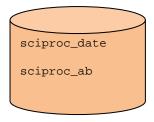


# Largely automated science processing (working title: *phoenix*)

Reinhard Hanuschik, 2012-05-10

### **Pre-conditions**

- all associations (ABs) already done, by standard QC workflow
- all associations point to certified and archived master calibrations (the ones to virtual calibrations can't be processed so they need to be filtered)
- we use only selected pipelines ("workhorse"/"flagship"/"bread and butter"):
  - o certified (reviewed by SDP)
  - o instruments with homogeneous data properties (science data types, calibration plans, headers stable over years)
  - instruments with sufficiently demanded modes (we don't aim for completeness but for optimal turnback of investment)
  - o pipelines with stable and robust processing
- products get seamlessly ingested as IDPs
  - o aim: no involvement by QCG needed
  - acceptable: starting set of configuration done by EDP and then reviewed/certified by QCG
  - o automatic ingestion done as part of the workflow (we never had that before but it seems reasonable and doable)


#### **Process**

#### Model 1:

• global solution: register date when *executable* science ABs have been created (as part of dfos workflow):

(executable means: no virtual calibrations, and pipeline/instrument (mode) is registered as "phoenix certified")

→ database



```
sciproc_date:
instr, date, abs
```

execute on central platform, have monitoring interface, have operator look into status

or

#### Model 2:

- local solution: fill a JOB\_FILE during day as part of dfos workflow
- execute locally, over night (because then there is no load and no interference with incremental daytime QC processing)

## Phoenix workflow

for each scheduled date:

- download mcalibs (bulk download since many ABs might require same mcalibs) into \$DFO\_CAL\_DIR/<date>
   read MCALIB list; ignore MASSOCs
   check for required gencalibs
   This is a single process, needs to be done once per date and INS
- process ABs download raw data within each job use processAB can be massively parallel; total execution time is T = t(single AB)\*N(ABs)/N(cores) delete raw files immediately after processing (by post-plugin) have minimal score-like process to evaluate association quality, plus measure pipeline processing quality (could be e.g. S/N) into QC1 params ingest QC1 params and scores (?) display status, logs, scores on process monitor
- ingest products
   few (mostly primary) only, no intermediate steps (?)
   must be automatic(!), at the end of processing

#### after scheduled job:

- feed info on process monitor
- delete all local mcalibs (except gencalibs) and sciproducts
- store process info in database (logs, scores, ingestion logs)

All of this could be done in the background, with an operator checking the process sanity.

## Day-to-day processing vs. back-processing

The described scenario is applicable for day-to-day processing of new science data.

- load balancing: incremental daytime processing of calibrations is not affected; science jobs are auto-scheduled only during the night
- from experience the processing power of dfo blades was usually high enough
- but it might be wise to envisage a dedicated server for day-to-day processing (like the pre-img server dfo33)
- to monitor and schedule these tasks, the currently existing dfos tools are sufficient.

The same scenario could be applied for back-processing (to close the gap between now and 2011-10-01), or re-processing (to process backwards the entire data history of an instrument), but:

- then we need a scheduling and monitoring tool
- the process then needs to be monitored and maintained

## **IDP** ingestion

Most if not all issues with **day-to-day processing** are expected for the ingestion process.

#### Issues:

- which products do we select for ingestion? The trivial answer is "the final ones" but what does it mean e.g. for UVES?
  - standard setups between 2001 and 2006 had a master response curve, the nonstandard ones not

after 2006, the master response curves have not been updated; the 2009 detector upgrade has not seen any corresponding master response curve → we cannot generally provide flux calibration

 $\rightarrow$ should we give up on it (case 1) or support it whenever possible (case 2)?

Case 1: final products come sometimes flux-calibrated, sometimes not Case 2: final products never come flux-calibrated, always wave-calib only

o do we provide the error file per final product? If so, how?

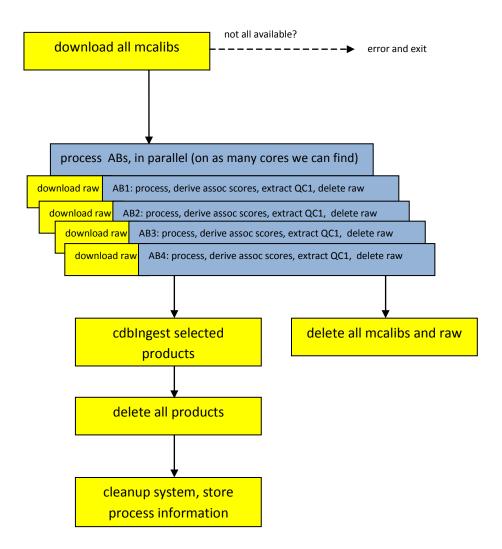
- How will EDP requirements for adding keywords look like this time (for IDP/VO compliance)?
  - o in the UVES reprocessing project 6 years ago, this turned out to be one of the workflow components that required most efforts, without paying back anything in the end (e.g. the lengthy discussion about the "proper" S/N value per spectrum costed a month of work, without this number being visible anywhere in the end)
  - o for the GIRAFFE reprocessing project finished more than a year ago, the lack of a data model has even prevented any publication
  - this is in general true for all QC SCIENCE data products
- this must be kept at a minimum level
  - o otherwise we are again limited by lack of standards/concepts, or
  - spend precious time with header compatibility issues rather than with science grade processing
- what does minimum mean?
  - o as much metadata information as possible to be read from the header
  - additional information as far as possible from configuration files or by database processes
    - for instance: if the header requires information about "pointing accuracy", it should be possible to provide this at database level

## What would all this mean for UVES?

- Typical nights with 50-100 science ABs: 1-2 hours execution time,
  - → performance was never an issue on dfo21
- processed modes (since pipeline certified!):
  - o ECHELLE, point source (there is also EXTENDED)
  - o ECHELLE, ABSORPTION-CELL
  - note: the flux calibration is not certified, strictly speaking!

- o no distinction for SM vs. VM, standard vs. non-standard setups
- no processing:
  - o ECHELLE, SLICER (why not?)
  - FLAMES/UVES alias UVES/MOS: unstable/delicate pipeline, not certified

## Impact on QC workload


- Of course: some impact on setting this up
- **no impact** on day-to-day operations: all is done automatically, no decisions to be taken; only a process monitor required
- provided we can automatically cdblngest ...
- true for day-to-day processing; not for back-processing or re-processing (some more monitoring required, pus some development for monitoring and maybe scheduling tools)

#### Requirements:

- one attempt only: the AB either processes fine or fails
- that information should be stored in a database and be displayed on the ADP user interface
- if pipeline issues are discovered: these should be taken up by SDP
- QCG will not provide any processing comments, or feedback to users or pipeline developers or SDP
- QCG will just provide the platform for processing (both hardware and software-wise)
- if issues show up with ingestion or pipeline, the process could be stopped anytime and resumed after fixing the issue, without the requirement to process the backlog
- in general, there cannot be a new operational requirement on QCG related to *phoenix* (unless it would be balanced by manpower, of course)
- there can also be no commitment to the speed of the process (if monitoring reveals bottlenecks, these should be taken up efficiently by SOS but not tackled by QCG)

## Sketch of phoenix processing workflow

Day-to-day processing: this workflow is executed once per day and per selected INS

