

CASA Multi-MS Structure and
Heuristics of Multi-MS Processing

Date: 2014-10-14
Status: Development
Page: 1 of 13

CASA Multi-MS Structure and

Heuristics of Multi-MS Processing

-­‐	
 Users	
 guide	
 -­‐	

v1.0	
 (CASA	
 4.3+)	

Sandra	
 Castro,	
 Justo	
 Gonzalez	

	

Table	
 of	
 Contents	

1.0	
 INTRODUCTION	
 ..	
 2	

2.0	
 MULTI-­‐MS	
 STRUCTURE	
 AND	
 CREATION	
 ...	
 3	

Figure 1.	
 	
 Create a Mulit-MS using partition with scan separation axis.	
 ..	
 5	

3.0	
 INPUT	
 MULTI-­‐MS	
 PROCESSING	
 ..	
 6	

3.1	
 Split2	
 and	
 Cvel2	
 Heuristics	
 ..	
 6	

Figure 2. Regrid a Multi-MS using cvel2. The spws are combined in the output MMS.	
 	
 8	

3.2	
 Mstransform	
 Heuristics	
 ..	
 9	

Figure 3. Treat MMS as a monolithic MS and create an output MMS with a different axis.	
 	
 10	

4.0	
 ADDING	
 PARALLELISM	
 TO	
 A	
 TASK	
 ..	
 11	

Figure 4. How to parallelize task applycal.	
 ...	
 11	

Figure 5. How to parallelize task cvel2.	
 ...	
 12	

CASA Multi-MS Structure and
Heuristics of Multi-MS Processing

Date: 2014-10-14
Status: Development
Page: 2 of 13

1.0	
 Introduction	

Pre-imaging CASA tasks can benefit from parallelization if the Measurement Set (MS) is
partitioned in disk. The partitioned MS in CASA is called Multi-MS (MMS). The Multi-MS
has been available in CASA since version 4.0, where a major effort was made to improve the
MMS format and the cluster infrastructure. Another major milestone was achieved in CASA
version 4.1 with the creation of the MSTransform framework, which brought in the lower-
level infrastructure necessary to finalize the parallelization of most pre-imaging CASA tasks.

The mstransform task can do everything that split, cvel, hanningsmooth and partition do. It
has a more complex interface, which is mostly suitable for advanced users. There are simpler
versions of mstransform in each of the individual tasks partition, split2, cvel2 and
hanningsmooth2. Every transformation done in an MS can also be done in a Multi-MS almost
transparently to the user.

Section 2 of this document will show the structure in disk of a Multi-MS and how to create an
MMS from a normal MS. Section 3 shows how mstransform and other parallel tasks process
an input MMS. Section 3 also gives details on the heuristics applied to the MMS when certain
types of transformations are requested on the data. Section 4 shows examples how to
parallelize some tasks in CASA.

CASA Multi-MS Structure and
Heuristics of Multi-MS Processing

Date: 2014-10-14
Status: Development
Page: 3 of 13

2.0	
 Multi-­‐MS	
 Structure	
 and	
 Creation

A Multi-MS (MMS) is structured to have a reference MS on the top directory and a sub-
directory called SUBMSS, which contains each partitioned sub-MS. A Multi-MS can be
handled like a normal “monolithic” MS. It can be moved and renamed like any other
directory. CASA tasks that are not MMS-aware can process it like a monolithic MS.

The reference MS contains links to the sub-tables of the first sub-MS. The other sub-MSs
contain a copy of the sub-tables each. In order to reduce the volume of the MMS, the
POINTING and SYSCAL tables (which are read-only in all use cases and identical for all
sub-MSs) are stored only with the first sub-MS and linked into the other sub-MSs. The
following is an example of a Multi-MS, which has 5 scans and has been partitioned in the
scan axis.

1) Looking at the reference MS. Symbolic links have an @ at the end.

> ls uid_X2.mms/

ANTENNA@
ASDM_ANTENNA@
ASDM_CALWVR@
ASDM_RECEIVER@
ASDM_SOURCE@

ASDM_STATION@
CALDEVICE@
DATA_DESCRIPTION@
FEED@
FIELD@

FLAG_CMD@
HISTORY@
OBSERVATION@
POINTING@
POLARIZATION@

PROCESSOR@
SOURCE@
SPECTRAL_WINDOW@
STATE@
SUBMSS/

SYSCAL@
table.dat
table.info
WEATHER@

2) Looking at the sub-MSs directory. The sub-MS names have the MMS basename followed
by a 4-digit index.

> ls uid_X2.mms/SUBMSS/

uid_X2.0000.ms/ uid_X2.0001.ms/ uid_X2.0002.ms/ uid_X2.0003.ms/ uid_X2.0004.ms/

3) Looking at the first sub-MS, which is the only one with a physical copy of the POINTING
and SYSCAL tables.

> ls uid_X2.mms/SUBMSS/uid_X2.0000.ms/

ANTENNA/
ASDM_ANTENNA/
ASDM_CALWVR/
ASDM_RECEIVER/
ASDM_SOURCE/

ASDM_STATION/
CALDEVICE/
DATA_DESCRIPTION/
FEED/
FIELD/

FLAG_CMD/
HISTORY/
OBSERVATION/
POINTING/
POLARIZATION/

PROCESSOR/
SOURCE/
SPECTRAL_WINDOW/
STATE/
SYSCAL/

table.dat
table.f1
table.f2
table.info
WEATHER/

4) Looking at the second sub-MS, which has symbolic links to the POINTING and
SYSCAL tables in the first sub-MS.

> ls –l uid_X2.mms/SUBMSS/uid_X2.0001.ms/

ANTENNA/
ASDM_ANTENNA/
ASDM_CALWVR/
ASDM_RECEIVER/
ASDM_SOURCE/
ASDM_STATION/
CALDEVICE/

CASA Multi-MS Structure and
Heuristics of Multi-MS Processing

Date: 2014-10-14
Status: Development
Page: 4 of 13

DATA_DESCRIPTION/
FEED/
FIELD/
FLAG_CMD/
HISTORY/
OBSERVATION/
POINTING -> ../uid_X2.0000.ms/POINTING/
POLARIZATION/
PROCESSOR/
SOURCE/
SPECTRAL_WINDOW/
STATE/
SYSCAL -> ../uid_X2.0000.ms/SYSCAL/
table.dat
table.f1
table.f2
table.info
WEATHER/

The table.info file inside the reference MS contains information on the axis used to partition
the original MS. This information is written by the partition task and carried over by other
tasks.

5) Looking at table.info in the reference MS.

> cat uid_X2.mms/table.info

Type = Measurement Set
SubType = CONCATENATED

AxisType = scan
This is a MeasurementSet Table holding measurements from a Telescope
This is a measurement set Table holding astronomical observations
Virtual concatenation of the following tables:
 SUBMSS/uid_X2.0000.ms
 SUBMSS/uid_X2.0001.ms
 SUBMSS/uid_X2.0002.ms
 SUBMSS/uid_X2.0003.ms
 SUBMSS/uid_X2.0004.ms

The partition task is the main task to create a Multi-MS. It takes an input Measurement Set
and creates an output Multi-MS based on the data selection parameters. Partition accepts three
axis to do separation across: auto, scan or spw. The default auto will first separate the MS in
scans, then in spws. Each partitioned MS is referred to as a sub-MS. The user may force the
number of sub-MSs in the output MMS by setting the parameter numsubms.

By default, the parameter createmms is set to True to create an output MMS. If set to False,
the task will work as the split task and create a normal MS based on the input data selection.
Task partition uses two helper classes to handle the parallel jobs; ParallelTaskHelper and
ParallelDataHelper, which are discussed in more detail in Section 4. Special care needs to be
taken in order to consolidate the sub-tables of the MMS because the spectral window indices
in the output are re-indexed in each engine to the same initial index and this needs to be
consolidated later. The sub-tables are merged after all engines return for post-processing.

Figure 1 shows a diagram of the creation of a Multi-MS. The example input MS contains 3
scans and 2 spws and will be separated in the scan axis. The output MMS will be created with
3 sub-MSs, each with a different scan.

CASA Multi-MS Structure and
Heuristics of Multi-MS Processing

Date: 2014-10-14
Status: Development
Page: 5 of 13

engine2 engine3

vis = inp.MS
outputvis = out.0000.ms
scan = ‘1’
spw = ‘’
etc…

input MS
spw = 0,1
scan = 1,2,3

vis = inp.MS
outputvis = out.0001.ms
scan = ‘2’
spw = ‘’
etc…

vis = inp.MS
outputvis = out.0002.ms
scan = ‘3’
spw = ‘’
etc…

partition parameters

vis = inp.ms
outputvis = out.mms
createmms = True
separationaxis = ‘scan’

ANTENNA

DATA_DESCRIPTION

FEED

FIELD

FLAG_CMD

HISTORY

OBSERVATION

POINTING

POLARIZATION

PROCESSOR

SOURCE

SPECTRAL_WINDOW

STATE

SYSCAL

SYSPOWER

WEATHER

out.0000.ms

SUBMSS

out.0001.ms out.0002.ms

Type = Measurement Set
SubType = CONCATENATED

AxisType = scan
This is a MeasurementSet Table holding measurements from a
Telescope
This is a measurement set Table holding astronomical observations
Virtual concatenation of the following tables:
 SUBMSS/out.0000.ms
 SUBMSS/out.0001.ms
 SUBMSS/out.0002.ms

table.info

symbolic links to
first sub-MS

engine1

output MMS
spw = 0,1
scan = 1,2,3

Figure 1.	
 	
 Create a Mulit-MS using partition with scan separation axis.

CASA Multi-MS Structure and
Heuristics of Multi-MS Processing

Date: 2014-10-14
Status: Development
Page: 6 of 13

3.0	
 Input	
 Multi-­‐MS	
 Processing	

There are essentially two ways of processing an input MMS, these are in parallel using a
cluster or as a monolithic MS. Basically every task in CASA can process the MMS as a
monolithic MS, because the MMS is made to look like a normal MS. This processing will
happen automatically in a transparent way to the user. Examples of such tasks are: listobs,
gencal, gaincal, etc.

Other tasks were modified to process the input MMS in parallel such as to speed up the
processing, or because they need to modify the input MMS or create a new output MMS.
Tasks that only modify the input MMS such as flagdata and applycal may raise NULL MS
Selection exceptions depending on the way the MMS was created and the data selection given
in the parameters. These exceptions are harmless in these cases and are hidden from the user’s
terminal. Flagdata’s summary mode does not modify the input, but creates output dictionaries
in each parallel engine. These dictionaries are consolidated into one single output dictionary,
which is returned to the user.

Tasks that create a new output such as split2, cvel2, hanningsmooth2 and mstransform will
process each input sub-MS in parallel whenever possible. In these cases, the output is a Multi-
MS with the same separation axis as the input. In some cases, the heuristics are more
complicated and it is not possible to process the MMS in parallel or to create an output MMS.
These cases are discussed in the following sections.

The only tasks that can create a Multi-MS from a normal MS are partition and mstransform,
as seen in Figure 1. These two tasks have a parameter called createmms that controls how to
partition the MS. The simple relation between input and output for all tasks is the following:

 input MS à output MS
 input MMS à output MMS
 input MS à output MMS (only partition and mstransform)

3.1	
 Split2	
 and	
 Cvel2	
 Heuristics	

Task split2 will work seemingly on both MS and MMS. If the input is a normal MS, the
output can only be a normal MS. If the input is a Multi-MS, the task will automatically create
an output MMS. The user may override this behaviour by setting the parameter keepmms to
False, in which case the output will be a monolithic MS. In most use-cases this will not be
needed.

In the case of time averaging with combination across scans in split2, the way the input MMS
was initially partitioned may interrupt the creation of an output MMS. The correct axis to use
when first creating the MMS for this type of transformation is the spw axis. When time
averaging across scans is requested the task will check if each sub-MS contains the selected
scans and if the duration of the scans is >= to the requested time bin. If the sub-MSs are not
self-contained, the task will raise an exception and exit. The user may still perform time
averaging across scans if the parameter keepmms is set to False, which will create a normal
monolithic MS as the output. The other option is to use task mstransform in this case, because
it has the ability to process the MMS as a monolithic MS and still create an output MMS (See
Section 3.2). The following is an example of the error message given in this case.

CASA Multi-MS Structure and
Heuristics of Multi-MS Processing

Date: 2014-10-14
Status: Development
Page: 7 of 13

WARN split2::::casa Cannot process MMS in parallel when combine='scan' because the sub-MSs do not
 contain all the selected scans
SEVERE split2::::casa Please set keepmms to False or use task mstransform in this case.
SEVERE split2::::casa An error occurred running task split2.

In a similar way, task cvel2 has a constraint that depends on which axis the input MMS was
partitioned. Because cvel2 does a combination of all selected spws before regridding the data,
the most feasible partition axis for the input is scan. The task will check if each sub-MS
contains all the selected spws and if not, it will raise an exception. The user may set keepmms
to False or run mstransform instead.

WARN cvel2::::casa Cannot combine spws in parallel because the subMSs do not contain all the
 selected spws
SEVERE cvel2::::casa Please set keepmms to False or use task mstransform in this case.
SEVERE cvel2::::casa An error occurred running task cvel2.

Figure 2 shows an example of running task cvel2 to change the channel structure of a Multi-
MS. The input MMS in this example has 3 scans and 2 spws which are partitioned in the scan
axis into 3 sub-MSs. The input MMS is processed in parallel using 3 engines. Each engine
combines the spws of one sub-MS (which contains one scan and all spws) and creates an
output sub-MS. All 3 output sub-MSs are then post-processed to create the final MMS.

The most reliable way of obtaining information of a Multi-MS structure is by using the
listpartition task. This task lists the following properties of a Multi-MS: separation axis, sub-
MS name, scan, spw, number of channels per spw, number of rows for each scan and the
size in disk. The following is the output of task listpartition for the input MMS shown in
Figure 2:

 This is a multi-MS with separation axis = scan
 Sub-MS Scan Spw Nchan Nrows Size
 inp.0000.ms 1 [0 1] [64 64] 1068 7.8M
 inp.0001.ms 2 [0 1] [64 64] 1080 7.4M
 inp.0002.ms 3 [0 1] [64 64] 1080 7.4M

CASA Multi-MS Structure and
Heuristics of Multi-MS Processing

Date: 2014-10-14
Status: Development
Page: 8 of 13

engine1 engine2

vis = inp.0000.ms
outputvis = reg.0000.ms
scan = ‘1’
spw = ‘’
nchan = 10
width = 2

engine3

input MMS
spw = 0,1
scan = 1,2,3

regridded MMS
spw = 0
scan = 1,2,3

cvel2 parameters

vis = inp.mms
outputvis = reg.mms
keepmms = True
nchan = 10
width = 2

STATE

SYSCAL

SYSPOWER

ANTENNA

DATA_DESCRIPTION

FEED

FIELD

FLAG_CMD

HISTORY

OBSERVATION

POINTING

POLARIZATION

PROCESSOR

SOURCE

SPECTRAL_WINDOW

WEATHER

reg.0000.ms

SUBMSS

reg.0001.ms reg.0002.ms

Type = Measurement Set
SubType = CONCATENATED

AxisType = scan
This is a MeasurementSet Table holding measurements from a
Telescope
This is a measurement set Table holding astronomical observations
Virtual concatenation of the following tables:
 SUBMSS/reg.0000.ms
 SUBMSS/reg.0001.ms
 SUBMSS/reg.0002.ms

 input MMS was
separated per scan

vis = inp.0001.ms
outputvis = reg.0001.ms
scan = ‘2’
spw = ‘’
nchan = 10
width = 2

vis = inp.0002.ms
outputvis = reg.0002.ms
scan = ‘3’
spw = ‘’
nchan = 10
width = 2

table.info

Figure 2. Regrid a Multi-MS using cvel2. The spws are combined in the output MMS.

CASA Multi-MS Structure and
Heuristics of Multi-MS Processing

Date: 2014-10-14
Status: Development
Page: 9 of 13

3.2	
 Mstransform	
 Heuristics	

Task mstransform will process an input MMS in parallel whenever possible. Each sub-MS of
the MMS will be processed in a separate engine and the results will be post-processed at the
end to create an output MMS. The output MMS will have the same separationaxis of the input
MMS, which will be written to the table.info file inside the MMS directory.

Naturally, some transformations available in mstransform require more care when the user
first partition the MS. If one wants to do a combination of spws by setting the parameter
combinespws = True in mstransform, the input MMS needs to contain all the selected spws in
each of the sub-MSs or the processing will fail. For this, one may set the initial
separationaxis to scan or use the default auto with a proper numsubms set so that each sub-
MS in the MMS is self-contained with all the necessary spws for the combination.

The task will check if the sub-MSs contain all the selected spws when combinespws=True
and if not, it will issue a warning and process the input MMS as a monolithic MS. In this
case, the separation axis of the output MMS will be set to scan, regardless of what the input
axis was. This possibility is not available in cvel2.

A similar case happens when the separation axis of the input MMS is per scan and the user
asks to do time averaging with time spanning across scans. If the individual sub-MSs are not
self-contained of the necessary scans and the duration of the scans is shorter than the given
timebin, the spanning will not be possible. In this case, the task will process the input MMS as
a monolithic MS and will set the axis of the output MMS to spw. This possibility is not
available in split2.

It is important that the user sets the separation axis correctly when first partitioning the MS.
See the table below for when it is possible to process the input MMS in parallel or not, using
mstransform.

input MMS axis combinespws=True nspw > 1 timeaverage=True,

timespan=scan
scan yes yes no
spw no no yes
auto maybe maybe maybe

In the event that the user requests two transformations at the same time: combination of
spectral windows and time averaging across scans on an input MMS, similar checks will be
applied in order to determine if it is possible to process the input in parallel. First, the task
will check if each sub-MS contains the selected spws and only in case of success, it will
check if it contains all the scans with proper duration. If the checks are unsuccessful, the input
MMS will be processed as a monolithic MS and the output will be in this case a normal
monolithic MS.

Figure 3 gives an example of an input MMS processed as a monolithic MS when doing time
averaging across scans. The MMS in this example was partitioned using the default auto axis
and contains spw=0,1 and scan=1,2; each scan has a duration of 50s. Each input sub-MS has
one scan and one spw, which is not enough to perform time averaging across scans with a
timebin=80s.

CASA Multi-MS Structure and
Heuristics of Multi-MS Processing

Date: 2014-10-14
Status: Development
Page: 10 of 13

input MMS
spw = 0,1
scan = 1,2

Figure 3. Treat MMS as a monolithic MS and create an output MMS with a different axis.

engine1

time averaged MMS
spw = 0,1
scan = 1,2

engine2

STATE

SYSCAL

SYSPOWER

ANTENNA

DATA_DESCRIPTION

FEED

FIELD

FLAG_CMD

HISTORY

OBSERVATION

POINTING

POLARIZATION

PROCESSOR

SOURCE

SPECTRAL_WINDOW

WEATHER

tavg.0000.ms

SUBMSS

tavg.0001.ms

Type = Measurement Set
SubType = CONCATENATED

AxisType = spw
This is a MeasurementSet Table holding measurements from a
Telescope
This is a measurement set Table holding astronomical observations
Virtual concatenation of the following tables:
 SUBMSS/tavg.0000.ms
 SUBMSS/tavg.0001.ms

table.info

vis = inp.mms
outputvis = tavg.0001.ms
scan = ‘’
spw = ‘1’
timeaverage = True
timebin = ‘80s’
timespan = ‘scan’

vis = inp.mms
outputvis = tavg.0000.ms
scan = ‘’
spw = ‘0’
timeaverage = True
timebin = ‘80s’
timespan = ‘scan’

mstransform parameters

vis = inp.mms
outputvis = tavg.mms
timeaverage = True
timebin = ‘80s’
timespan = ‘scan’

 sub-MS scan spw duration
inp.0000.ms 1 0 50s
inp.0001.ms 2 0 50s
inp.0002.ms 1 1 50s
inp.0003.ms 2 1 50s

check scans of sub-MSs
WARNING: Cannot process input in parallel!!!!!

Ø read the whole MMS in each engine and create the output MMS in
parallel.

Ø set the axis of the output to spw

sub-MS scan spw
tavg.0000.ms 1,2 0
tavg.0001.ms 1,2 1
 scan 1 duration is 80s
 scan 2 duration is 20s

CASA Multi-MS Structure and
Heuristics of Multi-MS Processing

Date: 2014-10-14
Status: Development
Page: 11 of 13

4.0	
 Adding	
 Parallelism	
 to	
 a	
 Task	

In order to make a CASA task process an MMS in parallel, a few lines of code need to be
added to the Python code. The Class ParallelTaskHelper will take care of creating the jobs
that will be sent to each parallel engine. Each engine will call an instance of CASA with the
task parameters. This example is for tasks that do not create an output MS. They either create
a calibration table or merely add/change something in the input MS, such as the
CORRECTED_DATA column. Figure 4 shows how task applycal is modified to process an
MMS in parallel. The text in blue shows what is added to the task code.

Line	
 2	
 :	
 import	
 the	
 ParallelTaskHelper	
 class.	

Line	
 9	
 :	
 test	
 if	
 input	
 is	
 a	
 Multi-­‐MS	
 and	
 execute	
 the	
 if	
 statement	
 if	
 True.	

Line	
 11	
 :	
 add	
 the	
 absolute	
 path	
 to	
 the	
 filename	
 given	
 in	
 parameter	
 gaincal.	
 This	
 is	
 so	
 that	

	
 each	
 engine	
 finds	
 the	
 filename	
 in	
 the	
 correct	
 place.	

Line	
 12	
 :	
 initialize	
 the	
 ParallelTaskHelper	
 with	
 the	
 task	
 to	
 run	
 and	
 the	
 parameters	
 of	
 the	
 task.	

Line	
 13	
 :	
 call	
 the	
 go()	
 method,	
 which	
 will	
 call	
 the	
 following	
 methods:	
 	

initialize():	
 add	
 an	
 absolute	
 path	
 to	
 parameter	
 vis;	

generateJobs():	
 generate	
 a	
 call	
 to	
 the	
 task	
 for	
 each	
 sub-­‐MS	
 in	
 the	
 MMS	
 and	
 add	
 to	
 a	
 	

list	
 of	
 jobs	
 to	
 be	
 executed	
 by	
 the	
 cluster;	

executeJobs():	
 execute	
 the	
 list	
 of	
 jobs;	

postExecution():	
 consolidates	
 list	
 of	
 return	
 values	
 from	
 all	
 engines.	

Line	
 17	
 :	
 this	
 is	
 the	
 start	
 of	
 the	
 normal	
 applycal	
 task,	
 which	
 will	
 be	
 executed	
 in	
 each	
 engine.	

Figure 4. How to parallelize task applycal.

1 from taskinit import *
2 from parallel.parallel_task_helper import ParallelTaskHelper
3
4 def applycal(vis, field, spw, intent, ….)
5
6 casalog.origin('applycal')
7
8 # Process in parallel if input is a Multi-MS
9 if ParallelTaskHelper.isParallelMS(vis):
10 # To be safe convert file names to absolute paths.
11 gaintable = ParallelTaskHelper.findAbsPath(gaintable)
12 helper = ParallelTaskHelper('applycal', locals())
13 helper.go()
14 return
15
16 # Start of normal task
17 try:
18 mycb = cbtool()
19 if ((type(vis)==str) & (os.path.exists(vis))):
20 # Add CORRECTED_DATA column
21 mycb.open(filename=vis,compress=False,
22 addcorr=True,addmodel=False)
23 else:
24 raise Exception, 'Visibility data set not found - please
25 verify name'
 ….

CASA Multi-MS Structure and
Heuristics of Multi-MS Processing

Date: 2014-10-14
Status: Development
Page: 12 of 13

When the task creates an output we use a different helper class. The ParallelDataHelper class
inherits from ParallelTaskHelper and is used to handle the heuristics of processing an MMS.
The example in Figure 5 shows how task cvel2 implements parallelism.

The following describes the above code:

Line	
 2	
 :	
 import	
 ParallelDataHelper	
 class,	
 which	
 inherits	
 from	
 ParallelTaskHelper;	

Line	
 7	
 :	
 instantiate	
 the	
 ParallelDataHelper	
 class	
 with	
 the	
 task	
 name	
 and	
 the	
 local	
 parameters;	

Line	
 13	
 :	
 check	
 if	
 parameter	
 vis	
 exist	
 and	
 if	
 outputvis	
 is	
 given;	

Line	
 19	
 :	
 process	
 in	
 parallel	
 only	
 if	
 input	
 is	
 a	
 Multi-­‐MS	
 and	
 parameter	
 keepmms	
 is	
 True;	

Line	
 23	
 :	
 work	
 out	
 the	
 heuristics,	
 which	
 will	
 check	
 if	
 it	
 is	
 possible	
 to	
 process	
 in	
 parallel	
 based	
 	

	
 	
 	
 on	
 the	
 separation	
 axis	
 of	
 the	
 input	
 MMS.	
 In	
 the	
 case	
 of	
 cvel2	
 it	
 will	
 check	
 if	
 the	
 sub-­‐	

	
 	
 	
 MSs	
 contain	
 all	
 the	
 selected	
 spws	
 in	
 order	
 to	
 combine	
 them	
 before	
 regridding.	

1 from taskinit import *
2 from parallel.parallel_data_helper import ParallelDataHelper
3
4 def cvel2(vis, outputvis, keepmms, passall, field, spw, ….)
5
6 # Initialize the helper class
7 pdh = ParallelDataHelper("cvel2", locals())
8
9 casalog.origin('cvel2')
10
11 # Validate input and output parameters
12 try:
13 pdh.setupIO()
14 except Exception, instance:
15 casalog.post('%s'%instance,'ERROR')
16 return False
17
18 # Input vis is an MMS
19 if pdh.isParallelMS(vis) and keepmms:
20 status = True
21
22 # Work the heuristics of combinespws=True
23 retval = pdh.validateInputParams()
24 if not retval['status']:
25 raise Exception, 'Unable to continue with MMS processing'
26
27 pdh.setupCluster('cvel2')
28
29 # Execute the jobs
30 try:
31 status = pdh.go()
32 except Exception, instance:
33 casalog.post('%s'%instance,'ERROR')
34 return status
35
36 return status
37
38 # Start of normal task
39 mtlocal = mttool()
40 try:
41 # Gather all the parameters in a dictionary.
42 config = {}
 ….

Figure 5. How to parallelize task cvel2.

CASA Multi-MS Structure and
Heuristics of Multi-MS Processing

Date: 2014-10-14
Status: Development
Page: 13 of 13

Line	
 27	
 :	
 initialize	
 the	
 ParallelTaskHelper,	
 which	
 will	
 create	
 a	
 cluster	
 using	
 MPI	
 (if	
 	

	
 	
 	
 available)	
 or	
 it	
 will	
 fallback	
 to	
 the	
 default	
 simple_cluster.	

Line	
 31	
 :	
 call	
 the	
 go()	
 method,	
 which	
 will	
 call	
 the	
 following	
 overloaded	
 methods:	
 	

initialize():	
 create	
 a	
 temporary	
 directory	
 for	
 the	
 output	
 sub-­‐MSs;	

generateJobs():	
 decide	
 how	
 to	
 create	
 jobs	
 for	
 input	
 MMS	
 in	
 parallel	
 or	
 as	
 a	
 monolithic-­‐	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 MS.	
 It	
 also	
 works	
 out	
 the	
 job	
 commands	
 depending	
 on	
 the	
 separation	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 axis	
 of	
 	
 the	
 output.	

executeJobs():	
 execute	
 the	
 list	
 of	
 jobs;	

postExecution():	
 consolidates	
 the	
 output	
 sub-­‐MSs	
 created	
 by	
 each	
 engine.	
 This	
 means,	
 	

creates	
 the	
 final	
 structure	
 of	
 the	
 MMS	
 and	
 consolidates	
 the	
 sub-­‐tables.	

Line	
 39	
 :	
 this	
 is	
 the	
 start	
 of	
 the	
 normal	
 cvel2	
 task,	
 which	
 will	
 be	
 executed	
 in	
 each	
 engine.	

