Observational studies of gas in circumstellar disks around Young Stellar Objects

Andrés CARMONA

PhD student European Southern Observatory, Garching & Heidelberg University, Heidelberg, Germany

Mario VAN DEN ANCKER, European Southern Observatory, Garching, Germany Thomas HENNING, Max Planck Institute for Astronomy, Heidelberg. Germany

They are several fundamental questions concerning protoplanetary disks that await an observational answer

- ★ What is the disk density distribution as a function of the radius?
- ★ What are the dynamics of the disk?
- ★ What is the "real" dust to gas ratio?
- ★ Time scales. How fast does the disk disappear?
- ★ What is the mechanism of Giant Planet Formation? core accretion? gravitational instabilities?

Disks could be observationally studied using the **GAS** or the **DUST**

However, until now the effort has been focused mainly on the study of the dust

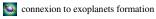
Dust causes the bulk of infrared radiation and strong spectroscopic features in the Infrared

Important discoveries have been done from dust BUT

crucial information is still missing

- Dust does not provide kinematic information · Spectrospic dust features are not sharp.
- 3 Dust not allows a direct measure of the disk mass
 - · Gas to dust ratio in a disk is expected to change with the disk evolution.
 - · For estimating the disk's mass from dust observations models with high parameter uncertainties are required.

Gas studies are essential to complement dust studies



WHY IS THE GAS SO **INTERESTING?**

99% of the mass of the disk is GAS

- O direct measure of the disk mass
- O direct estimation of radial density distribution
- © kinematic information!

Giant Planets are gaseous

What is required to study the gas?

Extremely High Spectral Resolution R~100000

- resolve the weak features of the gas
- resolve disk's velocity profile

High Angular Resolution

- © resolve the disk: 8 10 m class telescope
- Large Aperture
- obtain the required sensitivity

This research is now possible thanks to the recent development of a new generation of high resolution spectrographs at ESO-VLT

What kind of stars we need?

Young stars

· Nearby, big and bright enough

to be able to resolve the disk

Herbig Ae/Be stars !!!

- Young age < 10 My
- Intermediate mass stars 2 10 M

Bigger circumstellar disks

- · Fully radiative stars Brighter
- · Disks are "passive"

Radiate mainly by star light reprocessing

The GOAL

- · Determine the disk's radial density distribution
- · Obtain observational information on the gas dynamics
- · Determine disk's life time
- Gaps?
- Spiral Waves?
- · Resonances?

This research would provide crucial observational constraints about giant planet formation scenarios

Method and Instrumentation

High Resolution Infrared Spectroscopy at ESO-VLT

trometer And Array Camera (in service

Wavelength range 1-5µm

up to medium resolution Rs ~ 3000 pixel size 0.146 arcsec

☆ CRIRES ☆