
Header for SPIE use

VLTI Auxiliary telescopes: a full Object Oriented approach
Gianluca Chiozzi*, Philippe Duhoux, Robert Karban

European Southern Observatory, Munich, Germany

ABSTRACT

The Very Large Telescope (VLT) Telescope Control Software (TCS) is a portable system. It is now in use or will be used in
a whole family of ESO telescopes VLT Unit Telescopes, VLTI Auxiliary Telescopes, NTT, La Silla 3.6, VLT Survey
Telescope and Astronomical Site Monitors in Paranal and La Silla). Although it has been developed making extensive usage
of Object Oriented (OO) methodologies, the overall development process chosen at the beginning of the project used
traditional methods. In order to warranty a longer lifetime to the system (improving documentation and maintainability) and
to prepare for future projects, we have introduced a full OO process. We have taken as a basis the Unified Software
Development Process with the Unified Modelling Language (UML) and we have adapted the process to our specific needs.
This paper describes how the process has been applied to the VLTI Auxiliary Telescopes[1] Control Software (ATCS). The
ATCS is based on the portable VLT TCS, but some subsystems are new or have specific characteristics. The complete
process has been applied to the new subsystems, while reused code has been integrated in the UML models. We have used
the ATCS on one side to tune the process and train the team members and on the other side to provide a UML and WWW
based documentation for the portable VLT TCS.
Keywords: VLT, VLTI, Telescope Control Software, Object Oriented, UML.

1. INTRODUCTION

At the beginning of 1999, the first VLT Unit Telescope started its scientific activity after one year of commissioning. The
Telescope Control Software developed for the VLT had already been used also on a number of other ESO Telescopes and
some new ESO projects had decided to use the same core TCS. We can now say that the VLT TCS is a highly portable
system, used in a whole family of ESO telescopes: VLT UTs, VLTI Auxiliary Telescopes, NTT, La Silla 3.6, VLT Survey
Telescope and the Astronomical Site Monitors in Paranal and La Silla.

That was the right time to start evaluating the overall software development chosen at the beginning of the VLT project,
about 8 years ago, in order to identify its weaknesses and its strong points.

The objective of this activity was to identify an improved development process to be applied to new projects and to retrofit
whenever possible and convenient in the VLT Project with the new methodology. In order to warranty a longer lifetime to
the system (improving documentation and maintainability), we decided to introduce a fully Object Oriented development
process. We also decided to take as a basis the Unified Software Development Process[1] with the Unified Modelling
Language (UML)[3] and to adapt the process to our specific needs.

2. THE SOFTWARE PROCESS FOR THE VLT CONTROL SOFTWARE

The Very Large Telescope (VLT) Control Software has been developed making extensive usage of Object Oriented design
and development methodologies, but the overall software process chosen at the beginning of the VLT project [5] and based
on IEEE 828 standards (see [5] for references) was not Object Oriented.

The success of the VLT Project proves that the choices made and the methodology used were good. In the 8 years we have
been working on this project, the Software Process has shown many strong points [6].

Nevertheless a number of weak points have been identified:
• Requirements capture/trace. The process does not provide good support for discussing conveniently the

requirements with the customers of the system. We need also a way of expressing requirements in a format

* Correspondence: Email: gchiozzi@eso.org; WWW: http://www.eso.org/~gchiozzi; Telephone: +49-89-32006 543



comprehensible and formal enough to be used for tracing them during the whole software process and to produce
the final acceptance tests. It also does not properly support requirement changes during the evolution of the project.

• Interface tracing. One of the major problems we have had in the project is the control of the interfaces between
the various components developed by different groups and external contractors and consortia. The ICD documents
could not be directly traced to the implementation of interfacing products, causing problems in the integration
phase.

• Documentation consistency. During the process, paper deliverables are produced in each phase (requirements,
preliminary design, detailed design and so on). The single documents are very useful for the review of each phase,
but the way they are structured and written makes it too resource demanding to keep all of them up to date when
moving from one phase to the next. As a consequence, after a few iterations, requirement, design documents and
implementation become inconsistent.

Some of these weaknesses become critical due to the specific parameters of the development of control software for
scientific experiments. This type of project is very different from other software projects and in particular from commercial
application software.

Here are some important aspects to consider:
• A scientific experiment is always at the limits of knowledge and technology. As a consequence requirements are

often unclear and change in the course of the project.
• The software to be developed is highly linked to the hardware and to the electronics. This has many implications.

For example software deadlines actually depend and are affected by hardware delivery dates. When the hardware is
ready, software must also be ready. Planning is always done a priori based on the hardware components.

• The system is unique. There will be just one or very few installations. We cannot count on hundreds or thousands
of beta testers to debug the software.

• When it comes to final system integration, the control software is used also to validate hardware and electronic
performances. The software team responsible for the final integration becomes automatically also responsible for
the verification of the whole system.

• Interfaces with the hardware and the electronics have a very big influence on the system and we have to spend a
big effort in making them clear and stable.

3. THE PILOT PROJECT: VLTI AUXILIARY TELESCOPE CONTROL SOFTWARE

We have decided to select the ATCS as pilot project for the introduction of a new methodology, able to solve or mitigate the
problems described in the previous section.

The adoption of a new design methodology requires:
• Tuning of the methodology itself, to adapt it to the needs of the specific domain in which it will be used.
• Training of the development team

In order to reach these two key objectives, the right project has to be selected: the ATCS project satisfies all the necessary
requirements:

• It is a complete system. We can exercise the methodology on a real scale project and get a realistic evaluation of
the results.

• It is a complete project (analysis, design, development and deployment). We can exercise the whole software
life cycle, from the requirements phase to the delivery and maintenance of the final product.

• It is an well-understood system. It is nevertheless just another telescope where we will have to run a Telescope
Control Software very similar to the one running on the VLT. We can then concentrate on the problems related to
the methodology without being "distracted" by the problems due to the comprehension of the system to be
designed.

• There is limited pressure/risk. Because of the good knowledge of the system to be developed and thanks to the
availability of most of the software needed for the implementation, we have no high pressure on the project and we
can spend the necessary time discussing issues related to methodology.



The ATCS is based on the portable VLT TCS, but some subsystems are new or have specific characteristics. The complete
process has been applied to the new subsystems, while reused components have been integrated in the UML models and
partially reverse-engineered.

As a by-product we have also obtained a more general UML and Web based documentation for the portable VLT TCS.

4. SOFTWARE PROCESS OVERVIEW

A software development process describes all the activities that are necessary to transform user requirements into a final
software system. Adopting a structured process is essential to be able to keep the development under control, i.e. to be able
to evaluate and measure at every step the amount and the quality of the work done and to assess the amount of remaining
work.

The software process we have adopted is based on the Unified Software Development Process, which is described in details
in the reference book [1]. The essential aspects of this process are captured, as the authors say, by the following three
cornerstones:

• Use Case driven
• Architecture centric
• Iterative and incremental

4.1 Use Case driven process

Use Cases are a way to describe the interaction between the system and its users. The set of all Use Cases makes up the Use
Case model, which describes the complete functionality of the system.

The main purpose of the Use Case model is to give an answer to the following question:

What is the system supposed to do for each user?

With respect to the traditional functional specification, this question focuses on the value each Use Case has for a specific
user.

The whole development process follows a flow that derives from the Use Cases. At the same time, Use Cases mature and
evolve during the life cycle of the project.

4.2 Architecture Centric Process

The architecture of a software system identifies the most important static and dynamic aspects of the system itself and
provides a common vision that all developers and customers must agree on or at least accept.

Through different views of the system being built, the architecture shows how the system will allow the realisation of all
specified Use Cases. During the project life cycle, the design will add to the architecture all details necessary for the actual
implementation of the system. The architecture will remain as a view of the whole design with the important aspects put in
evidence by leaving aside the details.

The architecture is the starting point to identify the shape of the system and a strong initial effort is essential to get a final
system that will work. It is also true, on the other hand, that the architecture will evolve during the project life cycle as the
Use Cases are specified in detail and mature.

4.3 Iterative and incremental process

The work necessary to build the final system is divided into smaller slices. The driving concept consists in the idea that each
slice must be a mini-project in itself, which has well defined goals and which can be measured and controlled.

Each mini-project is an iteration in the development, since it performs a complete workflow. The purpose of each iteration
is the realisation of a set of Use Cases. These Use Cases are first identified and specified. Then a design is created according
to the chosen architecture for the whole system. The development team implements the design and verifies that the system
satisfies the Use Cases.



The iteration is also an increment since it provides a new set of functionality in the system.

4.4 Project life cycle

The Unified Process repeats over a series of cycles making up the life of the project. Each cycle concludes with a major
product release. Each cycle consist of four phases:

• Inception
• Elaboration
• Construction
• Transition

Each phase terminates in a milestone, which is tagged by the official availability of a set of artifacts (documents, diagrams,
source code, executable programs and so on).

Each phase is subdivided into iterations. An iteration terminates in a build, i.e. an internal release of artifacts that is used as
a check point to verify that the objectives planned for the iteration have been met.

During each phase/iteration, five core workflows take place:
• Requirements
• Analysis
• Design
• Implementation
• Test

Use Cases play a key role in any of the four phases:
• In the Inception Phase, high level Use Cases are developed to identify what is in the scope of the project.
• In the Elaboration Phase, more detailed Use Cases contribute to the baseline architecture and to the risk analysis.

They are also used to define the planning for the Construction Phase.
• In the Construction Phase, Use Cases will be used as the starting point for detailed design and for developing test

plans. Use Cases provide the core of the requirements that have to be satisfied at each iteration.
• In the Transition Phase, Use Cases are the core items of the Acceptance Test. They are also used to develop user

guides and for training.

4.5 Project milestones

The official project milestones are extremely important, since they make available to managers and customers a set of
artifacts to be reviewed. They have in this way the possibility of making crucial decisions before work can proceed to the
next phase and to monitor the progress of the work.

These milestones are fixed points in the planning and their existence helps the development team in focusing the work
toward specific dates. For this reason we consider essential that milestones are not moved forward in time in case of delays
in the project, but that rather the scope of the milestone is clearly and officially restricted. This approach helps in better
identifying and manage project problems and allows to decide and timely undertake corrective actions. We have adopted
this approach in the VLT project and we consider it a key factor for its success.

Since we consider the first phases of the project extremely important, we have introduced an “extra” official milestone at the
end of the first iteration in the Inception phase. The following table shows the milestones associated with each phase:

Phase Milestone

Inception (first) Software Requirements Review
Inception Preliminary Design Review
Elaboration Final Design Review
Construction System Delivery
Transition Final Acceptance Test



In addition to these official milestones, that mark the end of each process phase, we consider equally important to have
periodic milestones, that we call releases, at the end of each iteration with a typical period of six months for a project like
the VLT control software. Also the release dates have to be fixed points, for the reasons already mentioned. At each release
an updated version of all deliverables is internally distributed to all partners in the project. This is particularly relevant for
big distributed projects, since it allows a synchronisation between all partners.

4.6 "One Document" approach

We have learned from the experience of our previous projects that keeping the documentation up to date and readily
available to all the interested parties is a major problem.

We have then put as our objective that of having one document[4]. This means that:
• All the relevant documentation of the project is kept in one single, centralised, repository
• No information is duplicated, but it can be simply cross-referenced wherever needed.
• The latest version of the whole documentation is always available for immediate access.
• Changes can be easily done, but everything is, at the same time, kept under configuration control.
• Requirement and design documents and the actual implementation code are seamlessly integrated. It is possible to

navigate from one to the other and back.

The ATCS Online Documentation contains at any time all the documentation available for the ATCS project and all the
documentation officially released at major milestones. It is kept under configuration control, so that it is possible also to

analyse the evolution of
the project with time.
Automatic consistency
checks warranty the
coherence of the
information provided.

The most difficult task
in designing the
documentation
architecture is to make
the best usage of the
Web technology to
allow at the same time
the readers:

• To get an
overview of the
project

• To navigate
down to the
deepest details,
ideally down to
implementation
source code
level

We are also well aware
that online
documentation alone is
not enough. Printed

documents are essential not only for reviewers, but also for members of the development team.

Web and printed paper have different characteristics and different strong and weak points that have to be exploited. The
online documentation favours navigability, while printed documentation favours sequential reading. In order to exploit these

Figure 1 - ATCS Online Documentation TOC



characteristics, information must be kept as atomic as possible. The elementary information units can then be used as
building blocks and inserted in very different documents.

In this area we have seen that the support of good tools and efficient procedures is extremely important. They shall
intervene at various places to automate operations that would otherwise be too time consuming,, highly repetitive or error
prone. Tools are also required to keep the update costs low, in particular with regard to the generation of the documentation.
This aspect is critical in the life cycle of the project in order to overcome the risk of documentation inconsistency. At last,
tools are necessary wherever the amount of information to process is large: check of model consistency, requirement
traceability etc...

5. USE CASES

Use Cases drive the whole software process and bind together all the phases from requirements capture to final delivery of
the system and maintenance. For this reason we have invested a significant amount of time in understanding how they have
to be written, in defining a template to be used and in analysing how they have to evolve and be used in the different phases
of the process.

We have verified that they are a very effective way of communicating with customers and among team members. Before
each discussion we always provide to the partners the set of relevant Use Cases. During meetings, they stimulate focused
discussions and help identifying important details.

5.1 Use Cases: scope and target readers

In the tuning of the development process, we have spent a lot of time discussing on the scope of the Use Cases and on the
target readers. We have concluded that the best choice between the various alternatives depends on the type of project and
on the structure of the organisation that implements it.

In our case we have to
take into account the
following constraints:

• We develop
control systems,
i.e. software that
directly controls
custom hardware
and electronics

• Our main contact
points during the
project phases are
the engineers
responsible for
the project and
the engineers of
the other
development
teams (hardware,
electronics,
external
contractors).

• Our "users" are in
most cases other
software systems
or human
operators with a
high degree of
specialisation and with a good knowledge of the architecture of the system.

Figure 2 - Use Case frame with table of contents, Use Case text and help



• Graphical user interfaces are not a primary focus of our development. For our systems, user interfaces are an
independent layer on top of the application.

Taking these aspects into account,
• We have NOT put in our Use Case model very high level Use Cases like "Perform an observation". They are

responsibility of the Data Flow development groups, while we have just to provide the building blocks that they are
going to use.

• We have developed "command based" Use Cases, i.e. our Use Cases describe atomic functions that can be
assimilated to commands sent by Actors to our system.

• We have specified with great detail the interfaces with the external software, electronic and hardware subsystems.
These interfaces must be agreed with other engineering groups and are essential for the successful integration of the
whole system.

These decisions make our Use Cases rather "technical" and they may be difficult to read and understand for non-technical
people, like for example astronomers. We have explicitly made this choice, but in other contexts and for other projects a
different choice (for example more similar to the description of graphical user interface interactions) may be better.

5.2 The Use Case template

Use Cases are written as structured text using a formal template. The usage of plain text facilitates the understanding of the
Use Case by people with different background. A formal template forces a recognisable and common layout; relevant
information is easier to find and communication is optimised.

The template we have defined is based on the very good papers of L.Mattingly[7] and A.Cockburn[8] and on the book
entirely dedicated to Use Cases of G.Schneider[9].

We do not go here into details on the Use Case template, for which we have already given the proper reference
documentation. We just want to stress that an unstructured description of the course of a Use Case in not sufficient, since it
leaves too much space to interpretation and does not force people to identify and discuss systematically important aspects of
the system. The purpose of the Use Case is to describe with as much details as possible the interactions with the system
under development and the actions that it performs, seen as a black box, in response to the stimuli coming from the Actors.
Details are added during the project phases as they are analysed and are discussed with the customers.

5.3 Use Case diagrams

The interrelations between Use Cases and Actors are expressed in graphical form by drawing Use Case Diagrams using the
UML language.

These diagrams are important to give and overview of the functionality of the system, but their understanding clearly
requires a minimal knowledge of the UML syntax and this cannot be assumed for all customers, that are often non technical
people.

For this reason we have on one side created the Use Case Diagrams and on the other side created HTML tables of contents
of the Use Cases, grouped according to different criteria. We have also implemented all the relations that appear in the Use
Case Diagrams as hyperlinks in the online version of the Use Cases.

6. INCEPTION

6.1 First Iteration in Inception: from Kick-Off meeting to Software Requirements Review

The purpose of the first Iteration in the Inception Phase is to understand the basic requirements of the system to be
developed. At the end of this first iteration the Software Requirements Review has the purpose to reach an initial agreement
between the customers and the development team on the requirements for the system and to demonstrate to the customers
that the development team has a good understanding of the agreed requirements.



This milestone is not part of the Unified Software Development Process, but we consider it very important for a good start
of a project, since it provides the opportunity for an official clarification on the basic characteristics of the system using the
formal language of the Use Cases.

During the first iteration of the Inception Phase, the following items are developed and delivered for the Software
Requirements Review:

• Glossary and overall system description. A general description of the system to be developed and a glossary with
the definition of the terms used are essential to create a common background between all customers and team
members and to avoid misunderstanding.

• System Context Diagram. The context diagram shows the system under design as a black box and all the Actors
that interact with the system.

• Actors. A glossary with a description of all the entities interacting with the system. Primary Actors are the users of
the system (not necessarily human, also other software systems). Secondary Actors are all the sub-systems that are
part, for example, of the Auxiliary Telescope and that have to be controlled by our Control.

• Use Case Model. All the Use Cases are derived from the user requirements and from higher level
documents. The development team is responsible for writing the Use Cases based on whatever information is
initially provided by the customers. Writing the Use Cases requires technical knowledge and a good insight on
the software development process. It is not correct to ask the customers to write them. When Use Cases have been
inferred from the available initial documentation they are discussed with the customers and accordingly modified.
The language used to write the Use Cases is simple enough for the customers to understand it, but the process to
obtain them requires technical knowledge that only the development team can have.

• General and non-functional requirements. Use Cases capture functional requirements, but a project is always
bounded also by general and non-functional requirements. These requirements specify the adoption of specific
standards, hardware architectures, software libraries or system performances, maintainability, extensibility and
reliability.

• Risk assessment. A first basic analysis of the areas of major risk in the project.

6.2 Inception leads to Preliminary Design Review

In the rest of the Inception Phase, the development team has to:
• Define system scope, i.e. it has to identify what is inside and what is outside the system. The basic interfaces

between the system and the Actors are sketched and they fit with what provided or foreseen for the Actors.
• Identify an architecture that can implement the requirements expressed for the system. The high level internal

structure of the system is defined in a realistic way.
• Identify and mitigate the risks critical to the successful implementation of the system. Risks can come from many

technical and non-technical areas.

At the end of the inception phase, the Preliminary Design Review has to demonstrate that all these objectives have been
reached and that it is feasible for the team to proceed with the
project, i.e. the team has the technical capabilities to implement the
proposed architecture.

During the whole Inception Phase, the team works on the artifacts
already described, adding new details, and on new items. Among
these, packages and interfaces are the most relevant.

6.2.1 Packages

The first step to draw the architecture of the system is to subdivide
it into smaller and more manageable units, called packages in the
UML terminology[3]. Packages should have[9]:

• A single functionality
• Strong internal cohesion
• Loose external coupling

• Subsystem
• Coordination
• Interface
• Support

Identify candidate
packages

Assign Use Cases

Step through the courses
of each Use Case

Write package
documentation

Iterate until

Architecture
is stable

Figure 3 - Identify packages



• Minimal communication to other packages

We have discussed between two alternative approaches for designing the internal architecture:
1. Start identifying the classes in the system and later on group them in packages and distribute them on the processing

nodes.
2. First identify the packages and distribute them on the processing nodes, then go in design details package by package to

identify the classes.

We have decided to go for the second one, since we think it maps better with our preconditions:
• Our system is distributed on an already defined HW architecture and set of processing nodes.
• We start from an existing and already known system, with HW sub-systems already clearly identified.

Packages are identified starting from an analysis of the Use Cases and (in particular for Control Systems) of the defined HW
architecture of the system. The process consists of iterating on the following four steps until the architecture is stable:
1. Identify candidate packages putting them in one of the following 4 categories:

• Subsystem packages. There is a subsystem package per each physical device (or group of strictly related devices)
to be controlled by our system. The package is fully responsible for the control of the device.

• Co-ordination packages. Are hierarchically above subsystem packages. They are responsible for actions of a
combined co-ordination nature, and they often use one or more subsystem to execute their actions.

• Interface packages. Implement the public interfaces that the system provides to primary Actors. These include
graphical user interfaces, but also programmatic interfaces and any other type of command interface.

• Support packages. Packages that cannot be well classified in any of the three previous categories are just simply
defined as support packages.

2. Assign Use Cases to packages. Take the Use Cases one by one and assign each of them to the package that seems to be
the best candidate to handle the responsibility for that Use Case. Add new packages if none seems to be responsible for
the Use Case.

3. Take each Use Case and step through the courses:
• Each Use Case must be entirely executed inside the package responsible for it
• If a step (or group of steps) has to be performed by another package, it becomes a Use Case for that package
• The package becomes a secondary Actor in our Use Case.
• The steps are replaced with an interaction with that Actor, invoking the new Use Case just identified.

4. Write Package Documentation consisting of:
• Package Description. A textual description of the package, following a predefined template
• Package Class Diagram. A first Class Diagram where each package is just represented by a class. It allows to

represent the basic relations between the packages
• Package Use Case Diagram. It shows all Use Cases that are responsibility of the package and the relations with

Actors.

6.2.2 Interfaces

This is the most important new item for the external view of the system. We:
• Create an ICD (Interface Control Document) section in the Online Documentation.

There must be one ICD sub-section per each Actor.
• Each ICD is subdivided in Interfaces, where each Interface describes a small number of Operations that are highly

internally coherent and loosely coupled with other interfaces.
• Every time a step in a Use Case involves an interaction of the system with an Actor, an Hyperlink to the

corresponding Actor:Interface:Operation is added.
• The ICD sections are used to extract the ICD documents for not already implemented/existing Actors and to check

the already implemented interfaces with the existing Actors.

This process is essential for a correct cross-referencing and checking of the interfaces. Clearly, the level of definition of the
Operations depends on the stage of analysis, design and implementation.



6.2.3 Design of critical Use Cases

For the most important and/or complex Use Cases it is necessary to provide more details, and in particular it is necessary to
demonstrate how the proposed system design is going to allow the implementation of the Use Cases. For this purpose some
behavioural diagrams can be used[1][3]:

• Activity diagrams
• Interaction (Collaboration and Sequence) Diagrams
• State Diagrams

7. ELABORATION

The purpose of the Elaboration Phase is:
• Identify a robust and resilient architecture baseline
• Identify and mitigate major risks
• Support with a proper project plan a realist estimate of schedule, cost and quality.

The Final Design Review must demonstrate that these objectives have been reached and the customers officially accept the
proposed architecture. On the other side, the organisation responsible for the development finally commit itself in delivering
the product with the agreed features and within the agreed budget and planning forecasts.

This milestone is the no-return point in the project and all major risks must have been investigated.

During the whole Elaboration Phase the team works on the items already delivered for the Preliminary Design Review,
adding new details. It is very important in this phase to develop prototypes to verify the proposed architecture and to analyse
the major risks. The prototypes also help in estimating the time and resources necessary for the implementation, in particular
when no historical data coming from previous projects are available.

For the ATCS Project, as
before for the VLT TCS,
we have built a prototype
as complete as possible in
terms of control
electronics and including
a number of hardware
components considered
very critical. This
prototype is used in the
elaboration phase to
assess the proposed
architecture and verify
that critical requirements
can be satisfied.

During this phase, most of
the time is used in the
Analysis and Design
work-flows[1] to build the
architecture of the

packages. The basic architecture classes of a package are obtained from the step by step analysis of all the Use Cases under
the responsibility of the package itself .

These classes always fit in one of the following basic three categories:
• Boundary classes. A boundary class is used to model the interaction between the package and the Actors, i.e. an

exchange of information or of action requests between the package and the Actors or other packages in the system.
A change in an interface is usually isolated in one or more boundary classes. In each package there is typically one

Nasmyth Wheel

Move()

(from Use Cas e V iew)

Set Nasmyth Wheel

(from Use Case View)
User

(from Use Case View)

SETPATH

<<messa ge >>

User

(from Use Case View)
Nasmyth Wheel

Move()

(from Use Case View)

NFDWh eelIf

WaitMove()
MoveAbs()

(from Tut oria l)

<< Interface>>

interfac es to

NFD Command Interpreter

SETPATH()

(from T utorial)

<<Interface>>

SETPATH

<<message>>

NFDWheel

namedP ositions
status

Status()
SetNamedPosition()
SetEnc oderPosition()
RetrieveEncoderPosit ion()

(from Tut oria l)

<<Entity>>

SetNFDWheel

SetNFDWheel()

(from Tut oria l)

<<Cont rol>>
activates

Use Case diagram

Class Diagram

Persistent
Data

Figure 4 - Identify package architecture



boundary class per each Actor interacting with it. It implements all interactions identified in the Use Cases assigned
to the package.

• Entity classes. An entity class holds information that typically lasts beyond the life of a Use Case. Entity classes
are identified by finding from each Use Case description the information-bearing objects Other Entity Classes can
be inferred from the problem domain or from the original requirement documents. In any case, only classes needed
in some Use Case must be introduced. One has to begin the search in the Use Cases and use the other sources to
confirm the choice and structure of the classes identified.

• Control classes. A control class represents co-ordination, sequencing, transactions and control of other objects.
The dynamics of the system are modelled by control classes. There is typically a control class per each Use Case,
although simple Use Cases may not need a control class.

8. CONSTRUCTION

The purpose of the Construction Phase is to actually build the system.

The System Delivery milestone marks the end of the Construction Phase and shall demonstrate that the system has reached
a level of product capability suitable for initial operation in the final environment. In ESO terms, this corresponds to the
“European Readiness Review”, i.e. the system before installation and beginning of in-situ test and integration.

In the Construction Phase, the emphasis shifts from the accumulation of the knowledge necessary to build the system to its
actual construction.

• Packages are assigned to software developers, together with all the Use Cases that have been assigned to them in
the previous phase and that have to be implemented for the current iteration.

• Packages are implemented independently. It is essential that interfaces with Actors and between co-operating
packages be defined in details. Every package must have its own package test (modular test, in VLT terminology).

• Package implementation means implementation of the Use Cases (or scenarios) assigned to it. The whole
process is Use Case driven.

• Packages are tested independently (modular testing). Black box testing is based on Use Cases. Scenarios are
used to produce Test Cases. External packages are replaced by stubs. Open box test is based on Class Tests.

• Each iteration is closed by system integration. Frequent system integration allows identifying early interface
problems. Test Cases for system integration are obtained from the Use Cases.

The prototype developed for the Elaboration phase becomes now a "Control Model" and used for modular testing of
subsystem packages (that need to have access to specific electronic or hardware components) and for integration testing.
The development process

9. TRANSITION

The purpose of the Transition Phase is to make the system ready for unrestricted release to the user community and a Final
Acceptance Test is set at the end of the Transition Phase. In ESO terms, it corresponds to the end of the commissioning
phase for the VLT.

We are very confident in the methodology and tools used for the VLT Commissioning [10], and we intend therefore to
adopt them also for the new process.

The only area that needs changes to be properly integrated in the Use Case driven process is the definition of the Test Cases.
We need now to extract Test Cases for final acceptance directly from the Use Cases. This is needed in order to meet the
objective of tracing requirements through the whole process down to final acceptance test by using Use Cases. All test
procedures must be fully automatic or, when this is not possible, based on detailed a check list. The tools developed for this
purpose in the VLT project are very powerful.

Use Cases are valuable also for writing user and maintenance documentation.



10. CONCLUSIONS

After one year of work, we have completed Elaboration and we are in the Construction phase for our pilot project. In this
time we have accumulated a big experience on the development process and on UML and we can draw first conclusions.

We have dedicated a lot of time in tuning the process and adapting it to our specific environment, but we are very satisfied
of the results and we have collected very good feedback from people involved in other aspects of the project.

For the analysis and the design of the system, we can definitely say that it is a big improvement over the previous process
and that it mitigates or overcome the weaknesses identified in the process used for the development of the VLT Telescope
Control Software (like requirement tracing, documentation, maintenance and support for object orientation). In particular:

• Use Cases are a very good way of capturing system requirements
• The process provides a good support for tracing requirements through all phases of the project
• With the support of good tools, it is very well suited for team work and collaborative development
• The use of the World Wide Web as a documentation repository is very effective, but work is required to provide

also good printable documentation automatically extracted from the Web documentation.

Next to come is a deeper understanding of the Construction Phase, with the focus on getting consistency and traceability of
requirements and design in the actual code. On one hand, we doubt that we can make this tracing process automatic and
transparent. On the other hand, the process used for the VLT has proved itself very strong in the development, testing and
deployment activities and we want to keep most of that positive experience.

Before the process can be applied on a large scale within ESO, it needs to be formalised in a way that new groups can adopt
it. We are now working to document in detail how the Unified Development Process has been tailored to our specific
application domain. We need also to enhance the set of dedicated support tools. The acceptance of a new development
process is highly correlated with the quality of the framework to support it. It must be robust and attractive; in addition, little
room shall be left in order to reinforce its internal coherency.

We have anyway registered a great interest inside our organisation for this work and other projects have already started
using our methodology and capturing their requirements by means of Use Cases.

We want also to reaffirm that open discussion and co-operation among team members have proven essential to build and
keep a "common vision". Tools for collaborative development help a lot in this respect. Tutoring is also very important to
train new team members or to introduce the process in a new project.

11. ACKNOWLEDGEMENTS

This work is the result of many hours of discussions, trials and test inside our Software Group. We want to thank here all
our colleagues for the important contribution to the definition of the SW Development Process for our projects.

12. REFERENCES
1. B. Koehler, C. Flebus, "VLTI Auxiliary Telescopes", Interferometry in Optical Astronomy, SPIE Vol. 4006, paper 03,

Garching 2000.
2. I.Jacobson, G.Booch, J.Rumbaugh, The Unified Software Development Process, Addison Wesley, Reading MA,1998
3. G.Booch, J.Rumbaugh, I.Jacobson, The Unified Modeling Language User Guide, Addison Wesley, Reading MA,1998
4. G.Chiozzi. J.M.Filgueira, "Real-Time Control Systems: a "One Document" Object Oriented Development Process,

Proc. ICALEPCS '99, Trieste, Italy, Oct. 1999
5. VLT-PLA-ESO-00000-0006, "VLT Programme, Software Management Plan", Issue 2.0, ESO, Garching, Germany,

1992
6. F. Carbognani, G. Filippi, "Software practices used in the ESO Very Large Telescope Control Software", Proc.

ICALEPCS '99, Trieste, Italy, Oct. 1999
7. L.Mattingly, H.Rao, "Writing Effective Use Cases and Introducing Collaboration Cases", JOOP, Oct 1998
8. A.Cockburn, "Structuring Use Cases with Goals", JOOP, Sep-Oct 1997 and Nov-Dec 1997
9. G. Schneider, J.P.Winters, I.Jacobson, Applying Use Cases : A Practical Guide, Addison Wesley, Reading MA, 1998
10. A.Wallander J.Spyromilio K.Wirenstrand, "Commissioning VLT unit telescopes: methods and results", This volume
11. M.Kiekebush, J.Pavlich, "Automatic report generator", This volume


