope and zero-point
with the ones for all ATLAS3D galaxies, even though it has smaller
scatter. Galaxies above the relation lie in the background of Virgo,
and their difference in distance modulus from Virgo is 2.5 times
the difference in log(M/L) from the best-fitting relations. In this fit,
we assume that the distance error are due to the 1σ depth of the
Virgo cluster. Adopting the value of σ D = 0.6 ± 0.1 from Mei et al.
(2007), we derive an intrinsic scatter in M/L of εM/L = 0.063 dex
(16 per cent).

When we select only the galaxies with surface brightness fluctu-
ation (SBF) distances from the ACSVCS (Mei et al. 2007) (bottom
panel of Fig. 16), we find a relation with the same slope, but a de-
creased observed scatter of �(M/L) = 0.047 (11 per cent). For this
relatively small, but still statistically significant sample of 32 galax-
ies, the inferred intrinsic scatter in M/L would be a mere 8 per cent!

4 Other robust methods like (i) minimizing the absolute deviation, (ii) using
iterated biweight estimates or (iii) M-estimates (Press et al. 2007, section
15.7) failed to provide a sensible solution to this problem.

Figure 16. Scatter in the (M/L)−σe relation in the Virgo galaxy cluster.
Top panel: all ATLAS3D galaxies within 12◦ of the centre of the Virgo
cluster have been assigned a fixed distance of D = 16.5 Mpc. The measured
M/L naturally defines a clean (M/L)−σe relation for galaxies belonging
to the cluster. The scatter in this relation is due to a combination of the
cluster depth and the intrinsic scatter in M/L. Bottom panel: (M/L)−σe

relation for the galaxies in Mei et al. (2007). The accurate distances produce
a quite significant decrease in the observed scatter, down to just 11 per cent,
indicating that both the (M/L)JAM and the SBF distances are significantly
more accurate than this value and confirming that the SBF distances are able
to resolve the spatial structure of Virgo, along the LOS, as claimed.

Considering that ETGs appear to have very small fractions of dark
matter in their central region (Fig. 10), a small scatter in dynamical
M/L should be expected from the extreme tightness of the colour–
magnitude relation in clusters (Bower, Lucey & Ellis 1992) and
specifically for the ACSVCS galaxies (Chen et al. 2010), given that
colour is a direct tracer of the M/L of the stellar population (Bell
& de Jong 2001). Our small scatter finding confirms the remark-
able accuracy of the ACSVCS SBF distances and their ability to
resolve the cluster structure as claimed. It shows that the intrinsic
(M/L)−σe relation is extremely tight, but its study is limited in our
sample by the distance errors. It would be valuable to perform a
similar analysis as in the top panel of Fig. 16, with integral-field
data and accurate models, in a cluster like Coma, sufficiently close
that good stellar kinematics can be obtained, but sufficiently far that
errors in the distance can be virtually ignored. The smaller intrin-
sic scatter inferred for this sample, with respect to the one in the
top panel, suggests that, either they are not drawn from the same
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population, or the ACSVCS sample in Mei et al. (2007) spans a
slightly smaller set of distances within the Virgo cluster than the
ATLAS3D Virgo sample. The tightness of this correlation also places
stringent constraints on the possible intrinsic scatter on the IMF−σ

trend that we discuss in Paper XX. Any IMF trend must satisfy the
small scatter that we observe in this relation.

4.6 Relation between σ e and the maximum circular velocity

Previous studies (Zaritsky et al. 2006, 2008; McGaugh et al. 2010;
Dutton et al. 2011a) have tried to unify dynamical scaling rela-
tions of spiral galaxies and ETGs. For spirals, one can measure the
rotation velocity of the gas, which appears in the Tully & Fisher
(1977) relation between galaxy luminosity (or mass) and its maxi-
mum (asymptotic) circular velocity max (Vcirc), typically measured
from the kinematics of the neutral gas at large radii. For ETGs,
one can measure the velocity dispersion, which enters the Faber
& Jackson (1976) and FP relations. Unification of the scaling re-
lations is done by converting velocity dispersion into the circular
velocity Vcirc(Rmaj

e ) at the half-light radius or into the maximum one
max (Vcirc) adopting constant factors.

Typical conversion factors for Vcirc(Rmaj
e ) used in the literature

range from
√

2 to
√

3 (Courteau et al. 2007). For example Padman-
abhan et al. (2004) estimates k ≈ 1.65. While Schulz, Mandelbaum
& Padmanabhan (2010) adopts k ≈ 1.7 and Dutton et al. (2011a)
uses k ≈ 1.54.

Figure 17. Circular velocity Vcirc versus σ e. Top panel: correlation between
the circular velocity Vcirc(1Re) inferred from our models at 1Re, and σ e.
Bottom panel: correlation between the peak circular velocity max (Vcirc)
(within 1Re) and σ e.

Figure 18. Histogram for the distribution of the radius R/Re at which the
maximum circular velocity max (Vcirc) is reached, as a fraction of the galaxy
effective radius Re.

Our data set provides accurate σ e for all galaxies, together with
circular velocities from our dynamical models. This allows for a
robust empirical calibration of the relation. The correlation between
σ e and Vcirc(Rmaj

e ) is shown in Fig. 17 and the best-fitting relation
has the form

Vcirc(Rmaj
e ) ≈ 1.51 × σe. (30)

Considering the variety of photometric profile and galaxy flattening
in our complete sample of ETGs, it is remarkable that the relation
has a scatter of just 8 per cent, with a weak dependence on σ e.

Even slightly tighter is the correlation between σ e and max (Vcirc),
which has the form

max(Vcirc) ≈ 1.76 × σe, (31)

and an observed scatter of 7 per cent. Importantly, this coefficient
show essentially no variation with σ e (the exponent is the one within
the small errors). The max (Vcirc) defined here is the peak in the ro-
tation curve within the region where we have stellar kinematics,
which is generally within 1Re. As shown in Fig. 18, the inner max-
imum in the circular velocity max (Vcirc) is almost always reached
well inside 1Re, with 85 per cent of the peaks happening at a radius
smaller than Re/2 and a median radius of just Re/5. At these radii,
the contribution of the stellar mass totally dominates the total mass.
For this reason, max (Vcirc) should not be confused with the asymp-
totic value of the circular velocity at large radii, where dark matter
dominates. The latter is generally used in the Tully & Fisher (1977)
relation (but see Davis et al. 2011; hereafter Paper V). Although
the so-called bulge–halo conspiracy (van Albada & Sancisi 1986)
seems to generally make the two peak velocity values similar (e.g.
see Williams et al. 2009), this fact has never robustly established
for a significant sample of ETGs.

5 SU M M A RY

We construct detailed dynamical models (JAM), based on the Jeans
equations and allowing for orbital anisotropy, for the volume-limited
and essentially mass-selected ATLAS3D sample of ETGs. The mod-
els fit in detail the two-dimensional galaxy images and reproduce in
detail the integral-field stellar kinematics obtained with SAURON
out to about 1Re, the projected half-light radius. We derive accu-
rate total mass-to-light ratios (M/L)e and dark matter fractions fDM,
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within a sphere of radius r = Re centred on the galaxies. We infer
masses MJAM ≡ L × (M/L)e ≈ 2 × M1/2, where M1/2 is the mass
within a sphere enclosing half of the galaxy light. We also measure
stellar (M/L)stars.

We test the accuracy of our mass determinations by running
models with and without dark matter and we find that the enclosed
total (M/L)e is a robust quantity, independent of the inclusion of a
dark matter halo, with an rms accuracy of 6 per cent and negligible
bias. In other words, even using simple mass-follow-light models,
one recovers the total enclosed (M/L)e with good accuracy and
small bias. We illustrate the techniques we use to measure radii
and global kinematical quantities from our data, and to robustly
fit linear relations or planes to the data, even in the presence of
outliers and significant intrinsic scatter. We stress the difficulty of
measuring absolutely calibrated effective radii Re, and we argue
against extrapolation in the profiles, for more reproducible results.
Systematic offsets in Re determinations are the main limitation for
the use of the scalar virial relation for mass estimates, and may
affect size comparisons as a function of redshift.

We find that the thin two-dimensional subset spanned by galax-
ies in the (MJAM, σe, R

maj
e ) coordinates system, which we call the

MP has an observed rms scatter of 19 per cent, which would im-
ply an intrinsic one of just 11 per cent. The MP satisfies the scalar
virial relation MJAM ∝ σ 2

e Rmaj
e within our tight errors. However, this

is only true if one pays special attention to the methodology em-
ployed to determine the galaxy global parameters and in particular
(i) one uses as scale radius the major axis Rmaj

e of the ‘effective’
isophote enclosing half of the total projected galaxy light (without
extrapolating the profile beyond the data), and (ii) one measures the
velocity dispersion σ e (which includes rotation and random mo-
tions) from a spectrum derived inside that effective isophote. This
confirms with unprecedented accuracy previous claims (Cappellari
et al. 2006; Bolton et al. 2008) that galaxies accurately satisfy the
virial relations and that the existence of the FP is entirely explained
by virial equilibrium plus a systematic variation in the total (M/L)e.

We revisit the (M/L)e−σ relation and measure a marginally shal-
lower observed slope than previously reported. The minor difference
can be explained by selection of the sample of galaxies previously
used to fit the relations. We find that the correlation depends both
on galaxy rotation and environment, in the sense that both for the
subsamples of the galaxies in Virgo, or for the subsample of slow
rotators, the relation is more shallow and has a reduced scatter. In
the best case, when the most accurate distances are used, the ob-
served scatter drops to 11 per cent and the intrinsic one is estimated
to be a mere 8 per cent.

We study the correlation between σ e and the circular velocity
from the dynamical models. We find that Vcirc(Rmaj

e ) ≈ 1.51σe and
max(Vcirc) ≈ 1.76σ e. The relations have an observed scatter of 7–
8 per cent and the coefficient is independent of σ e.

The accurate global dynamical scaling parameters for the ETGs
in the ATLAS3D sample are used in the companion Paper XX to
explore different projection of the MP and the variation of galaxy
physical parameters.
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Moré J., Garbow B., Hillstrom K., 1980, User guide for minipack-1. Argonne

National Laboratory, Argonne, IL
Morganti L., Gerhard O., 2012, MNRAS, 422, 1571
Moster B. P., Somerville R. S., Maulbetsch C., van den Bosch F. C., Macciò
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