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Chapter 1

General information

1.1 About OYSTER

OYSTER is the original interactive data reduction package developed for the Navy Precision
Optical Interferometer at Lowell (NPOI). OYSTER is an endeavor to combine all aspects of data
reduction, modeling, astrometry, and imaging, including a stellar database, with an interactive
data language in one package. Procedures are often shared. It also tries to maximize ease of use
by providing both command line procedures and widget routines.

• HDS data base access: A full set of functions to access NPOI data files written in
the Hierarchical Data System format (developed by Starlink). Individual objects can be
accessed directly.

• Plotting and editing: General plotting widgets, with interactive display options and
editing routines. Flagtables are implemented for bookkeeping.

• Astrometry: Multi-color dispersion corrections, metrology calibration, astrometric func-
tions including the Naval Observatory Vector Astrometry Subroutines, epoch conversions,
and polar motion data. Solution for baseline and star coordinates.

• Calibration: General multi-dimensional visibility amplitude and phase calibration capa-
bility for several types of dependencies.

• Global modeling: Use of a hierarchical stellar systems format which enables fitting
physical parameters directly to any combination of data from interferometry, spectroscopy,
photometry, and astrometry.

• Stellar spectra and limb darkening: atmospheric models which are used in bandwidth
smearing computations and modeling. Display of stellar spectra and line identifications.

• Stellar data base: procedures for star catalog access. Storage of data in a table, and
procedures for estimation of physical parameters of stars, like diameters, masses, orbital
elements.

• Planning of observations: A set of procedures for computing visibility and simulating
data for scheduling. The stellar data base serves to aid in the selection of calibrator stars.

13
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OYSTER was created when three collections of scripts written first in PV-WAVE Command
Language (PV-WAVE is a trademark of Rogue Wave Software) and then also in the Interactive
Data Language (IDL is a trademark of Exelis Visual Information Solutions) were merged into
one package for the purpose of providing a comprehensive data analysis package. The PV-WAVE
version of OYSTER is however no longer supported, while support for GDL (Gnu Data Language)
has been added with version 8 of OYSTER (no GUI support).

The three original collections, CHAMELEON which reduces a single night of NPOI data,
AMOEBA which fits models to the calibrated visibility data of several nights, and STARBASE
which implements a stellar data base and provides catalog access, are described in this User’s
Guide in separate parts. Also introduced are two new collections of scripts, COBRA, which
provides functions for the interactive analysis of raw interferometry data (NPOI only), and
PEARL, which images interferometry data.

As of 2014, OYSTER has evolved into a package also supporting the reduction and analysis
of data from interferometers other than NPOI. This includes the GUI front-ends MyMidiGui
and MyAmberGui to the MIA+EWS (http://www.strw.leidenuniv.nl/∼nevec/MIDI/index.html)
and amdlib (http://www.jmmc.fr/data processing amber.htm) data reduction softwares for MIDI
and AMBER at VLTI, respectively. Also, observation planning and advanced data analysis is
available in OYSTER . Stand-alone reduction of data from other interferometers is not planned
to be included in OYSTER since this involves obviously very instrument specific tasks.

Data of other interferometers can be read and modeled by OYSTER if they are stored using
the OIFITS format (http://www.mrao.cam.ac.uk/research/OAS/oi data/oifits.html).

1.2 About this guide
This is not only a manual on how to use the OYSTER software, but a reference as well on how
the procedures work. Study of the Programmer’s reference sections should enable you to
write and add your own procedures to the software, or create modified copies of existing routines
which replace the latter if they are compiled during a session.

1.3 Fonts used in the guide
In order to facilitate reading this manual, various fonts are used. Responses you are asked to
type in at the command level appear in these fonts: hds open,filename. In this example, a lower-
case italic font indicates numeric or character parameters you have to supply. Procedure names
in the text appear like this: average, whereas widget buttons are typed like this: OPEN or
DispCorr, depending on whether or not they bring up a new widget or take immediate action,
respectively. Note, that IDL is not case sensitive Messages from the OYSTER software or IDL
are denoted in this style: Averaging complete.



Chapter 2

Installing OYSTER

The OYSTER installation consists of code, catalog, and stellar atmosphere data. Please see more
detail at http://www.eso.org/∼chummel/oyster/download.html and contact the author to obtain
a copy of the code. The external C and FORTRAN library compiled for Linux 64-bit systems is
included, but can be recompiled if necessary from the C code which can also be obtained from
the author.

The file oyster.tar.gz is unpacked first, this will create the folder named oyster. Inside it,
unpack catalogs.tar.gz and atmospheres.tar.gz. Two new directories are created, atmospheres
and catalogs.

2.1 Compiling OYSTER
Compilation always includes the procedure code which is then saved in oyster/oyster.cpr. This
does not apply to GDL installations, where code is compiled on the fly. Makefiles exists in the
main OYSTER directory which simplify the installation. Use make -f Makefile.idl to compile
the IDL installation, and make -f Makefile.gdl to prepare the GDL installation.

If you need to compile the C/FORTRAN external library due to incompatibility of your OS
with the pre-compiled Linux 64-bit version, unpack the src.tar.gz file (to be obtained from the
author) in the oyster/source directory. Make sure your OS is either Linux or Darwin, checking
with the uname UNIX command. The Makefiles will use uname to determine which of the pre-
installed Makefiles in the library directories are used for compilation. The only part of the
Makefile which still has to be edited manually before running make is Makefile.<uname>.in
in source/c which needs the path to the local IDL installation, as well as the location of the
libgfortran.a library file. Then run the make -f Makefile.src command in the home directory.

2.2 Programmer’s reference
OYSTER uses an external library (oyster.so) containing C and FORTRAN objects. This library
must be sharable in order for IDL to access it (via the call external command). Aside from
the OYSTER specific code (written in C), this library contains five external libraries. These are:

• HDS (Hierarchical Data System, STARLINK)

• NOVAS (Naval Observatory Vector Astrometry Subroutines, USNO)

15
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• FITSIO (The Flexible Image Transport System I/O package, HEASARC)

• WD (Wilson-Devinney binary light curve software, U Florida)

• ROCHE (Gravity-darkening in rotating stars, Deane Peterson, SUNY)

• SHADOW (VLTI shadowing computations)

After the standard installation procedure described above, manual re-compilation can be
performed by going into the C source directory source/c, and editing Makefile. (Please note
that the Makefile is the result of a concatenation of Makefile.all.in and Makefile.<uname>.in
performed by the standard installation procedure.) Then run make clean and make to compile
the library, which is named oyster.so. Copy this file into the sub-directory of the OYSTER home
directory corresponding to your operating system using the provided shell scripts release.Darwin
or release.Linux. into the OYSTER home directory. Please send a copy of the Makefile to the
author if you had to modify it.

This procedure should work for LINUX and DARWIN. OYSTER will detect your OS, and
then know the path to the shared library and the binary JPL ephemeris file (which differs
between MAC and PC based work stations), residing in directories linux and darwin under the
main OYSTER directory.

To recompile and install the IDL procedures, start up IDL (in the idl directory) with the com-
mand file c.pro, i.e. idl c, which will then compile the IDL code and save it into files oyster.cmb
and oyster.cpr. The command file will then end the session. You should use OYSTER first to
recompile the crossindex subdirectory of the catalog directory, if the code and catalog data distri-
bution tape was not specifically assembled for your architecture. (This is because the crossindex
files are binary files in XDR format.) To recompile the crossindices, type get crossindex,1. To
exit the session, type quit.

Finally, it might be necessary to re-create the binary ephemeris file used by NOVAS. To do
this, go into the jpl subdirectory and follow the instructions in README.1st.

2.3 Earth orientation updates
Edit the file oyster/usno/cronjob to contain the proper path to the update shell script, and then
use the command

crontab cronjob

to install a job which fetches every Thursday the new UT1 and polar motion data from a
computer at the US Naval Observatory. Otherwise, the database usno/mark3.dat obtained with
the download will not be updated and eventually will not provide Earth orientation data for the
date observed. In this case, a warning message will be displayed, which, however, can usually
be ignored in all cases but astrometry.
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Using OYSTER

3.1 Starting up

You invoke OYSTER at the UNIX prompt by typing (the actual path may be different on your
system):

idl /home/chummel/oyster/oyster

or

gdl /home/chummel/oyster/oyster

Provided IDL (version 5.0 or higher) or GDL (version 0.9.3 or higher) is installed, the
language will start up and read and execute the commands in oyster/oyster.pro. This procedure
file will first determine the location of the oyster, atmospheres, and catalogs home directories,
then load the compiled procedures in oyster.cpr, set the common blocks and call the procedure
setup oyster to finish the setup. At this point, OYSTER procedures and functions are ready to
use at the command line or through invoking the main widget by typing oyster. If you are using
remote login without the capability of displaying windows, edit the oyster.pro file to include the
/notv option. Type quit to exit OYSTER .

If this is the first time you run OYSTER , run the commands limbdata and kurudata,’ip00k2.pck19’
to create files in the atmospheres directory necessary for using model atmospheres.

3.2 What to do next?

More than a thousand procedures and functions available in OYSTER support three main tasks:
reducing and calibrating one night’s interferometric data, as well as scheduling and HDS file ac-
cess (this collection is referred to as CHAMELEON), computing stellar models and fitting them
to the data (AMOEBA), and creating and managing stellar data bases and catalogs (STAR-
BASE). Please refer to that part of this guide which is appropriate for your task. Note that
many of the scripts are interdependent and share resources.

17
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3.3 Working with OYSTER

OYSTER procedures are called from within the IDL environment. This is done from either the
IDL command line by typing in the appropriate commands, or by invoking a widget, which
provides buttons to click on for specific action. The latter method is less flexible but has the
advantage of not requiring you to memorize all the commands and their parameters. Widgets
provide an easy way to set parameter values in common blocks, which is how most of the
information is passed between functions. You may use both operation modes simultaneously.
Note that widget buttons which bring up another widget are labeled in all caps, whereas the other
type either displays a sub-menu (indicated by the arrow) or executes a procedure upon selection.
At the command level, you manipulate data using IDL. This was one of the reasons to base
OYSTER on a language like IDL. Note that neither language is case sensitive. An understanding
of the language is very helpful when reducing data with

AMOEBA tries to place the widgets in convenient places on the screen so that there is not
too much overlap and so that the plot windows do not cover too many of the widgets. The IDL
version detects the dimensions of your screen and uses this information for the placements of
the widgets. OYSTER .

Procedures usually confirm proper completion of the task with a message terminated with
a period. In-progress messages are not terminated. Error messages usually contain the name of
the procedure in which the error occurred. In case of a crash inside a procedure under IDL, click
on the terminal window to make it active, then try to return to successively higher levels by
typing .return until a .con command causes IDL to resume. In this case the widgets, if previously
displayed, will be updated. Note that in a crash situation, IDL is in a debugging mode with
operation stopped at the offending line in the code. You can enquire about variables using the
info,variable,/structure command. Under IDL, just type retall and you will be returned to the
main level.

3.4 In case of trouble

Unlike many programs compiled from C or FORTRAN code, the OYSTER code, being written
in an interpreted language, almost never crashes by returning to the operating system prompt.
What usually happens is that execution stops at the offending line in the script and an error
message is printed. At this point, the fearless user can print values of variables, enter IDL
commands, all within the current context, in order to investigate the causes of the crash. To
resume the OYSTER session by backing out of the procedure, it is best to return right away to
the main level by typing retall.

3.5 Getting on-line help

Click on the big OYSTER logo button to start a browser (Firefox) on OYSTER ’s main HTML help
page (oyster/html/oyster.html). These pages provide brief reminders of implemented features.
(This page is under construction for the forseeable future.) Some of the widget routines provide
HELP buttons. At the IDL prompt, type info for help, help at the IDL prompt. Type info for
a list of currently defined IDL variables and available procedures and functions.
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3.6 Finishing up
Before quitting OYSTER , you will need to decide whether to save any calibrated data, FITS
files, observing lists, or stellar data base tables. OYSTER never automatically saves any data for
reasons of not destroying existing files or creating files the user doesn’t know about.

3.7 Using OYSTER at NPOI
At the US Naval Observatory, raw data from the interferometer is first reduced with CON-
STRICTOR, which is a stand-alone program. It computes the visibilities and averages the data
into 1 second intervals, the so-called point data. Averaged raw data from CONSTRICTOR can
be found in /home/constrictor on octans at the site. It is best to start up OYSTER in a directory
owned by the user, and then to enter the full path to the data file when opening it. The path
is stripped off by OYSTER when deriving output file names from the input file name so that all
files are written into the local directory. Due to the size of the .con files, it is best not to make
copies of them.

Averaged scan data from OYSTER is output into HDS files with the extension .cha. If you
have a file with unknown history, the data might have been calibrated, or they might not. It is
best to assume that they have to be calibrated, in which case one should remove any existing
calibration before continuing. In order to find the right file for observations of a particular star,
use the obsdates procedure (see section 19.8).
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OYSTER support for other
interferometers

4.1 Motivation

Once interferometric data have been reduced and averaged using instrument-specific data reduc-
tion packages, they can, if they have been stored in the OIFITS format, be read by OYSTER for
calibration (if necessary), and further analysis employing models and images. In this way, the
vast number of data analysis procedures written for OYSTER can be used for any kind of inter-
ferometric data.

4.2 OIFITS reader

The primary access to OYSTER procedures is via the OIFITS reader (get oifits), which stores
the data internally in the scans and other auxilliary IDL structures. Alternatively, VLTI
MIDI and AMBER data can be reduced using the MyMidiGui and MyAmberGui front ends
(http://www.eso.org/∼chummel/midi/mymidigui/mymidigui.html,
http://www.eso.org/∼chummel/amber/myambergui/myambergui.html). These provide easy to
use GUIs for the externally developed data reduction softwares (MIA+EWS and amdlib), and
automatically store data internally using OYSTER ’s data structures, as well as write data to
disk in OIFITS format.

For data to be stored internally in OYSTER many requirements are to be met, mostly for
historical reasons of a data package first released over 15 years ago. These procedures are
handled in a mostly transparent way, but need to be kept in mind in case of adaptations of the
code to specific applications. Here we point out relevant “pecularities” of OYSTER .

• Array information such as station names and coordinates are not strictly necessary to be
present in the OIFITS data file, and models can be computed by OYSTER for them using
the uv-coordinates. But OYSTER considers the latter as secondary data and usually
computes these from the apparent star positions, observation dates and times, as well
as the station coordinates. This is due to one of the original applications of OYSTER to
astrometry with NPOI. In practical terms, use of astrometric routines such as calcastrom
should therefore be avoided.
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• Object coordinates are also not strictly necessary for the computation of model data,
and thus OYSTER will read OIFITS even without the OI TARGET table. However, inter-
nally each target must have an ID composed of a three letter catalog name (e.g. HDN
or HIP), and an index into this catalog (e.g. HDN123306). This is the so-called star
ID. Again this has to do with the use of OYSTER as astrometric software for NPOI. The
OYSTER installation includes several tables in the starbase directory (e.g. vlti.hdn which
are used for looking up catalog IDs for a given target name. If no entry can be found, the
default OBJ designation is used (OBJ+HHMMSSFFDDMMSSF). This is usually not a
problem except that the STARBASE procedures will not work anymore, such as compiling
stellar data for the observed targets from installed catalogs.

• General configuration items, stored in the genconfig structure, will often be incomplete
when reading an OIFITS file.

4.3 Programmer’s reference
Almost all interferometer specific information is encoded in oyster.pro.
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Plotting and editing

We describe here all OYSTER plotting and editing procedures. For calibrated visibility data, as
well as other data from e.g. astrometry, the user will select plotting menus from the so-called
AMOEBA (lower) section of the main OYSTER GUI. While AMOEBA is described later on in a
dedicated part of this manual, it is the general data analysis (as compared to reduction) facility
of OYSTER . The following plot menu is available.

Plot |

INTERFEROMETRY Plot visibility data
ASTROMETRY Plot ρ/θ data
SPECTROSCOPY Plot radial velocity data
PHOTOMETRY Plot magnitude measurements

Each of the above buttons will display a widget designed for this class of plot. Plotting of
interferometry data is handled by the same routines as used in CHAMELEON (see dedicated
part on this NPOI data reduction facility).

5.1 Interferometry
Most of the plots of interferometric data in OYSTER are handled by one procedure (plotdata).
Consequently, there is one widget handling the plot selection (ww plot). Whenever a plot
is requested, a selection widget designed for that class of plot (point, scan, astrom, etc.) is
opened, replacing any currently displayed selection widgets from previous requests. A second
widget is created for the selection of which indices to plot, if this input is required. Plots can be
2-dimensional or 3-dimensional. Therefore, three data streams (‘x’, ‘y’, and ‘z’) are available.

5.1.1 The plot selection widget

Here you define what is plotted along the axes, for which stars, and other various options. If the
choice for an axis required additional selection on what range of data indices to plot, another
widget, the data selection widget will open (see below).

If more than one channel, baseline, or point is selected, multiple plots will appear in the plot
widget for those indices not corresponding to the selected slice (the Slice menu is optional in
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classes scan and astrom; in class point the default slice is pt. In order to have all plots in a
single graph, select the All in 1 option. The Preset menu implements a short-cut to setting
the most common selection for plots of the visibility either for slice pt or ch.

Clicking on PLOT|Screen will display the plot. At this stage, you can fit functions to
the data (FIT: the residuals are plotted and can be manually edited), enter a new plot range
(Range: enter 0,0 for automatic scaling) or by defining a window (Window: click left button
to anchor upper left corner, click middle button fix size and shift box, click left button again to
fix position or right button to select automatic scaling and exit), identify data points (Identify:
click left button for repeated identifications, right button to exit), and edit data manually (Edit).

Plot |

Screen Open new plot window and display plot
File Write PostScript output

Edit |

Auto Do automatic editing
Zero Do automatic zero value editing

Util | (single plots only)

Edit Manual editing
Window Set new range by placing a box
Range Enter new range
Mean Return average data value in a window
Identify Identify data point
H-Line Display horizontal line
V-Line Display vertical line
FIT Fit functions to data

As for editing, you have three options: automatic, zero, and manual editing. The first option
will put the data through a median filter (point data) or edit outliers based on their deviation
from a 3-rd order polynomial fit to the data (scan data). The second option will remove data
points with value zero, and the last option (recommended) will let you define boxes to delete
data inside or outside of a box. Note that the data selection applies to both plotting and editing.

Option |

Errors Display error bars
Flagged Display flagged data too
Lines Connect data points
All in 1 Plot all graphs in one plot
3D Open 3D plot widget
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Image Plot 3rd dim in TV style
NoFIR Fits to all data (FIR = Fit In Range)
NoSort Do not sort x-values
NoTrace ‘x’ will not trace ‘y’ selection
All OBs Do all spectrometers (uv-plots only)
All IBs Do all IBs (not implemented)
Model Plot model too (AMOEBA only)
Color Select color printer
Smooth Compute and plot model values also between observations
Paper Display camera-ready plot labels
Custom Vis. plot for NPOI: scale data to model

5.1.2 The data selection widget

A data selection widget is opened for a stream when the selected axis item requires further user
input. However, if the NoTrace option is de-selected (the default), such a selection widget will
not be activated for the ‘x’-stream, which will be assigned the selection of the ‘y’-stream.

In the data selection widget, input beam, output beam, and triple have to be specified,
depending on the selected axis item. The selection for channels, baselines, and points are for
this input, output beam, or triple only. The All OB option is valid only for uv-coverage plots,
where it implies that the data of all output beams, channels, and baselines shall be plotted.

A data selection for a specific index (e.g. channel) is made by combining a directive (All,
Next, Current, Previous, Selected) with a selection typed into the selection line. A
selection line entry is a series of numbers separated by commas, and/or number ranges consisting
of a lower and upper value separated by a dash. This entry is parsed into a vector of selected
index values (e.g., ‘2,3,6-9’ is parsed into ‘2,3,6,7,8,9’). Please do not forget to hit <return>
after typing in your selection line entry!

Next and Previous return a selection of the next or previous n index values, where n is
the number of selected index values in the selection line. Thus, if the selection line reads ‘1,2’,
Next will select ‘3,4’ for the next plot, then ‘5,6’ and so on. It is not recommended to select
these directives for more than one axis at a time as they will act simultaneously. The Current
directive simply leaves the current selection unchanged (which is not necessarily identical to the
displayed selection!).

It is not necessary to specify indices or alter the corresponding selection for axis items which
do not contain those indices.

The pt and star selection address the same index. Therefore, the star selection is applied
after the pt selection as displayed in the data selection widget. When plotting scan data, you can
obtain information on which scans correspond to given stars from the Utilities|List|Scans
button.

5.1.3 Flagging data

Flagging data is allowed in only some plot classes (point, bg, and scan), and manual flagging
only if the plot window contains a single plot (remember to use the All in 1 option to plot
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a selection of data into one plot). Automatic flagging is recommended only for point data. In
the manual mode, you will define a box on the plot by first clicking the left mouse button on
the upper left corner, then set the size/shape of the box by moving the cursor and clicking the
middle button, then positioning the box. Click on the left button to place another box, or the
right button to finish. Finally you will be presented with a list of options of what to do with
the boxed data. Flagged data will be colored red.

5.1.4 Logical editing and flag tables

The scope of bad data flags can go beyond the currently selected item, if other data items exist
which depend on the selected one. This means that a particular point of data is unlikely to be
valid if the item on which it depends is flagged. Thus, for example, flagging a photon rate point
will cause CHAMELEON to flag all visibilities where this photon rate point has a contribution.

Flagging information will be automatically entered into flag tables, with a label attached to
every entry specifying the reason for the flag. (The reason currently is derived from the system
date/time.) A list of these labels will be displayed if the UNFLAG button is selected. Each
entry is identified by the exact time of observation, and the data selection. Flag tables can be
saved to disk for later retrieval. The name of the disk file holding flag tables is made up of the
body of the input data file name plus an extension .flg.

5.2 Astrometry
Util |

Identify Identify data points. Program enters loop
in which left mouse button click identifies, right button click identifies and exits the
loop. If no plot window is displayed, a list of the measurements will be shown with
the individual χ2 contributions to identify bad data.

Window Change display area
Range Enter new range of display
Ellipse Interactively define an ellipse. Use left mouse button to set or move

either semi-major axis end points, the middle button to set or change the ellipticity,
and the right button to exit either mode, and the utility upon clicking twice.

Orbit Run Thiele-Innes method to obtain inital estimate of orbital parameters. The
results are stored in a single orbit storage area.

Date Enter a date and display the position.
Edit Edit data. No flag tables used.

Options |

Errors Display error ellipses
Flagged Display flagged data too
Ellipse Superpose apparent ellipse
Orbit Superpose apparent orbit
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J2000 Precess observations to J2000 before plotting
Color For hardcopies, use color
Submit Submit hardcopy file to printer

5.3 Spectroscopy
Util |

Identify Identify data points
Window Change display area
Range Enter new range of display
Edit Edit data

Options |

Errors Display error ellipses
Flagged Display flagged data too
Phase Plot as a function of phase instead of time. Use the period of that orbit where

the selected component appears alone. Subtract the systemic velocity of that binary
component.

Orbit Superpose apparent orbit

5.4 Photometry
Util |

Identify Identify data points
Window Change display area
Range Enter new range of display
Edit Edit data

Options |

Errors Display error ellipses
Flagged Display flagged data too
Phase Plot as a function of phase instead of time. Use the period of that orbit where

the selected component appears alone. Subtract the systemic velocity of that binary
component.

Orbit Superpose apparent orbit
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Programmer’s reference

6.1 Code
All source code resides in oyster/source, subdirectories common, idl, and c, as well as the
directories for the HDS, NOVAS, FITSIO, and WD code libraries. A Makefile is used to compile
the C code, whereas a command file, c.pro, is used to compile the scripts. Note that the
compilation order in c.pro has some significance, as functions in general have to be compiled
first, that is before they are used in any procedure. In the GUI source code directory idl, type
idl c to start up IDL and have it compile all procedures and functions. The command file will
also save the compiled code to oyster.cpr and the common block definitions to oyster.cmb. If
you would like to change the way a procedure works in your OYSTER session, make a copy of the
source code (call it myfile.pro, for example), modify it, and recompile it using .run myfile.pro.
For your current session, this compiled new code will replace the previous one. It is a good idea
to place modified routines into a file and compile them after startup.

6.1.1 Script library files

Here we list the files (in italics) which contain IDL code. The itemization is not complete,
however, and only intended to provide an overview of some 50, 000+ lines of code. Note that
except for the IDL specific widget libraries, all code is in the same area (common).

• OYSTER

– oyster.pro. Contains the setup script and common data functions.
– idlfunctions.pro. Functions which exist in PV-WAVE CL but not IDL.
– wavefunctions.pro. Functions which exist in IDL but not PV-WAVE CL.
– functions.pro. Math and miscellaneous functions.
– time.pro. Date and time conversion, Julian date, formatting and parsing of date

strings.
– structure.pro. Allocation of data structures.
– mainwidget.pro. All scripts related to the top level widgets of CHAMELEON and

AMOEBA.
– misc.pro. Miscellaneous unsupported procedures.
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• CHAMELEON

– chameleon.pro. Basic point data reduction and scan calibration.

– access.pro. All higher level HDS data file access scripts.

– hds.pro. All HDS CL wrappers. These verify arguments and call the C-wrappers
which in turn call HDS library functions.

– astrom.pro. Basic astrometric procedures.

– plotwidget.pro. All plot widget scripts for AMOEBA and CHAMELEON.

– plotting.pro. All general plot scripts.

• AMOEBA

– ameeba.pro. Basic data reading and model computation.

– model.pro. Model data computation functions.

– fitwidget.pro. Managing of fit widgets.

– fitting.pro. Fitting of hierarchical models.

– math.pro. Math routines in CL.

– limb.pro. All limb darkening code.

– filter.pro. Filter transmission functions.

• STARBASE

– starbase.pro.Basic data base routines.

– catalogs.pro. Access of auxilliary (secondary) catalogs (lists).

– stars.pro. Estimation of stellar parameters.

– starplot.pro. Miscellanous plot routines.

• COBRA

– cobra.pro. Raw data manipulation.

– cobrawidget.pro. Raw data viewing.

• PEARL

– pearl.pro. Imaging.

6.1.2 C libraries

Each of the five directories containing external code have make files. Use the Makefile appropriate
for your system to recompile them. Use make clean first to prepare the compilation. Please send
copies of the Makefiles to the author if it was necessary to modify them.
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OYSTER

• chameleon.c.

• amoeba.c.

• cobra.c. Raw packet data access.

• hds.c. HDS wrappers.

• writefits.c. The FITS writer.

• posprop.c. The Hipparcos epoch transformation.

• sidfuncs.c. NPOI siderostat model functions.

• nrutil.c. Numerical Recipes subroutines.

FITSIO

A library containing functions for FITS I/O. OYSTER uses this package to write out interfero-
metric data in single source FITS format.

NOVAS

A library containing function of the Naval Observatory Vector Astrometry Subroutines.

• novascon.c.

• novas.c.

• solsys2d.c.

• jpleph.f.

6.1.3 Mixed and FORTRAN libraries

HDS

One of the libraries of the STARLINK (UK) astronomy software project. These subroutines im-
plement the Hierarchical Data System used for NPOI data files. They can usually be downloaded
from the STARLINK web site and therefore do not need to be compiled.

• libhds.a.

The HDS library, if not appropriate for your system, should be obtained directly from the
STARLINK web site, http://star-www.rl.ac.uk/, following links to the Software Store, Sub-
routine Libraries, and HDS (http://star-www.rl.ac.uk/cgi-store/storeform1?HDS). Follow the
instructions to unpack (sh storeformhdr), paying close attention to the target directories. Then,
set environment variables STARLINK and INSTALL to point to the starlink installation direc-
tory. In each of the ems, chr, cnf, and hds sub-directories (hds must be processed last!), use the
mk command with the targets, in this order, deinstall, clean, build, and then install to compile
the .a library files, which are automatically placed in the lib subdirectory of the starlink home.
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WD

This is the Wilson-Devinney code for the eclipsing binary model. They were modified for use in
OYSTER . This proprietary library is not included in the standard distribution.

• fnl.f.

• imlc.f.

• imlight.f.

ROCHE

This is Deane Peterson’s code for the simulation of gravity-darkening in rotating stars. This
proprietary library is not included in the standard distribution.
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Chapter 7

Introduction

7.1 About AMOEBA

AMOEBA procedures and functions are used to fit parameters of hierarchical stellar system
models to data from interferometry, astrometry, spectroscopy, and photometry. The data from
the latter three methods are read from formatted ASCII files and stored in structure arrays.
Interferometric data, however, can only be stored in the scans structure one night at a time due
to the complexity of the data and the varying configurations. Therefore, the different nights
read by load interferometry are buffered by a C-function (nightbuffer).

7.2 Data files

7.2.1 Interferometry

To model interferometric data, OYSTER has to compute model visibilities taking into account
the measurement process and all its limitations.

The integration time, scans.int time, is defined as the length of time over which the data were
averaged to yield the given data point. For large sources, e.g. wide binaries, long integration
times can significantly lower the averaged fringe contrasts. Taking the system variable !int time
to specify an upper limit for the integration time in seconds which will not require integrating the
model visibilities, OYSTER will compare the actual integration times to this limit and determine
the maximum number of computations required to cover the largest integration interval. The
step size for each observation will be adjusted according to the actual integration time of the
particular observation, given the number of computations.

7.2.2 Astrometry

Astrometry data file have to have the extension .psn. The following gives an example for Algol,
where the columns give the hierarchical component designation, the Julian year of observation,
separation (in mas) and position angle (in degrees from N over E), major and minor axis (in
mas), and position angle of the major axis of the error ellipse (in degrees, from N over E).

AB-C 1991.7487 10.68 67.30 1.511 0.265 107.8
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AB-C 1991.7545 15.70 83.18 0.589 0.091 86.8
AB-C 1991.8036 25.52 105.36 0.253 0.086 91.1
AB-C 1991.8336 33.11 111.73 0.186 0.061 92.6
AB-C 1992.6936 47.04 141.94 0.874 0.165 99.5
AB-C 1992.7756 19.16 160.03 0.283 0.090 95.6
AB-C 1992.7864 15.64 165.57 0.210 0.093 150.9
AB-C 1992.7921 14.27 174.39 0.714 0.133 87.8
AB-C 1992.8822 24.25 292.96 0.692 0.198 81.6
AB-C 1992.8930 28.01 295.10 0.956 0.208 92.9
AB-C 1992.9203 35.86 301.53 0.862 0.223 97.8
AB-C 1992.9450 43.11 305.27 1.106 0.237 91.1

7.2.3 Spectroscopy

Spectroscopy data files have the extension .vel. The following gives an example for Algol, where
the columns are the component designation, the Julian date of observation, and value and error
of the radial velocity (in km/s) measured. Optionally, plot symbol and color can be added to
each record. Available symbols are + (0), x (1), * (2), triangle up (3), triangle down (4), square
(5), diamond (6), pentagon (7), star (8) and circle (9). These are open symbol, unless 10 is
added to the symbol number. The available colors are black (0), white (1), red (2), green (3),
blue (4), and more. New feature: composite component designations, e.g. AB, are
allowed and the model prediction for such components will be computed from their
center of mass velocity.

A 2428890.9305 -16.8 1.8
A 2428918.6569 +54.2 4.4
B 2443477.748 +145.0 5.0
B 2443478.743 -199.0 5.0
B 2443497.646 +179.0 5.0
B 2443498.673 -169.0 5.0
B 2443501.689 -201.0 5.0
C 2422984.4 -10.5 1.6
C 2425125.5 +5.9 0.6

7.2.4 Photometry

Photometry data files have the extension .mag. The following gives an example for Algol, where
the columns are the component designation, filter name, the Julian date of observation, and
value and error of the magnitude measured. The filter names must be one of Hp, U, B, V, R,
and I.

ABC V 2445249.299 -2.60900 0.001
ABC V 2445249.304 -2.60000 0.001
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ABC V 2445249.313 -2.59200 0.001

7.3 The Hierarchical Stellar Systems Model Format
In a hierarchical stellar system, the separation between two neighboring stars is always much
smaller than the separation of this pair from the next companion in the system, be it another
pair or a single star. Hierarchical systems are dynamically stable, and therefore by far the most
common type encountered. They are also numerically easier to handle than non-hierarchical
systems, since each pair can be described with the standard orbital parameters, and each star
with a small number of physical parameters. Because AMOEBA is designed to combine different
data sets, the HSSMF eliminates parameters only specific to one dataset in favor of replacing
them with physical parameters such as masses, luminosities, etc. It is important to not over
determine the model, i.e. to allow one or more parameters to be functions of others. The
following illustrates an example for a triple star, Algol.

; Global parameters:
starid =’FKV0111’
wavelengths =[0.550,0.800]
rv =4.0
;
; Star parameters (for each star):
name(0) =’A’
type(0) =1
mass(0) =3.67
diameter(0) =0.98
omega(0) =1.0
teff(0) =0
gr(0) =1.0
albedo(0) =1.0
magnitudes(*,0) =[2.26,2.36]
;
name(1) =’B’
type(1) =1
mass(1) =0.82
diameter(1) =1.2
omega(1) =1.0
teff(1) =0
gr(1) =0.3
albedo(1) =0.5
magnitudes(*,1) =[5.23,4.26]
;
name(2) =’C’
type(2) =1
mass(2) =1.88
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diameter(2) =0.58
magnitudes(*,2) =[5.1,4.8]
;
; Binary parameters (for each binary):
component(0) =’A-B’
method(0) =1
wdmode(0) =5
semimajoraxis(0)=2.04
eccentricity(0) =0.0
inclination(0) =97.69
periastron(0) =91.86 ; of primary
apsidalmotion(0)=0.0
ascendingnode(0)=47.4
period(0) =2.8673285
epoch(0) =2441773.4894
; Fit to AB-C astrometry
component(1) =’AB-C’
method(1) =1
semimajoraxis(1)=94.6
eccentricity(1) =0.229
inclination(1) =84.0
periastron(1) =310.5
apsidalmotion(1)=0.0
ascendingnode(1)=312.3
period(1) =679.9966
epoch(1) =2453731.4d0

The syntax of the model format is identical to the language, e.g. IDL. The individual lines
are actually commands which are executed by AMOEBA upon reading the model file.

Model parameters are defined in the following. Please note that Julian Day epochs (model
parameters and data) are stored internally with 2440000 days subtracted.

• System

– Starid Star identifier. Character string, CCCNNNN, or CCCNNNNNN
– RA Right Ascension. Needed for precession computation.
– Dec Declination. Needed for precession computation.
– Rv Systemic radial velocity in km/s
– Wavelengths The wavelengths corresponding to elements of the magnitudes array in

the stellar parameter section. Any number of elements is allowed. In microns.

• Star

– Name/Component Single character string, ’A’, ’B’, etc.
– WMC WMC designation of component, e.g. Aa
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– Type Integer, described in the following section
– Model Kurucz atmosphere model to use, e.g. ip00k2.pck19, or name of Aufdenberg

atmosphere (without .dat extension). In case of images, the filename.
– SED Name of XDR file which restores wavelength l and flux f (in equal wavelength

bins) if to be used to define the SED of a component.
– Mass In units of the solar mass
– Diameter In milliarcseconds
– Ratio Axial ratio minor/major axis (elliptical components or CLEAN beam
– PA Position angle of major axis
– Hole Disk hole in milliarcseconds
– Omega Ratio of axial rotation rate to breakup rate (type 14) or ratio of axial rotation

rate to orbital rate (WD)
– Tilt Inclination of rotation axis, zero is pole-on
– Teff Effective temperature in K

∗ 0 Set intrinsic flux to 1
∗ < 0 Use blackbody law
∗ > 0 Use model atmosphere

– Logg Logarithm of surface gravity
– gr Exponent in gravity darkening law, convective envelopes 0.3, radiative 1.0
– albedo

– alpha Temperature exponent in passive disks
– magnitudes Apparent visual magnitude. These are converted to flux factors and

applied to the fluxes derived from the effective temperature parameter.

• Binary

– Component Name of component, character string
– WDmode WD mode
– Method

∗ 1 Use orbital elements
∗ 2 Use (ρ,θ) parameters
∗ 3 Use (ρ,θ) parameters with orbital motion
∗ 4 Interacting binary, use WD code

– Semimajoraxis in milliarcseconds
– Eccentricity

– Inclination in degrees
– Periastron in degrees, of primary
– Apsidalmotion in degrees/year
– Ascendingnode in degrees
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– Period in days
– Epoch Full Julian date, periastron passage
– Rho Separation, in milliarcseconds
– Theta Position angle, in degrees

The model is checked upon reading to make sure all components are defined. All wavelength
dependent parameters are defined at a set of wavelengths given in the global parameter section,
and therefore all have to have the same number of elements. (Polynomials are used to interpolate
intermediate values.)

7.4 Stellar models

The type parameter allows to select from a range of stellar models, either analytical, or available
as data files or FITS images. Please note that a new numbering scheme was introduced with
Version 6.12 (2 Aug 2007)

For all types from zero to 11, the flux distribution (spectrum) is computed as flat (teff=0),
a black body (teff < 0), or derived from a stellar atmosphere (teff > 0). For all types,
specifying an arbitrary SED will override stellar spectra or fluxes derived from the images. The
XDR file to read is specified in sed, and should restore variables l and f , which contain the
wavelength in meters and the flux (per wavelength interval), respectively. Please note that if
the effective of a component is non-zero, the flux will be scaled with the squared diameter!
As mentioned above (readmodel), please keep in mind that an internal value of −5555 for an
effective temperature is interpreted as zero.

Stellar spectra and limb-darking coefficients as a function of log(g) and teff are from
Van Hamme (1993) and are stored in file atmospheres/vanhamme/limbdata.vh.xdr. For stellar
temperatures less than 3500 K it is possible to use the NextGen models (http://phoenix.ens-
lyon.fr/Grids/) by copying one of the files atmospheres/vanhamme/limbdata.n?.xdr to limb-
data.xdr. Please note that the NextGen models do not provide the limb-darkening coefficients!
Further information can be found in the file Notes.txt.

In many models, specifying pa and ratio is used to rotate and stretch the (u, v) coordinates.
The only exceptions are the images if a positive non-zero diameter of the CLEAN beam have
been specified.

7.4.1 Uncorrelated flux component

Type 0

• The correlated flux of this component is zero.

7.4.2 Uniform disks

Type 1

• The disk diameter is independent of wavelength.

• Parameters used: diameter (UD), pa, ratio
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Type 2

• The disk diameter scales with wavelength, d =
√

(1− 7µ/15)/(1− µ/3) where µ is the
linear limb darkening coefficient.

• Parameters used: diameter (LD), pa, ratio, teff, logg

7.4.3 Limb-darkened disks

Type 3

• The linear law is used for an analytical result. The coefficients are from Van Hamme.

• Parameters used: diameter (LD), pa, ratio, teff, logg

Type 4

• The logarithmic law is used to produce maps which are then Fourier transformed.

• Parameters used: diameter (LD), pa, ratio, teff, logg

Type 5

• Linear law, with coefficients directly from Kurucz models.

• Parameters used: diameter (LD), pa, ratio, teff, logg

Type 6

• Hestroffer law, with coefficients directly from Kurucz models.

• Parameters used: diameter (LD), pa, ratio, teff, logg

Type 7

• Semi-analytical transformation using stellar profiles directly from Kurucz models. Only
(model) atmosphere available so far is ip00k2.pck19.

• Parameters used: diameter (LD), pa, ratio, model, teff, logg

Type 8

• Semi-analytical transformation using stellar profiles directly from Aufdenberg models.
Models are only available upon request.

• Parameters used: diameter (LD), pa, ratio, model, teff, logg

7.4.4 Miscellaneous stellar disks

Type 9

• Numerical transformation of elliptical uniform disk, for test purposes.

• Parameters used: diameter, pa, ratio, teff, logg
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Type 10

• Elliptical Gaussian disk

• Parameters used: diameter, pa, ratio, teff, logg

Type 11

• Pearson disk. Produces exponentially decaying visibilities.

• Parameters used: diameter, pa, ratio, teff, logg

7.4.5 Images

OYSTER handles two types of images, one being the classical type FITS image or image cube,
the other one being the PEARL image. The latter is a parametric image, assigning an effective
temperature to each pixel.

Type 12

• FITS image cube. The filename is given in model. If a non-zero positive diameter is
specified, its value, position angle and axis ratio are used as CLEAN beam parameters
which is deconvolved from the image, i.e. the visibilities are divided by ther transform of
the Gaussian CLEAN beam.

• Parameters used: model, diameter, pa, ratio

Type 13

• PEARL image. As described for type 12, visibilities can be normalized by a CLEAN beam.

• Parameters used: model, diameter, pa, ratio

7.4.6 Rotating stars

Type 14

• Includes Roche sphere computation and gravity darkening, using code library written by
D. Peterson.

• Parameters used: diameter, pa, omega, tilt

7.4.7 Young stellar objects and disks

Type 15

• Hillenbrand passive disk, optically thick, with temperature profile.

• Parameters used: diameter, fractional width, pa, alpha, ratio. The diameter is the
size of the inner hole, the outer radius is diameter*(1+width)/2.
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Type 16

• DUSTY simulation. Reads the radial intensity map, scales the shell radii with the given
diameter (mas), and computes the Fourier transform.

• Parameters used: model, diameter

7.5 Fit scenarios

7.5.1 Single-lined spectroscopic binary

Select the appropriate orbital elements, and the mass of the secondary. The reason for not choos-
ing the mass of the primary is that with decreasing primary mass, the situation is asymptotically
reached where the primary settles on a Keplerian orbit of a planet sized body around a mas-
sive secondary and its velocity amplitude would not not increase anymore. This would prevent
proper fitting of primary velocity curves of larger amplitudes. If, after fitting, the corresponding
velocity amplitude K1 is desired, one uses the modelk function, e.g. print, modelk(’A’).

7.5.2 Double-lined spectroscopic binary

Add the primary mass as a fit parameter, but remember, as in the single-lined case, that these
masses are not true masses since it is only the velocity amplitude as a function of several
parameters including the masses that is effectively constrained by the radial velocity data. In
other words, the mass ratio is constrained, but the scale.

7.5.3 Single-lined spectroscopic binary with astrometric orbit

Add the remaining astrometric orbital elements to the fit parameters, and vary the secondary
mass only. If you have a measurement of the parallax, say from the Hipparcos catalogue, you
can add this measurement using the set parallax procedure. In this case, you may add also
the primary mass to the fit parameters as the system is now constrained just like a double-lined
spectroscopic binary.

7.5.4 Triple with velocity curves of close pair

Select all three masses as fit parameters. The mass ratio of the close pair will be constrained,
but as far as the absolute masses, this system is identical to a single-lined binary.

7.5.5 Triple with velocity curves for all components

Fit all three masses, as well as the inclination of one of the pairs. That not any combination of
orbital inclinations is allowed can be seen from the fact that the triple consists of two double-
lined binaries and only one mass solution exists for a given inclination. Which inclination to
vary depends on whether the adopted value of the other orbital inclination is larger or smaller
than the true value.
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Orbital phases in spectroscopy plots

Plots of the radial velocity curves versus orbital phase can be made for all three components using
the widget Plot|SPECTROSCOPY. When plotting the velocity curves for the individual
components of a triple versus orbital phase the lowest hierarchical component is used to calculate
the phase. For components A and B the A-B orbital parameters are used to calculate the phase.
For component C the AB-C orbit parameters in the model are used to calculate the orbital phase.
Plotted velocities of lower level components will have the contribution from higher components
removed. In this example with velocity data for all three components the close binary orbit is
used to calculate orbital phase for components A and B. The plotted velocities of components
A and B will have the velocity of component C removed.

7.6 Pass band integrations and field of view
As any interferometer, even those with spectrometers, measure the visibilities integrated over
band passes of non-negligible widths, OYSTER computes model visibilities on a grid of wave-
lengths. The results (visibilities, fluxes) are then integrated over wavelength, whereby special
attention needs to be payed to the averaging corresponding to what the instrument actually
does.

The grid chosen is usually appropriate for the selected interferometer; if the spectral reso-
lution is high, the grid wavelengths correspond exactly to the channel center wavelengths. The
choice of grid is made in function calcmodel, for each spectrometer.

Finally, the photometric field of view is also computed based on the diameters of the tele-
scopes and the seeing during the observation. The seeing values are stored in scans.r0 and
default to 1”.
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Basic widget procedures

This section describes the complete line of model computation and fitting procedures within the
widget environment. To invoke the main widget, type the following command at the IDL prompt:

IDL> oyster

8.1 Load data
AMOEBA is designed to handle data input from interferometry, astrometry, spectroscopy, and
photometry. (The data for the first type, including configuration information, is buffered, i.e.
loaded one night at a time into the ScanData section from the buffer. This procedure was
necessary since CHAMELEON procedures handling the data cannot handle more than one
night at a time.)

The loading of the data is handled by widgets, which also allow to set flags and weights to
be used in the subsequent data analysis. The files are selected from a list (option List) of files
with the proper extension found in the current directory and displayed in the widget, or from
a file giving the file names (option File). The Data|Summary button gives information about
the currently loaded data sets and their relative weights. If weights need to be changed, this can
be done at any time after loading the data by simple selection if the corresponding data loading
widget is displayed, or if not, by redisplaying it.

DATA |

INTERFEROMETRY Load visibility data
ASTROMETRY Load ρ/θ data
SPECTROSCOPY Load radial velocity data
PHOTOMETRY Load magnitude measurements
Summary Print summary of currently loaded data

8.2 Manipulation of a model
The following menu bundles all routines related to reading and fitting of the hierarchical model.
The fit routine should not be confused with specialized and customized fitting routines to be
found elsewhere (in AMOEBA|FIT).

45



46 CHAPTER 8. BASIC WIDGET PROCEDURES

Model |

READ Read and check a model file.
Info CL info,/struct.
Calc Compute model data.
FIT General model fitting widget. Results are stored in the model.

The general model fitting widget displays all components of the model, and the parameters
associated with each one of them. Whether or not all or a subset of parameters are constrained
by the data is not determined by AMOEBA, but has to be decided by the user. However, since a
SVD algorithm is used for the fitting, no crash will occur if too many fit parameters are selected
and the design matrix becomes singular. Characteristics on control parameters of the non-linear
iterative fit can be modified using the FIT|CONTROL widget.

Data selection for the model fit comprises all data sets with a non-zero weight. In addition,
one can select single interferometry scans in the plot widget for the fit, while others are ignored
until the scan selection is set back to All.

8.3 Fit routines

Under this menu (Fit) are listed specialized fit routines for the different data types. Results are
not stored in the hierarchical model, but either in separate areas or written to file.

8.3.1 AstrometryFit

This widget handles initial single orbit fits to improve the apparent ellipse or orbit as de-
termined by the Ellipse and Orbit utilities in the OrbitPlot widget. The procedure is
as follows: the user defines an ellipse first, then fits the apparent ellipse to the binary po-
sitions using Astrometry|Ellipse. Then OrbitPlot|Util|Orbit is used to estimate the
orbital elements, which are then improved by AstrometryFit|Orbit. If the fit was success-
ful, AstrometryFit|SetModel will store the elements in the appropriate model component.

8.3.2 InterferometryFit

This procedure is used to fit (ρ, θ) pairs to individual nights. The list of nights is derived from
the ones currently loaded, and they are re-loaded (load interferometry) despite the overhead
in order to allow data sets of the same night to be combined. Initial estimates for (ρ, θ) are
obtained from the orbital elements. The results are written to file fitnights.psn, including fitted
synthesized beam widths. This file is in the standard astrometry format and can be read back
into AMOEBA.

8.3.3 Control

This menu contains variables which control the performance of the Marquardt-Levenberg (M-L)
non-linear least squares fitting.

Fit options |
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One One iteration only
Float Allow V 2 calibration to float
Opt. Optimize step size for M-L.

Lambda Gradient-Brute force parameter

Tolerance Ratio of smallest over largest eigenvalue allowed

Convergence Convergence criterion as ratio of new over previous χ2

Choosing the Opt. option will cause a one-time delay before starting M-L, including the
loading of the interferometric data a second time as the optimization of the step size overwrites
the currently loaded visibilities. The step size data are written into a file Z h steps.xdr.
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Chapter 9

Command line procedures

9.1 Interferometry data buffering
storenight,mode< int>

Manipulate interferometric scan data buffer.

mode
0 Free allocated buffer
10 Store new night
11 Store/overwrite existing night in buffer

loadnight,night< char>

Load night from buffer.

9.2 Model manipulation
readmodel,file< char>

Read a model file. If the effective temperature of a component is zero, it is set to
−5555 Kelvin for compatibility of the AMOBA and PEARL procedures. Within
AMOBA, this value however is interpreted as Zero.

calcmodel,[/pearlmv][,/pearlcv]

Compute the model data for data sets with non-zero weight. The additional param-
eters select passing the computed complex visibilities to PEARL and/or subtracting
them from the complex visibility data in PEARL. Please see section on PEARL for
more details.

modelchisq()

Function. Return reduced χ2 of currently loaded data wrt model.

binarypos([epoch< real>[, component< char>]][,lambda=lambda][,com=com][,abs=abs])
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Function. Return ρ/θ relative position for binary model at JD epoch. Use today
if no epoch is specified, and use the top hierarchical component if no component
is specified. If a component is specified, so must be the epoch. If com=1, compute
relative to center of mass, not center of brightness. In the latter case, one can specify
lambda (in meters) for the wavelength to use. If abs=1, return individual component
positions instead of relative position. In that case, the component index is in the
first dimension, (ρ, θ) are in the second.

modelk(component< char>)

Function. Return velocity semi-amplitude for component. Examples: print,modelk(’A’),
print,modelk(’AB’).

modelpx(component< char>)

Function. Return parallax derived from parameters of the specified component. Note
that for systems higher than binaries, the results could be inconsistent, indicating
an inconsistent set of model parameters.

modelvel(JD - 2400000< real>, component< char>)

Function. Return predicted velocities derived from parameters of the specified hier-
archical model components.

9.3 Auxilliary data
set parallax,value, error [,weight=weight]

Set a value for the system parallax. Set weight to zero to ignore stored value, to
positive value to re-instate (if neither value nor error are provided). Set value to −1
to enforce the same parallax for all binary components, without enforcing a specific
value.



Chapter 10

Programmer’s reference

10.1 Organization of data
AMOEBA data is exclusively contained in the ScanData common area, whereas the model data
resides in the Model common block.

If some currently loaded data have been manipulated, they have to be stored in the buffer
(storenight) for AMOEBA routines to load the new data. A general exception has been
implemented which does not load data from the buffer if the buffer has only one night stored.
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STARBASE
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Chapter 11

Introduction

11.1 About STARBASE

STARBASE is a collection of scripts written in IDL with additional functions written in C
callable from within IDL. The scripts are run interactively.

STARBASE provides a table structure which can be filled with astrometric and astrophysical
information on a list of stars from catalogs, auxilliary data files, and by computation. The star
list can be either an entire catalog or a list compiled by the user. The former option can be
invoked using a single command for various catalogs (e.g. the Bright Star Catalog, get bsc).
The name of the data base variable is STARTABLE.

STARBASE distinguishes several types of external data files. Primary catalogs have their
own unique identifier, e.g. HDN, and are accessed using C external functions. These catalogs
are static and never changed. Secondary catalogs are either extensions of primary catalogs (as
in the case of HDN, which is based on SkyCat 2000, only complete to V = 8, and does not
contain many of the MIDI calibrators), or implement dynamical catalogs (as in the case of MIR,
for mid-infrared targets not contained in the HD primary catalog). Finally, lists contain specific
data for selected stars identified by a primary catalog ID, e.g. jhk.hdn contains JHK magnitude
for selected HD stars.

11.2 The format of STARTABLE

Inside IDL, STARTABLE is in the table format. Thus for example, to access the NAME field
you access the variable STARTABLE.NAME. In the following we list all valid fields.

• STAR (string) Identifier of form CCCNNNNNN/CCCNNNN

• NAME (string) Star name

• VAR (string) Star name in Variable Star Catalogs

• TOE (string) Common name (e.g. Capella)

• RA (double) Right Ascension [h]

• RAE (double) Error in Right Ascension [h]
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• DEC (double) Declination [deg]

• DECE (double) Error in Declination [deg]

• BAT (short int) Number in Batten’s Catalogue

• FKV (short int) Number in Fundamental Katalog No. 5

• BSC (short int) Number in Bright Star Catalogue

• FLN (short int) Number in Finding list for Interacting Stars

• ADS (short int) Number in Aitken Double Star Catalogue

• HDN (long int) Number in Henry Draper Catalogue

• HIC (long int) Number in HIPPARCOS Input Catalogue

• SAO (long int) Number in Smithsonian Astrophysical Catalogue

• WDS (long int) Number in Washington Double star catalog

• MV (float) Johnson V magnitude (for combined system if multiple)

• BV (float) (B − V ) color (for combined system if multiple)

• UB (float) (U −B)

• RI (float) (R− I)

• DMV (float) V -magnitude difference for binaries

• AMV (float) Absolute V -magnitude (for combined system if multiple)

• BY (float) (b− y) in Strömgren system

• M1 (float) m1 of Strömgren system

• C1 (float) c1 of Strömgren system

• BETA (float) β index of Strömgren system

• FEH (float) [Fe/H]

• PMRA (float) Centennial proper motion in RA [s]

• PMDEC (float) Centennial proper motion in DEC [”]

• RV (float) Radial velocity [km/s]

• PX (float) Parallax [”]

• PXE (float) Error of parallax [”]

• D (float) Distance [pc]
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• SPECTRUM (string) Spectrum

• TYPE1 (float) Floating point spectral type of component 1

• TYPE2 (float) Floating point spectral type of component 2

• CLASS1 (float) Floating point luminosity class of component 1

• CLASS2 (float) Floating point luminosity class of component 2

• TEFF1 (float) Effective temperature of component 1 [K]

• TEFF2 (float) Effective temperature of component 2 [K]

• LOGG1 (float) Surface gravity of component 1 [cgs]

• LOGG2 (float) Surface gravity of component 2 [cgs]

• P (float) Orbital period [d]

• T (double) JD epoch of periastron

• O (float) Argument of periastron [deg], of primary

• E (float) Orbital eccentricity

• I (float) Orbital inclination [deg]

• N (float) Argument of ascending node [deg]

• A (float) Semi-major axis [”]

• K1 (float) [km/s]

• K2 (float) [km/s]

• V0 (float) [km/s]

• MF (float) Mass function for single lined binaries

• M1SIN3I (float) [km]

• M2SIN3I (float) [km/s]

• A1SINI (float) [km]

• A2SINI (float) [km]

• DIAMETER (float) Stellar diameter [mas]

• ZEROSPACING (float) Zerospacing visibility

• A0 Linear limb darkening fit coefficient, absolut

• A1 Linear limb darkening fit coefficient, linear
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• A2 Linear limb darkening fit coefficient, quadratic

• MASS1 (float) Mass of component 1 [M�]

• MASS2 (float) Mass of component 2 [M�]

• BFLAG (string) Binary flag: ’B’, calibrator ’C’, other: ’.’

• HFLAG (string) Hipparcos status flag, e.g. ’C’=component sol.

• SFLAG (string) Status flag (as a result of computations), ’OK’ or ’ !’

• MODEL (string) Model on which diameter is based, e.g. ’LD’

• REFERENCE (string) General diameter reference, e.g. ’080.D-0514’

11.3 Available primary catalogs
• HIC Hipparcos Input Catalogue:

– HIC, HDN
– RA, DEC
– PMRA, PMDEC
– RV, PX
– MV, BV
– SPECTRUM,TYPE1,TYPE2,CLASS1,CLASS2

• SAO Smithsonian Astrophysical Observatory Star Catalogue (National Space Science Data
Center 1990):

– SAO, HDN
– RA, DEC
– PMRA, PMDEC
– MV
– SPECTRUM,TYPE1,TYPE2

• HDN Sky Catalogue 2000.0, Volume 1, Second Edition (Sky Publishing Corp. 1991):

– NAME
– HDN, SAO, ADS
– RA, DEC
– PMRA, PMDEC
– RV, PX
– MV, BV
– SPECTRUM,TYPE1,TYPE2,CLASS1,CLASS2
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• FKV Fundamental Katalog No. 5:

– FKV, HDN
– RA, DEC
– PMRA, PMDEC
– RV, PX
– MV
– SPECTRUM,TYPE1,TYPE2

• BSC Bright Star Catalogue 4th Edition (Hoffleit 1982, National Space Science Data Center
1982):

– NAME, VAR
– BSC, HDN,
– RA, DEC
– PMRA, PMDEC
– RV, PX
– MV, BV, UB, RI
– SPECTRUM,TYPE1,TYPE2,CLASS1,CLASS2

• BAT Eighth Catalog of the Orbital Elements of Spectroscopic Binaries (Batten, Fletcher,
& MacCarthy 1989):

– NAME
– BAT, HDN
– MV
– SPECTRUM,TYPE1,TYPE2,CLASS1,CLASS2
– A, E, I, O, N, P, T, K1, K2, MF, M1SIN3I, M2SIN3I, A1SINI, A2SINI

• FLN A Finding List for Observers of Interacting Binary Stars (Wood et al. 1980)

– FLN, HDN
– MV
– SPECTRUM,TYPE1,TYPE2,CLASS1,CLASS2
– P, T

• WDS Fourth Catalog of Orbits of Visual Binary Stars (Worley & Heintz):

– NAME
– WDS, ADS
– RA, DEC
– MV, DMV
– SPECTRUM
– A, E, I, O, N, P, T
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11.4 File usage
STARBASE accesses the following primary star catalogs in catalogs:

• fk5/fk5.dat

• bsc4/bsc4.dat

• hipparcos/hip main.dat

• hipparcos/input/hipp.dat

• batten/sb8.dat

• skycat/hdn.dat

• findlist/findlist.dat

• sao/sao.dat

• wds/wdsorb.dat

STARBASE accesses the following secondary star catalogs in catalogs:

• hdn/HDN.xdr

• mir/MIR.xdr

• cal/CAL.xdr

• bbc/BBC.xdr

It also accesses lists in catalogs/npoi, namely:

• diameters.bsc Compiled from various sources

• ubv.hdn Mermilliod 1991

• ubvri.hdn Nagy & Hill 1980

• uvbybeta.hdn Hauck & Mermilliod 1990

• jhk.hdn 2MASS at IPAC

• feh.hdn Cayrel de Strobel et al. 1985

• parallax.hdn van Altena et al. 1991

• toe.bsc from Bright Star Catalogue

• position.hdn van Altena et al. 1991
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How to work with STARBASE

12.1 Introduction
At this time, STARBASE is used to perform two different tasks, namely reading primary and
secondary catalogs, and computing astrophysical quantities from the collected information. The
data is stored in different fields of a table, STARTABLE (see next section).

Primary catalogs reside in subdirectories of catalogs and are read by the C-function catalog.
Stars in the primary catalogs have unique ID numbers. Entries are in the order of these numbers.
Information found in the primary catalogs replaces existing information in STARTABLE. The
available data for each primary catalog is listed below.

Secondary catalogs are lists of specific data on stars, e.g. UBV photometry. They were
derived from various astronomical catalogs by extracting the ID number (usually the HDN) and
the desired data. Secondary catalogs reside in catalogs/npoi and have an extension indicating the
identifier for the ID numbers (e.g. HDN). They are read by PV-WAVE procedures (command
dc read free), and are used to replace information in STARTABLE.

Any star in STARTABLE is defined through a string of format CCCNNNNNN or CCC-
NNNN, where CCC indicates the primary catalog and NNNNNN/NNNN the ID number in that
catalog. Valid catalog identifiers are FKV, BSC, FLN, BAT, SAO, HDN, and HIC. Please use
4 digits numbers NNNN for the small catalogs FKV, BSC, FLN, and BAT. Use 6 digit numbers
NNNNNN for the large catalogs SAO, HDN, and HIC.

12.2 Managing a calibrator catalog
This section is dedicated to a topic not of common interest, and therefore just serves as a
container for the procedure developed to manage calibrators for ESO.

The secondary catalog holding calibrators submitted by the PIs of ESO programmes is
CAL.xdr. To add calibrators, use the compile cal procedure, and then update cat to add the
entries to the catalog. Using write calvin, a list of calibrators can be written in the format
used by the CalVin database.
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Chapter 13

Command line procedures

In this section we list some command line procedures.

13.1 Allocate/load STARTABLE
create startable,starids Allocate STARTABLE, initialize star IDs.
read catalogs Read catalogs corresponding to CCC identifier.
get startable,starids Compound procedure to allocate and read.

Example: get startable,[’FKV0193’,’BSC1412’,’HDN198217’]. Remember that the catalog iden-
tifier (e.g. HDN) determines which catalog is to be accessed for that particular star. See next
section for routines to rename stars and inquire cross indices.

list star,star id< char>

Print currently loaded information on star to screen. Star is identified by catalog
and number, e.g. BSC1708, FKV0193. For more options, see part on STARBASE.

get startable

Create startable and fill with catalog information for stars listed in scantable. Note
that in this mode (i.e. without parameter), the procedure will prepare the table
specifically for use by CHAMELEON. This involves getting the stellar positions from
the Hipparcos catalog, diameters from diameters.bsc, and colors from the bright star
catalog. If a list of stars is specified, just the catalog data available in the specified
catalogs is loaded.

rename starids,from-to< char>

Rename stars, e.g. from FKV designation to BSC designation, in which case from-to
would be ‘fkv-bsc’.

13.2 Read entire primary catalogs
Note that your workstation has to have enough memory installed to hold the entire startable.
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get bsc 9096 entries.
get bat 1469 entries.
get fkv 4652 entries.
get fln 3564 entries.
get sky 49418 entries.
get wds 1635 entries.

13.3 Print/list information

list star,star

Print (some) information from startable on star to screen. For star, the standard
combination of catalog acronym and identifier can be used, or the Flamsteed and
Bayer names, or a proper name. Examples: list star,’FKV0193’; list star,’alp aur’;
list star,’Capella’. The second example works only if the NAME field was set.

list note,star[,note]

Print notes to screen or save in note if specified. Notes must have been read previously
with read notes.

write stars

Write startable to LATEX format output file.

write npoi,startable< char>,file< char>

Write startable to file in NPOI embedded catalog file format.

13.4 Lists

Note that data only for those stars in the table is retrieved which have the right ID available. If,
for example, there is no BSC number in the table (startable.bsc) for a specific star, no diameter
will be read for it.

get diameter Diameters, BSC identifier.
get parallax Parallaxes, HDN identifier.
get position Coordinates, HDN identifier.
get ubvri UBVRI photometry, HDN identifier.
get ubv UBV photometry, HDN identifier.
get uvbybeta Strömgren photometry, HDN identifier.
get feh [Fe/H] metallicity, HDN identifier.
get toe Common names, BSC identifier.
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13.5 Plot data from the WDS

Visual and speckle observations from the Washington Double Star catalog can be plotted if a
startable with good epoch 2000.0 positions is loaded. The coordinates are used to locate a binary
in the WDS. The data are placed into a file /tmp/wdsdat.psn, which can be read by AMOEBA
for orbit fitting.

plot wds,starid< char>
This command will print out the following (example here: Capella) if a star is found:

RA Dec Disc.+#Comp._DafDal#OPAfPAlSepfSeplMagAMagBSpectrum_pmrapmdeDM######No
hhmmf ddmm YYYYYY degdeg " " m m s "

y+1000 /century
05167+4600ANJ 1Aa 91999799 49 01 008 G3III +076-425+45 1077NO
05167+4600BAR 25AB 898898 1 23 23 466 466 21 171
05167+4600BU 1392AC 878878 1318318 782 782 21 151
05167+4600BU 1392AD 878878 118318312621262 21 136
05167+4600BU 1392AE 878878 131631614321432 21 121
05167+4600HJ 2256AF 8519221014714416951415 21 111 +003-006 Np
05167+4600SHJ 51AG 821895 234834845424846 21 101
05167+4600FRH 1AH 895 1141 7233 21 117 N
Component to select:

Enter the component name you wish to select (Aa, for example), and the available data will
be plotted.

13.6 Stellar parameters from calibrations of spectral types

Files containing stellar parameter data reside in oyster/starbase. Extensive photometric data
is found in files spec par.X, where X signifies the luminosity classes for dwarfs, giants, and
supergiants, V, III, Iab, respectively. For subgiants, brightgiants, and the subclasses of the su-
pergiants, limited data is in files spec MV.IV, spec MV.II, spec MV.Ia, spec MV.Iab, spec MV.Ib.

13.6.1 Absolute visual magnitudes

Absolute visual magnitudes for stars are derived from their spectral type and luminosity class.
Calibrations are stored in files spec par.V, spec MV.IV, spec par.III, spec MV.II, spec MV.Ia,
spec MV.Iab, spec MV.Ib in oyster/starbase.

amv stars Compute MV for all stars in startable.
amv star(spectrum< char>)

Function. Return MV for star with specified spectrum.
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13.6.2 Masses

Masses for single stars are derived from their spectral type and luminosity class. In addition, for
double lined binaries with the secondary component not classified, mass binaries will compute
the secondary mass from m1,2 sin i3. Calibrations are stored in files dwarfs.masses, spec mass.IV,
spec mass.III, spec mass.II, spec mass.I in oyster/starbase.

mass stars Compute masses for stars in startable.
mass binaries Compute secondary mass.
mass star(spectrum< char>)

Function. Return mass for star with specified spectrum.

13.6.3 Gravities

Gravities for stars are derived from their spectral type and luminosity class. Calibrations are
stored in files spec logg.V, spec logg.IV, spec logg.III, spec logg.II, spec logg.I in oyster/starbase.

logg stars Compute log(g) for all stars in startable.
logg star(spectrum< char>)

Function. Return log(g) for star with specified spectrum.

13.6.4 Effective temperatures

Temperatures of stars are derived from their spectral type and luminosity class. Calibrations
are stored in files spec par.V, spec par.IV, spec par.III, spec par.II, spec par.I in oyster/starbase.

teff stars Compute effective temperature for all stars in startable.
teff star(spectrum< char>)

Function. Return effective temperature for star with specified spectrum.

13.6.5 Diameters

Compute stellar diameters, in units of the Solar diameter, from the spectral type.
diam stars Compute diameter for all stars in startable.
diam star(spectrum< char>)

Function. Return diameter for star with specified spectrum.

13.7 Limb darkening

Linear limb darkening coefficients are taken from tables published by Van Hamme (1993, AJ
106, 2096).

limb stars Compute limb darkening fit coefficients for all stars.
limb star(spectrum< char>,filter< char>)
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Function. Return linear limb darkening coefficient integrated over specified band-
pass. Example: print, limb star(’G0I’,’V’).

limb filter(teff< real>,log(g)< real>,filter< char>)

Function. Return linear limb darkening coefficient integrated over specified band-
pass. Example: print, limbfilter(5500, 0.5, ’R’).

limbband(teff< real>,log(g)< real>,center< real>, width< real>)

Function. Return linear limb darkening coefficient integrated over band pass with
specified center and full width (in nm). Example: print, limbband(5000, 0.5, 700, 25).

limbfactor(coeff< real>)

Function. Return factor to multiply the uniform disk diameter with in order to get a
limb darkened diameter using the specified linear limb darkening coefficient. Based
on the squared visibility matching at 0.3 and a formula derived by Hanbury Brown
(1974, MNRAS 167, 475).

13.8 Derived parameters

13.8.1 Absolute magnitudes

Absolute magnitudes are derived from the spectral type or trigonometric parallax. For dwarfs,
it can also be computed from the (B − V ) color index.

a stars Derive absolute visual magnitude from apparent magnitude and parallax.

13.8.2 Distances

d stars Compute distance D from parallax, absolute magnitude, or both.

13.8.3 Diameters

Diameters computed with the following routines exclude super giants and binaries! If you want
to bypass the latter restriction, set the BFLAG field to ’.’ (it is set to ’B’ for binaries). The
routine computing the diameter from (B-V) also excludes bright giants and stars later than K.

diameter ri Compute diameter from (R− I) color index and V -magnitude.
diameter bv Compute diameter from (B − V ) color index and V -magnitude.
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13.8.4 Orbital inclinations, semi-major axes, and secondary masses

i binaries Estimate I from MASS1/2+MF or MASS1/2+M1/2SIN3I.
a binaries Estimate A from MASS1/2+P+D.
k binaries Estimate K1+K2.
m binaries Estimate secondary mass from primary of an SB2

13.9 Cross indices
A comprehensive array of crossindices has been installed in catalogs/crossindex. The files have
the extension .cri and are read by IDL within the crossindex function cri. To obtain, for ex-
ample, the BSC number for FKV0193 (Capella), enter

print,cri(193,’fkv-hdn’).

This function can be nested, if a particular index does not exist and the request needs to be
routed around it. The function will return “−1” if the ID number could not be found. If you
know the Bayer or Flamsteed names of the star or its proper name, you can also use cri to
obtain its ID in any catalog. Note that in the following example only the destination catalog is
specified in the function call:

print,cri(’capella’,’fkv’),

or
print,cri(’alp aur’,’bsc’).

To rename the entire STARID field of STARTABLE, use rename starids, for example:

rename starids,’fkv-hdn’.

In the last example, the command will cause STARBASE to access the crossindex for all entries
with an FKV ID and try to produce HDN IDs. If an HDN ID is already available in the table,
this will also cause the STARID field to be renamed. (Note: this behaviour might be changed
in an upcoming release.)
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Widget procedures

There are currently only two widget routines installed.

14.1 Spectrum plotter
This widget allows to plot spectra read from a Library of Stellar Spectra, by Jacoby, Hunter,
and Christian (1984), and to identify lines of various elements and molecules.

plotspectrum Invoke spectrum plotter widget.

14.2 Startable editor
Starts a GUI to edit the contents of a specific entry of the startable.

update startable,starid Invoke update widget.
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Part IV

STARWHEEL
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Chapter 15

Introduction

STARWHEEL is a container name for utilities related to observing list preparations including
simulations. The actual creation of the NPOI observing list is performed by the stand-alone
Python based obsprep software.

15.1 Simulations
A set of procedures described in Section 15.2 of this manual is used to create a star table. Note
that the plotuptime procedure which produces a plot with the rise and set times of the stars
does not currently take the delay limits into account. In order to do this, run fakedata (with
dutycycle=0.1 and simulate a data set using the star table and selected configuration. Then use
plotuptime,1 to plot rise and set times derived from the data.

fakedata,stations< char>,starids< char> [,dutycycle=dutycycle]

Simulate scan data for a full observation (scan every hour while the star is up) with
NPOI using the stations given in the input character array.
Example: fakedata,[’N00’,’N05’,’N10’,’W06’,’W08’,’W10’],’FKV0621’ If stars are not
specified, the startable will be used instead. Date and SystemID will default to the
current date and NPOI, unless set manually. The dutycycle specifies the interval (in
hours) between successive observations of the same star.

mockdata,[,pearl=pearl][,poisson=poisson][triple=triple][,init=init]

Replace observed visibilities and triple data with model values, in combination with
fakedata or with real data sets. Poisson noise can be added, based on the photon
rates of the data set.

To show the uv-tracks for the simulated data on top of an image of the visibility ampli-
tude function, first plot the uv-coverage and read a model file with readmodel, and then use
uvimage,/uv to underlay the grey scale amplitude image.

15.2 Observing list preparation
The OYSTER scheduling routines assist in creating an observing list (stored in the startable)
from scratch or from another list stored on disk, and computing the visibility of the stars in a
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specific night and array configuration. The date of observation is taken from the variable date,
and the array name from the variable systemid. If these are not defined, defaults are used for
date (the next night) and for array (NPOI).

As to the system configuration, a list of stations can be passed to plotuptime which will
then create a system configuration for them.

get startable,stars< char>

Create startable for stars specified.

read obslist,file< char>

Read observation list from file and create startable. This procedure only reads the
first, i.e. the star column of the file. It ignores lines containing an exclamation mark.

selectup[,from data< int>][,mintime=min]

Remove stars from startable which are not available. Either compute predicted
availability (default), or derive from currently loaded data (from data = 1). Use
keyword mintime (default 3 hours) to specify minimum availability after sunset and
before sunrise.

selectnew[,dates=nd][,scans=ns]

Remove stars from startable which were observed before at least nd times with ns
scans or more each. The parameters default to nd = 2 and ns = 4.

selectdone[,dates=nd][,scans=ns]

Remove stars from startable which have not been observed before at least nd times
with ns scans or more each. The parameters default to nd = 2 and ns = 4.

addstar,stars< char>

Add one or more stars to the startable.
Examples: addstar,’FKV0193’, addstar,[’FKV0621’,’FKV0641’]. Also sorts the stars
by ID.

removestar,stars< char>

Remove one or more stars from the startable.

addcal,star< char>[,vlimit< real>]

Lookup a calibrator for given star. The nearest calibrator (based on classification in
diameter.bsc) with a visual magnitude brighter than vlimit (default 4.5) is added to
the startable.

compileobslist

Rename stars in startable to their FKV equivalents, if possible, read the catalogs,
get auxilliary information, and re-order stars.
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plotuptime[,from data< int>][,stations=stations] [,stars=stars]

Compute visibility for stars in startable and plot. If from data=1, plot actual visi-
bility for currently loaded scan data. A list of stars can be passed to this procedure,
which is a shurtcut over allocation with get startable. If stations are not defined,
a four-station astrometric array is assumed.

writeobslist[,from data< int>][,time=time]

Compute visibility and write startable with auxilliary information to file. The name
of the file is derived from the date, the extension is .obs. The RA and declination
fields in the observing list now refer to a suitable background, i.e. blank sky location.

compile astrometry

Compile astrometry observing list.
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Part V

CHAMELEON
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Introduction

16.1 About CHAMELEON

The CHAMELEON collection of scripts as part of OYSTER is used to read, edit, average, and
calibrate output (“point data”) produced from raw fringe data by a standalone C program,
CONSTRICTOR. The scripts are run interactively in the IDL environment, with the data
stored in IDL variables and therefore available at the command level. Beginning with version 8,
a pipeline has been implemented which produces averaged and calibrated data.

Data reduction and analysis are two steps separated by the average procedure. In the classic
NPOI 3-way reduction, the squared visibility, delay, background and photonrate data are edited,
then averaged into scans. For astrometry, the emphasis is on the dispersion correction of the
delay point data before the averaging step. Calibration of the scan-averaged visibilities is based
on unresolved or nearly unresolved calibrator stars, whereas the astrometric calibration is based
on the application of constant term and pivot motion metrology data delivered by INCHWORM.
A new feature of the 6-way data reduction is the photometric and bias calibrations derived from
the averaged data, but used in a second averaging step in order for them to be applied.

Following the Introduction, a Quick Guide will lead you through a sample session. Basic
widget procedures is a more comprehensive description of how to reduce data using the GUI
(Graphical User Interface). Command line procedures lists some of the useful routines
callable at the IDL prompt.

16.2 Data and auxilliary files

Interferometric data files handled by CHAMELEON use the HDS (Hierarchical Data System)
format, and have an extension .con for point data files output by CONSTRICTOR and .cha for
scan-averaged data output by CHAMELEON. Think of the HDS format as a UNIX directory/file
tree contained within a single file. Thus, individual objects can be accessed and modified directly,
without having to read through the file until a specific section. The .con files are found in
/data/npoi/con on gemini.

Output files produced by CHAMELEON are always stored in the current working directory.
Aside from the data file, three types of auxilliary files can be written, files with extension .flg
(XDR format) contain the flag tables for interferometric data, .cal (XDR format) contain the
calibration table, and .stn (ASCII) contain fitted station coordinates. These files are only written
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by request, never automatically.
As to auxilliary input files, all these reside in the following directories of the OYSTER home

directory. The files used by STARBASE are listed in section 11.4. i

• usno/ mark3.dat, the UT1-UTC and polarmotion data from the EO department of the US
Naval Observatory.

• npoi/ stations.config, fdl.config, 3way.config, and 6way.config, array geometry configuration
files, and biasbase.xdr, obsbase.xdr, linear.xdr, and skycoord.xdr, the bias correction data
base, observation data base, flux ratio file due to detector non-linearity, and star coordinate
list, respectively.

• pti/ stations.pti.

• keck/ stations.keck.

• vlti/ stations.vlti.

• mark3/ stations.mark3.

16.3 Pipeline

16.3.1 Introduction and command syntax

The pipeline automatically performs all of the steps described in the interactive session below,
with the exception of the astrometry. The full command is as follows:

npoipipe, confiles, calibrators=calstars,addcal=calstar,model=modelfile

confiles is a string file specifier given to IDL’s file search function to return a list of files
for processing. If confiles is omitted, all CONSTRICTOR files in the current directory are
processed.

A list of calibrators to be used can be specified as a string array for the calibrators keyword,
otherwise npoipipe will determine which stars can be used as calibrators based on information
found in the standard NPOI calibrator list (diameter.bsc). Calibrators can be added to the
standard list using the addcal keyword. It is thus important to keep in mind that npoipipe will
normally use all calibrators observed to calibrate the science targets. If not enough calibrators
were observed, a warning message will be displayed, and processing will continue with the next
data file.

Finally, the model keyword can be used to pass the name of a model file which will be used
to flag data on non-tracking baselines. Non-tracking (reference) baselines are difficult to detect,
and the method used by npoipipe is based on the delay jitter, which is compared to the median
value derived from all calibrator observations (in the same data file). If, despite this initial
step, the (calibrated) visibility measured on a baseline is less then half of what is predicted by
a model, the baseline is considered to have been tracking noise, and all values are flagged.
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16.3.2 Output files

All output files will be written into a directory called npoipipe so that no files in the current
directory will be overwritten. However, existing files in npoipipe may be overwritten.

For each processed file, in addition to the CHAMELEON file, a log file (extension .txt), a
plot file with results from the bias correction (.ps), and a flag table (.flg) will be written.

16.3.3 Flag tables

If, upon inspection of the calibrated data, some data points need to be flagged, this can be done
manually, and the flag table saved in the current directory will be read by npoipipe if run again.
It is thus important to keep only those flag table files in the current directory that shall be used.

16.3.4 Bias correction

As usual, bias correction is based in incoherent scans and is performed separately for each
interferometer configuration. First, bias correction fit coefficients are computed combining all
observations (for each configuration) to make sure that a basic correction is performed. Second,
bias corrections are updated for each star with the measurement obtained for this star only.

16.3.5 Phase unwrapping

Two methods are used for phase unwrapping, one able to detect the bimodal distribution of
wrapped phases, the other one using the rewraptriple procedure to remove phase drifts as a
function of wavelength cause by excess dispersion in the interferometer.

16.3.6 Logging and quality control

Upon completion of the npoipipe command, the log files will be examined by a npoipipeqc
which extracts the most pertinent information of the log files. Attention should be paid especially
to the calibration errors.
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Chapter 17

Quick Guide

Here we describe briefly a sample session with CHAMELEON. We include tips on how to get
organized during the data reduction, as this is a time consuming process. We also assume that
you are reducing output from CONSTRICTOR. (When re-calibrating data however, you will
usually begin by reading the output of CHAMELEON.) After starting OYSTER , type oyster at
the IDL prompt. In general, we work our way from the top (File) to the bottom (Calibrate)
in the displayed OYSTER main widget. Also note that button labels are all caps if they bring up
another widget. All other buttons either open another button list (if an arrow is displayed), or
immediately execute the associated procedure.

In order to restart CHAMELEON and to continue from where you left it or to get close to
this point quickly, it can be important that you have saved flag and calibration tables, and (if
applicable) the output file in the previous session. These files are not written automatically, for
reasons of greater flexibility. Please also note that tables loaded are not automatically applied.
Look at the tables as logs, containing information on flags and calibration entries. If you want
to load point data and apply flags from a previous session, or want to undo specific actions on
the scan data, these tables are useful. In order for them to be up-to-date, you should load any
existing table before you do additional editing or calibration. If you want to start over with, e.g.
the calibration, then you should also start a new calibration table by clearing any loaded table
with Undo|Reset in the calibration widget, which also initializes the calibrated data (for the
selected variable) to be equal to the uncalibrated data.

17.1 Open the data file
File|OPEN: select a CONSTRICTOR file with a .con extension. Please do not double-click!
(Bug/feature in the communication of IDL with X-windows. This can cause your session to
crash!)

17.2 Read configuration information, create tables, and load
data

Access|Load|INTERFEROMETRY will load Date, SystemId, GenConfig, and GeoParms,
create the ScanTable and BGTable, load the background scans, and display the point data
loading widget (see below).
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17.3 Print form sheets

Utilities|Forms: click on ScanForms and SpecForms to get printouts of form sheets. They
should be used to log information about the data file being worked on.

17.4 Reduce the background data

You should reduce this data of type “scan” before anything else. Reduce|BG data: examine
and edit the data with PLOT. Plot the background rate (four channels at a time) versus time.
(Select channels 1−4 for the first panel, don’t forget to hit<return> after entering your selection,
and then the Next options in the data selection widget to plot all channels in groups of four.)
Do this for all output beams (i.e. spectrometers). Remove scans taken on a star (instead of on
blank sky) by identifying the scan number (or time) and then editing the data in a plot with
ScanNo (or Time) along the Y-axis. Look out for the laser light in channel 11 (the default is
to delete this channel). Remember that editing is only allowed in single plot windows (i.e. a
window containing only a single plot). Save the BGFlagTable.

Use Process BG if you want to replace edited scans with an average value from other
valid scans in the same channel. Use Expand BG to create new background scans for non-
existing ones by correlating the BGTable with the ScanTable. (Check the background form or
use Utilities|List|BGScans to see missing background scans.) The reason for reducing the
background data first is that average will not average the point data of a scan for which no
background data exists.

17.5 Reduce point data

The point data loading widget already present on your desktop gives you the choice of loading
the point data for all stars or a specific selection of them. Load all data if you have sufficient
memory (this may take a few moments). If not all data can be loaded, select a group of stars
by dragging the cursor over the star list in the widget. Load the data for the selected stars by
clicking the Load button.

Use Reduce|PointData|Imaging|PLOT to plot and edit the point data data in much the
same way as you did with the background data. Start by plotting the DelayJitter versus Index,
and use the AUTO editor (PL/E|Auto) on it. Do the same for NATJitter (if data present).
(The first one has an OutputBeam and Baseline index, the second one an InputBeam index.)
The jitter data provide a good first check whether the visibility data is going to be useful or not.
Make sure you look at all spectrometers and baselines. If more than one baseline is selected,
they are plotted along the X-axis; channels are stacked vertically. Use plots vs channel if you
have to flag several entire channels. Use the PLOT|Auto option to automatically edit outliers
in PhotonRate and VisSq (select all channels for speed). It is recommended to not flag the
data in the laser channels, since VisSq will not be averaged anyway if the background data for
these channels has been removed. This prevents the flag table from getting too large. Save the
PointFlagTable.

Examine and edit the FDLDelay data on a star-by-star basis, using the Fit utility to detect
outliers. You should plot FDLDelay vs Time for this. However, there are usually no outliers if
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they have been removed from the DelayJitter data, so this step may be skipped and returned
to if upon examination of the averaged delays outliers are found.

If reducing 6-way data and photometric and bias corrections are desired, set a default back-
ground before averaging (i.e. set all background scans to zero using the defaultbg procedure,
or the Reduce|BG Data|Default button). After averaging all data, perform the calibrations
by using Calibrate|Channels, and then re-average the data (but do not forget to reload, and
expand, the back ground data, and apply any flag tables).

17.6 Average
Reduce|Average averages all the data currently contained in the point data arrays. The
corresponding scans in the scans array (it will be automatically created when non-existent) will
be updated. average will print out messages as to invalid (flagged) data encountered, and non-
existing background scans. If you are reducing the data on a star-by-star basis, go back to load
the next star and process it. If, for any reason, you want to postpone the following calibration
of the scan data, you can write these data to a .cha file now (see below).

17.7 Astrometry
Calibrate|Astrometry: this is the first calibration step (of the uv-coordinates, that is) you
should take. Here we examine the averaged delay data with PLOT (select FDL O-C), before
attempting to fit station coordinates with SOLVE. Note that FDL O-C for the reference station
is identical to zero by definition. (To change the reference station use the AstrometrySolution
widget. The reference station is station 1 by default in the .con file.) Do not solve for star
positions. (When the solution widget is displayed, the default settings do not need to be changed
for this step.) Check the O-C values again and save the StationTable if you are happy with the
fit. If for any reason there are outliers, try to locate and flag them in the corresponding point
data, then average again.

17.8 Calibration of visibility amplitudes and closure phases
Calibrate|Visibility: Select PLOT, and flag first the channels 21 − 32 since their SNR is
usually very low (if you observed with the 3-way system; the 6-way system has only 16 channels).
To do this, plot VisSq vs channel, selecting all channels and the All-in-1 option. Then, for
calibration, look at the data from the calibrator stars (select them using the information in the
StarForm), then select CALIBRATE to display the calibration widget. Make sure the star
selection in the plot widget is set to the stars to which you want the calibration be applied
before solving for a set of calibration coefficients. The calibration will be applied to the data
automatically. Save the calibration table (entries) if you expect to restart OYSTER and want to
redo some of the calibrations. For more information on calibration, see section 18.5.

17.9 Write data
Access|Write|HDS will, after closing any data file currently in use, open the output .cha
file in order to write the ScanData, uncalibrated and calibrated, along with the configuration
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information. The file name is derived from the date, with an extension .cha. (If you restarted
the session by reading the averaged data, the input file is closed first since it is identical with the
output file and all files opened with the File menu are read-only.) FITS will ask for a star to
be written in FITS format. You have to run Calibrate|Visibility|SetComplex before that
in order to set the baseline phases.



Chapter 18

Basic widget procedures

This section describes the complete line of data processing within the CHAMELEON widget
environment. To invoke the main widget, type the following command at the IDL prompt:

OYSTER > oyster

18.1 Open a data file
Data files for CHAMELEON are in the HDS format. The File|Open button opens HDS files
for read-only access. (Note that when writing files using widget commands, any file currently
open will be closed and then the output file is opened in UPDATE mode. It will be closed after
writing has finished.) The file selection menu will be displayed with an initial filter for files
having extension .c??. CONSTRICTOR data files have extension .con, CHAMELEON output
data files extension .cha. Only one data file can be open at a time; to close a data file, use the
File|Close button. The Clrst button is used to clear the HDS status to zero if an HDS error
occurred. This button will also close the file.

File |

OPEN Open HDS file for read-only access
Close Close HDS file
ClrSt Close file and clear HDS status

18.2 Access a data file

18.2.1 Browse through an HDS file

Since an HDS-file is a binary file, no editor can be used to look at it or extract data. Special
HDS-routines have to be used instead to access an HDS-file. CHAMELEON provides a set of
procedures which are ‘wrappers’ for C-functions (contained in hds.c) which themselves call the
appropriate HDS-functions. These procedures have names identical to the HDS routines, and
are simple to use at the command level. Please refer to appendix A for a list of these procedures.

Access|Tree prints the HDS-file directory to the screen recursively starting at the current
level. Click on the terminal window and hit a key to get the next page until the message Listing
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complete. is displayed. Note that for array objects, the procedure will descend only through
the first array element!

Access|BROWSE allows you to navigate through an HDS-file and obtain information about
the components in an object. At any level, you can jump up several levels just by closing a parent
widget or clicking on an object displayed in a parent widget. Access|BROWSE always starts
at the current level. You have to close the top-level browse widget before you can click on
Access again.

Access |

Tree Print a ‘directory’ of an HDS file to screen

BROWSE Expand different levels in an HDS file

18.2.2 Load configuration, tables, and logs

Before any data, the system configuration (consisting of the general configuration and the earth
and geometric parameters) and the background and scan tables must be loaded. You do not have
to load all these by individually selecting each one, just use the Access|Load|INTERFEROMETRY
button, which will load all items listed above it. (This button is also used to read .cha files, as
it automatically detects the format to read the relevant data.) Please note, that in addition to
this the INTERFEROMETRY button will load the startable for the observed stars and will
compute (for scan data) the derived geometric quantities (uv-coverage, hour and zenith angles,
etc.).

Access | Load | cont’d

INTERFEROMETRY All objects in the file, get auxilliary data

SysConfig |

GenConfig General configuration
GeoParms Longitude, latitude, etc.

Tables |

Scantable Table of scan information
BG Table Table of background scan information

Logs |

ObsLog Observers log
ConLog CONSTRICTOR parameters

Data |

BG Scans Background scans
Scans Scan data
POINTS Point data
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18.2.3 Load point data

Loading point data when using the widget is based on stars or groups of stars. Note that loading
all data at once might lead to excessive memory requirements. When loading the data for stars,
you will be presented a widget listing all observed stars. Click on the one whose data you need.
Under IDL, press the <control> key when selecting the stars with the left mouse button. This
way, the previous selections will not be undone. Alternatively, you can drag the mouse over
the list and highlight a group of stars. After selecting the stars, click on Load and the loading
commences. The data will overwrite any point data currently loaded. The widget will stay
active. The way to proceed is to fully reduce the data for one or more stars at a time (editing,
dispersion correction, and averaging). The averaged data are stored in a structure which is
allocated the first time you average data and which is sized so that it will eventually hold all
the scan data of the night.

18.2.4 Load scan data

CHAMELEON can read its own output file. Use Access|Load|INTERFEROMETRY if
you need to re-start CHAMELEON to work on averaged data. This will read all relevant
objects in a .cha file, get a startable for the observed stars and compute derived quantities
(Calibrate|Astrometry|Calc). Configuration items can also be read separately using but-
tons Access|Load|SysConfig.

18.2.5 Load metrology data

This button is used to load metrology data processed by INCHWORM. These files have the
.inch extension.

Access | Load | cont’d

METROLOGY Display widget for selection of metrology data to load. .inch file

18.2.6 Write data

After reducing and calibrating the data, scan data should be written to an output HDS file.
The filename is derived from the input filename, except that the extension is now .cha. The
input .con file is closed automatically before opening the ouput file. Note that if the file already
exists, objects are replaced with the new ones.

Data can also be written to a multi-source FITS file. It is the scans.complexvis data being
written; calculate it after the calibration using Calibrate|Visibility|SetComplex.

Access | Write | cont’d

HDS Write all objects to HDS file
FITS Write multi-source FITS file
SysConfig |

GeoParms Write earth parameters
GenConfig Write general configuration
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Tables |
Scantable Write table of visibility scans
BG Table Write table of background scans

Logs |
ObsLog Observers log
ConLog Constrictor log

Data |
Scans Write scan data

18.3 Reduce visibility data
The goal of this step (and the next one concerning the reduction of the delay data for astrometry)
is to prepare the point data for averaging. This involves editing the background and point data,
and the dispersion correction of the delay data (if needed for astrometry). It is recommended
to first edit the background data (which is always loaded for all stars due to the relatively small
size of the corresponding object). Thus, when the point data for a specific star has been edited,
the averaging will make used of background data that has been already processed! The averaged
data will be stored internally in an array of structures (scans), which is allocated the first time
average is called. This array will eventually hold all averaged scans. Do not forget to average
the point data before loading new point data, as the old one will be overwritten!

Reduce |

BG Data |
PLOT Plotting and editing
Process BG Fix flagged data
Expand BG Fill in non-existing scans
Default BG Set default BG data
Flagtable | Background flag table

Save Store to disk file .flg
Load Read from disk file .flg
Apply Fully apply flags from table
Clear Initialize flag table
UNFLAG Specify flags to be removed
Reset Unflag all data

PointData|Imaging |
PLOT
A/R Triple Compute a new triple
Unwrap triple Unwrap the triple phase
Clear data Deallocate memory for point data
Flagtable | Point data flag table

Save
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Load
Apply
Clear
UNFLAG
Reset

Average Average currently loaded point data

18.4 Reduce delay data
For the reduction of astrometric delays, corrections from atmospheric dispersion and array
metrology have to be computed. They are applied during averaging of the point data into
scans. Metrology correction can also be applied to the scan data later, in which case one would
initialize these data before averaging.

The procedure is as follows: for the metrology, open the appropriate INCHWORM output
file, and load a motion group using Access|Load|METROLOGY. (A motion group is a so-
lution for the siderostat pivot motion for all or a subset of the laser readings.) As part of the
motion group, two types of data are provided, one being the (x, y, z) coordinates of the pivot, the
other one being the delay correction. In CHAMELEON, metrocorr uses the former to compute
delay corrections, whereas astrocorr only does the interpolation of the corrections computed
by INCHWORM to the observed epochs of the data points. The result is stored in only one
variable, metrodelay, and can be plotted using the PointData plot widget.

The dispersion correction is computed from the observed variation of the visibility phase
with wavelength. Due to the low SNR of the blue channels, Reduce|Delays|PhaseEdit can
be used to flag these. Also, before computing the correction, the closure relations have to be
enforced using Reduce|Delays|PhaseClose, and the phases have to be unwrapped using
Reduce|Delays|PhaseWrap. After completion of dispcorr, the corrections for the white
light scans (if present), can be set to zero if these are too noisy and one would rather use the
raw fdl delays.

Reduce|Astrometry |

Delays |
PLOT Plotting and editing
InitAll Initialize (zero) all stars
InitW Initialize white light scans only (FKV0000)
PhaseEdit Flag channels 11 and 21− 32
PhaseClose Enforce delay closure
PhaseWrap Unwrap the phases
DispCorr Compute dispersion corrected delays

Metrology |
PLOT Plotting and editing
Init Initialize (zero) metrology corrections
MetroCorr Compute delay corrections from pivot point positions
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AstroCorr Obtain delay corrections from INCHWORM file
Flagtable | Metro data flag table

Save
Load
Apply
Clear
UNFLAG
Reset

18.5 Calibrate data
The Calibrate menu unites all procedures working with scan data in order to calibrate it or
obtain calibration information. The tasks range from calibrating the visibility amplitudes and
closure phases to plotting of the channel sensitivities and fitting station coordinates.

Calibrate |

STARS uv based plotting
SYSTEM Channel sensitivities
Visibility |

PLOT Plot ScanData
CALIBRATE Calibrate
SetErrors Apply calibration error
SetComplex Fill ComplexVis
Triple |

RewrapTriple Unwrap triplephase
DewrapTriple Unwrap triplephase
ManualUnwrap Unwrap triplephase

Flagtable Scan data flag table
Save
Load
Apply
Clear
UNFLAG
Reset

18.5.1 Scan data

The Calibrate|Visibility|CALIBRATE button is for the calibration of visibilities (squared
amplitudes, triple amplitudes, and closure phases). You will be presented a widget in which to
select the calibrator stars and system visibility indicators. As for the calibrator stars, there are
three options: to select all (an unusual case), select according to a flag in the startable (derived
from information contained in file diameter.bsc), or to select manually (recommended).
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For each selected indicator, a list of base function will be displayed and you will select a
minimum number of functions necessary to represent the dependence of the visibility on this
indicator. The final fit will be multi-dimensional, with all functions fitted to the calibrator data
simultaneously. (Exception: the selection of a smoothing function, see below!) The mathe-
matical procedure used is the Singular-Value-Decomposition (SVD). In case of a design matrix
singularity, SVD will edit the small eigenvalues and proceed to calculate a solution for the
calibration.

The smoothing functions S XX (the index gives the width in minutes) are available for hour
angle and time calibrations. Selection of these disable any other selection since they cannot be
used in the multi-dimensional fit. This is brought to the attention of the user by making all
other base function widgets insensitive while a smoothing function has been selected.

Which indicators and functions are to be used in the calibration depends on atmospheric and
instrumental circumstances and has not been fully investigated for the NPOI yet. Therefore,
even though a wide array of indicators is available, only one or two might typically be used.
Ideally, the visibility amplitude should depend only on the delay jitter, but instrumental effects
might require an additional time dependent calibration, either depending on time itself, or on
hour angle if the delay line position or the siderostat mirror pointing has played a role in the
visibility degradation.

Before the actual calculation of a solution it is required to select the data which is to be
used for the computation of the calibration coefficients and is to be calibrated. Clicking on
Calibrate|Visibility|Plot will display the plot widget. Please note that the star selection
in this widget will now indicate the stars for which the data is to be calibrated. It should also
include the selected calibrator stars! Since several calibrations can be applied sequentially to the
same data, appropriate selections are required here if calibrations differ from star to star. Also
note that the scan selection is used just as in the case of plotting scan data. The calibration is
only applied to valid visibilities. By selecting the Loop option, selected channels and baseline
will be calibrated independently rather than combined in a simultaneous fit. This options was
implemented to speed up calibration of an entire spectrometer.

Remember to work on all spectrometers and baselines. In the case of NPOI 6-way data,
combine only scans of the same sub-array configuration. Unless the photometric calibration is
very good, sub-arrays will differ in their system visibility.

Look at the normalized and calibrated visibilities to make sure they were not calibrated
before if you want to start over with a new calibration. This is because, as mentioned above,
more than one calibration can be applied sequentially, and calibrated data is part of the data
saved in the output.

Click on Calibrate in the calibration widget to compute a solution based on the calibrated
estimated visibilities (amplitudes or closure phases, depending on your selection) of the calibrator
stars. (The calibrated visibilities are initialized as a copy of the uncalibrated visibility.) The
results will be entered in the calibrations table (strictly speaking an array of calibration entry
structures), and automatically applied to the data. The entire calibration table can be stored to
disk using Entries|Save, and loaded from disk using Entries|Load. A list of all calibration
entries will be printed to screen by Entries|List.

Here we summarize again the calibration widget functions:

Options |

Loop Loop over channels and baselines
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Entries |

Save Save all calibration entries to disk file
Load Load entries from disk file, replacing current entries
Apply Calibrate data using all calibration entries
Clear Clear the list of calibration entries
List List the entries

Undo |

UNDO Remove entries and corresponding calibration
Uncal Completely remove calibration from the selected data only.
Reset Reset calibration of all data for the selected variable (data type)

Undo|UNDO will remove a specific calibration from the data as well as the corresponding
entries in the calibration table. You will be presented with a list of calibrations for the selected
variable, from which to choose the calibration to be removed. The data selection is provided by
the information stored in the calibration table. (To remove a calibration only from the table, use
the Entries|Edit function.) Undo|Uncal will remove all calibrations for the selected data and
all stars/scans. Undo|Reset resets the calibration table (for amplitudes or phases, depending
on your selection) and remove all calibrations from all data.

18.5.2 Calibrating amplitude errors

The errors on the amplitudes of the visibility and the triple can be recomputed based on their
formal uncertainties and the calibration error. The latter is derived from the variation of the
calibrator visibilities and the comparison to their formal errors. Both are added in quadrature.
This procedure requires the selection of calibrator and program stars.

18.5.3 Unwrapping triple phases

There are three unwrapping algorithms available under Calibrate|Visibility|Triple. For
the first two, RewrapTriple and DewrapTriple, you have to have calibrator stars selected
first, since they unwrap only the data for these stars (for the time being). Rewrapping here
shall mean the rotation of the complex visibility by a specified angle so that the entire range
of phases fits into the interval [−180,+180] degrees. The the phases are recomputed, and
backrotation is applied to the complex quantities, but merely subtracted from the phases. If
the phase is wrapping more rapidly, one should plot the (calibrated) triple phase, and fit a low
order polynomial to a stretch which does not wrap (use FIT). The fit parameters are passed to
the unwrapping algorithm, which removes it from the data and then removes also the resulting
steps. The fit is then reapplied to the data. The manual unwrapping utility, ManualUnwrap,
will allow the user to place a box into a plot of phase vs time or channel, and the data inside
will be rotated +360 or −360 degrees, as specified. No calibrator stars need be specified for this
operation. Note that in this case the calibrated phase has to be plotted, since this is the phase
which is unwrapped!
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18.5.4 Astrometry

The Calibrate|Astrometry menu allows you to solve for station coordinates (and star posi-
tions) using the delay data. Use Plot to plot the O-C data. (Select input beams higher than
one, since delays are referenced to the delay in input beam one.)

Use Solve to display a selection widget for the astrometric solution. A solution will be
computed for the selected stations and stars, using data only of the selected stars. If no star is
selected, then no star position will be solved for, but data of all stars will be used for the station
coordinate solution. As for the selected data, either uncorrected FDL data can be used, or the
group delay and the dispersion corrected delays. (Remember that the latter can also include
metrology corrections.) Save will write the stationtable to disk.

Calibrate |

Astrometry |
PLOT Plot residual delays.
Calc Compute zenith angles, etc.
MCorr Apply metrology and white light corrections to

group-, dry-, and wet delays. (It is not applied to the FDL position data!) This
is a toggle, i.e. if you click on this button a second time, the corrections will be
removed again, and so forth.

SOLVE Solve for new station coordinates.

18.5.5 Stars

Plots based on data for individual stars are accessed through this button, e.g. uv-coverage,
visibility amplitude versus projected baseline length, etc.

18.5.6 System

Plots based on data for individual channels are accessed through this button, e.g. the sensitivity
of the channels versus the (B − V ) color index of the stars, or visiblity amplitude biases. In
addition, relative flux contributions from the stations can be calibrated with this widget for
6-way applications.

The calibration works as follows. For the selected type, any plots produced store the cor-
responding calibration and fit results in a field of the general configuration structure. These
numbers are used in the average procedure to compensate visibility biases based on incoherent
photons and fixed pattern noise. Remember that Bias and RelFlux plots have channel, base-
line, and scan indices. For the latter is it advised to only use the listed sub-array configurations.

18.6 Utilities
A collection of various tasks supporting the data reduction in CHAMELEON.

Utilities |

OBSBASE Invoke data base widget. Must own home directory.
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.CAL− >.CHA Convert Mark III .cal files to .cha format.
List |

Summary Summary
Scans Stars and scans
BGScans BG Scans
ScnLog Scan log (observer star log)
ObsLog Observer log
ConLog CONSTRICTOR parameters
STARS StarTable information on star
Star Catalog information on star

Forms |
ScanForms Print scan and BG scan lists
SpecForms Print spectrometer forms

18.6.1 Catalog access

In order to obtain information on the observed stars, click on Utilities|List|STARS. If a
scantable is loaded, you will be presented a list of observed stars from which to select. Otherwise,
you have to enter a star name.
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Command line procedures

In this chapter we list some of the useful command line procedures. Note that not all tasks (e.g.
plotting) are be performed easily at this level, for which therefore widget routines have been
implemented. However, since all data is available at the command level, feel free to analyze it
using IDL.

In the following, italic names, e.g. value, have to be replaced with variable names; if no
type is specified in the procedure usage description, they will be allocated automatically and
return the data requested. If a type is specified, e.g. value< double>, the variable must be
declared and initialized before. Optional arguments are in square brackets, e.g. status; if several
optional arguments are listed, only one can be selected as such and arguments to the left then
are compulsory! Also remember that you have to enclose character strings in quotes, unless you
stored them in a variable of course.

19.1 Accessing data files
hds open,filename< char>,[mode< char>][,status]

Opens a HDS data file. Only one file can be open at a time.

mode READ, UPDATE
status (returned) 0: no error; −1: error occurred

hds close

Closes the current HDS file.

19.1.1 Loading configuration and logs

Several of these procedures have been modified to create the object for simulation purposes
instead of reading it from an HDS file if that file is closed, or if the appropriate input parameters
are passed to the procedure.

get systemid[,system id]

Get SystemId from HDS file, either NPOI or Mark III. If parameter is omitted,
SystemId will be stored in common block variable systemid. If file is not open, set
default system ID (NPOI).
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get datum[,datum]

Read Date from HDS file. Format: yyyy-mm-dd. If parameter is omitted, date will
be stored in common block variable date. If file is not open, set default date (the
next day).

get geoparms[[,sysid][,datum]]

Load GeoParms object from HDS file. If file not open, set default site coordinates
corresponding to IDL variable systemid. If sysid or datum are defined, file is closed
and obejct is created from inputs. Also reads catalogs/npoi/mark3.dat for earth
rotation information.

get genconfig[,stations]

Load GenConfig object from HDS file. If file not open or stations are defined, close
file and create object from inputs.

get metroconfig

Load MetroConfig object from HDS file.

get sysconfig[,sysid=sysid],[,datum=datum] [,stations=stations]

Load GenConfig, MetroConfig, and GeoParms. Input parameters, if defined, cause
creation of objects from inputs rather than reading the from file. In this case the file
will be closed.

get observerlog

Get ObserverLog from HDS file.

get constrictorlog

Get ConstrictorLog from HDS file.

get format,format

Get Format of HDS file, either CHAMELEON, CONSTRICTOR, INCHWORM, or
COBRA.

19.1.2 Loading tables

get numscan,num scan

Read NumScan object for number of scans in HDS file.

get numbgscan,num bg scan

Read NumBGScan object in HDS file for number of background scans.

get scantable
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Read data relevant to scansin HDS file in order to fill the scantable. The scantable
is a somewhat antiquated concept, since it could be easily absorbed into the scans
structure.

get bgtable

Read objects in HDS file in order to fill the background table

get stationtable,[stationfile< char>]

Read stationfile with station coordinate information. If not specified, read default
files stations.config, fdl.config, and 3way.config or 6way.config depending on GenCon-
fig.BeamCombinerID. Remember to run calcastrom if you have scan data loaded
in order to update the astrometry.

19.1.3 Loading data

Note that there are some procedures which package several tasks, e.g., get pointdata includes
loading of the configuration, scantable, etc., and the loading of point data for all scans.

get records

Read raw data from HDS file. Since there is only one scan per file, no scan number
needs to be specified. Note that all records all loaded.

get points,[scans< integer>]

Read point data for list of scans. First scan number is always 1! Note that configu-
ration and table data must have been read prior to this call! The default is to load
point data for all scans.

get scans

Read scan data into scans. Note that configuration and table data must have been
read prior to this call!

get bgscans

Read background scan data into bgscans. Note that configuration and table data
must have been read prior to this call!

get motiongroup,group< integer>

Read motion group data from .inch file.

get astromcorrgroup,group< integer>

Read astromcorr group data from .inch file.

get metrogroup,group< integer>

Compount procedure for get motiongroup and get astromcorrgroup. Note that
the first group is index 1!
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get star,star< char>

Read point data for star (e.g. FKV0193). Note that configuration and table data
must have been read prior to this call!

get rawdata,[file< char>]

Compound procedure. Open file if necessary and read configuration, table, and raw
data.

get pointdata,[file< char>]

Compound procedure. Read point data for all scans. Get auxilliary data. Open file
if necessary.

get scandata,[file< char>]

Compound procedure. Read scan data and auxilliary data from .cha file. Do astrom-
etry. This command is sufficient to read an entire .cha file. Open file if necessary.

get metrodata,[file< char>]

Compound procedure. Read metrology data from .inch file. Also read general con-
figuration and scantable data. Allocate and fill in startable.

get data,[file< char>]

Compound procedure for all of the above. Checks file format to see which of the
above compound routines will be called to read the data.

19.2 PointData manipulation

19.2.1 Astrometry

The following procedures are specific to the reduction of point astrometry data.

dispinit,[stars< char>],[class=class]

Initialize the dispersion corrections. In order for calibrated delays to be processed
by average, both dispersion and metrology corrections have to be initialized or
computed. Initialize (zero) the dispersion corrections for the specified stars. Initial-
ization for all stars is the default. A class (ALL, POINT, SCAN) can be specified
using keyword class; the default is all classes. For scan data, initialization means
setting the dispersion corrected delays equal to the averaged FDL data.

dispflag,channels,[beams]

Flag the visibility phase for the specified channels and beams. If none are specified,
do channels 11 and 21 to 32 in all beams. If beams are not specified, but channels are,
assume this selection is valid for all beams. If channels is a linear array and beams
are specified, use the same channel selection for the specified beams. If channels is
a two-dimensional array, the first index refers to the beam, and the second index to
the channels to be flagged for the beam specified in the second parameter.
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dispclose

Enforce the closure relations. Since the fringe delays computed for the coherent
integration of the complex visibilities are baseline based, they do not necessarily
close, i.e. add up to zero. This procedure makes sure they do, and adds the correction
to the phases.

unwrapphase

Unwrap the visibility phase as a function of wavelength.

dispcorr

Compute the dispersion correction. Place the results in common block.

metroinit

Initialize (zero) the metrology delay corrections. They can be recomputed using
metrocorr or astrocorr.

metrocorr

Compute delay corrections from (x, y, z) solutions provided by INCHWORM and
stored in variables parx, pary, and parz. Interpolate to the epochs of the point data.
Results are stored in variable metropos.

astrocorr

Compute delay corrections by interpolation of the INCHWORM solutions already
converted to delays and stored in variable metropath to the observed point data
times. The results are stored in metropos. Note that metrocorr and astrocorr
store their results in the same variable, since they should give very similar if not
identical results.

19.2.2 Other

unwraptriple

Unwrap triple phase as a function of time.

calcgeo

Compute geometric delays for point data.

average

Average point data currently loaded, and place results in scan structure scans.
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19.3 Writing HDS objects
put genconfig

Write GenConfig to HDS file. Erase existing object.

put geoparms

Write GeoParms to HDS file. Erase existing object.

put sysconfig

Compound procedure.

put observerlog
put constrictorlog
put date,date
put userid,user id
put systemid,system id
put format,format
put scandata,filename

Write entire scan data set to file. Erase existing objects.

put stationtable
put mark3data

19.4 Analysis procedures
hb(uvd< real>, v2< real>)

Function. Return diameter of star for given uv-distance and squared visibility. Uses
calibration implemented in polynomial expressions.

caldiameter(starid< char>,calid< char>)

Function. Return the diameter of a star using the calibrator and the uncalibrated
estimated squared visibilities.

npoirates,starid,predictedrate

Propagate the stellar flux through the atmosphere and NPOI, and return the pre-
dicted count rate for every NPOI channel. Configuration must be loaded.

19.5 List procedures
list names[,names< char>]

List HDS objects at current level. Store in parameter, if given.
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list tree

List HDS tree beginning at current level.

list scans[,index,/coh]

List observed scans, stars, times, stations, and codes. If index is specified as an
integer vactor, list only these scan IDs. If index is a StarID string, only scans for
this star will be listed. The keyword /coh restricts the list to coherent scans only.

list bgscans

List stars and back ground scans.

list stars[,stars< char>]

List stars present in currently loaded data. Store in parameter, if given. Also list
scan numbers and embedded scan IDs. The latter, listed in parenthesis after the
scan number, are the scan numbers which were used by the embedded system during
the observations.

list stations[,stations< char>]

List stations loaded. Store in parameter, if given.

list summary chameleon

List summary for observations in CHAMELEON.

list summary amoeba

List summary for loaded data in AMOEBA.

list logs

List all logs, i.e. ObserverLog, ConstrictorLog, ChameleonLog.

list flagreasons,class< char>

List flag reasons for class specified.

19.6 Date conversion functions
All inputs for these functions and procedures can be arrays!

julian(year< integer>,month< integer>,day< real>)

Function; returns Julian day including fraction. Day can be fractional. Example:
print,julian(1998,12,16.2)

jd2date,jdf< real>,year,month,day

Procedure; returns year, month, and day (including fraction) for input (fractional)
Julian date.
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by2jd(year< real>)

Function; returns Julian date corrresponding to input Besselian year.

jy2jd(year< real>)

Function; returns Julian date for input Julian year.

jd2jy(jd< real>)

Function; returns Julian year for input Julian date.

jd2by(jd< real>)

Function; returns Besselian year for input Julian date.

19.7 Astrometry procedures

All arguments for these procedures and functions can be arrays. All require existence of GeoP-
arms variable. A default can be created by using get geoparms

utc2ut1(utc< real>)

Function. Returns UT1 in seconds, with UTC input in seconds.

ut12gst(utc< real>[,ut1< real>])

Function. Returns GST in hours, inputs are in seconds.

hourangle(gst< real>,ra< real>)

Function. Return hourangle in hours, with inputs also in hours.

zenithangle(ha< real>,dec< real>)

Function. Return zenithangle in degrees with inputs ha in hours and dec in degrees.

mirrorangle(ha< real>,dec< real>)

Function. Return mirrorangle in degrees with inputs ha in hours and dec in degrees.

horizon2equatorial(coord< real>)

Function. Return equatorial coordinates for input horizontal coordinates X=east,
Y=north, and Z=up.

equatorial2horizon(coord< real>)

Function. Return horizon coordinates for input equatorial coordinates X=projection
of local meridian on equator, Y=east, and Z=north.

angle2horizon(coord< real>)
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Function. Return horizon coordinates for input azimuth and elevation angle in de-
grees. No GeoParms required.

equatorial2angle(coord< real>)

Function. Return hour angle in hours and declination in degrees for input equatorial
coordinates. No GeoParms required.

topostar,times< real>,stars< char>,startable,ra,dec

Compute apparent declinations and right ascensions for a list of times (in seconds
UTC) and corresponding stars. (The arrays time and stars have to have the same
number of elements therefore.) The startable is a standard STARBASE startable.
The geoparms structure has to be loaded.

calcastrom

Procedure. Compute astrometric variables in scans structure.

calcvis

Procedure. Compute estimated visibilities, i.e. normalized visibilities.

referencestation,station< char>[,class< char>]

Change reference station for data of specified class (default all classes) to station.

precess,theta,jy,ra,dec,direction

Precess J2000 position angles (theta) to current Julian Year epoch (jy) for direc-
tion=1, from current to J2000 for direction=-1. (see: Heintz, ”Double stars”, p.
33). Input theta is in radians, dec in degrees, ra in hours; output is in radians.

19.8 Data base routines
obsbase,files< char>

Create (if non-existent) or update observation data base catalogs/npoi/obsbase as a
database of star tables from .con or .cha files. File specification can be either through
a string array or or a single wildcard, e.g. files = ’*.cha’. You have to have write
permission to this data base file.

obsstars[,stars]

Print to screen or return list of stars contained in data base.

obsnights[,nights]

Print to screen or return list of nights contained in data base.

obsdates,star< char>[,dates, scans]

Print to screen or return list of dates and number of scans when star was observed.
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Chapter 20

Discussion of reduction issues

20.1 Sub-arrays
With the advent of the 6-way NPOI configuration in which the observer can switch in and out
stations, the number of participating stations can change throughout the night. This is equiv-
alent to VLBI, where different sub-arrays are observing. In OYSTER , this is (so far) the only
allowed exemption from the required invariability of the system configuration during observa-
tions. It is handled using a field in the scan table (scantable.station), which, for every scan,
indicates which stations were used. When reading point data, this so called scan configuration
is used to flag the data involving unused stations, as CONSTRICTOR has processed all data,
good or bad.

Some calibration procedures must consider which configuration was used, and therefore re-
quire input as to which scans are to be combined in the analysis. In these cases, the scan selection
directive has the list of different scan configurations attached to the standard directives. This
acts as a simple scan selection, but based on a criterion (here: the scan configuration). There
is a command line function, scanconfig(), which can be used for quick information regarding
scan configurations, as follows.

scanconfig()

Return list of different scan configurations used.

scanconfig(scan)

Return scan configuration used for the specified scan ID.

scanconfig(config< char>)

Return scan IDs which correspond to the specified scan configuration.

20.2 Bias correction of visibilities
Since Wittkowski et al. (2001), the importance of improved bias corrections of the amplitudes
has been recognized. A good fraction of the non-Poisson bias was removed from the 3-station
data through the use of Dave’s “z2” correction in CONSTRICTOR. For the new 6-station data,
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CONSTRICTOR allows one to specify one, two, or three fringe modulation values (k-values)
at which the amplitude is measured and then used in a polynomial fit of order zero, one, or
two, respectively, to compute a bias at other modulations through interpolation. In the case of
zero-order bias correction in CONSTRICTOR, a remaining bias can be studied by plotting the
visibilities of incoherent scans (i.e. fringe-less data) versus the photon rate. Here is how.

After all editing of the point data has been done, one should set the default back ground
rate (which is zero) using defaultbg or Reduce|BG Data|Default BGi, and zero bias coef-
ficients (genconfig.bias=0, only needed when starting over) before averaging the data. Then use
(use Calibrate|SYSTEM) to bring up the system calibration widget. Both squared visibili-
ties (V2Bias) and triple amplitudes (TABias, if two or more baselines are on the same detector)
need to be plotted, but only for spectrometers without interpolated bias corrections from CON-
STRICTOR. Plot all fits for all channels for every configuration. The fit coefficients are stored in
the genconfig.v2bias and genconfig.tabias variables. (If scan selection directive “All” is selected,
the fit coefficients will not be stored!) Then re-load the back ground data (get bgdata) and
re-average. The bias coefficients will be written into the output file with the averaged data,
when done after the calibration.

Note that the triple amplitude bias correction currently is not handled in a strict fashion.
This is because it is the complex triple product which is biased. CONSTRICTOR applies a
correction to the complex triple product based on Poisson noise if all three baselines are from
the same detector. The remaining biases studied as mentioned above in the amplitude are due
to non-Poisson detector statistics. If the amplitudes require additional bias compensation, so
would of course the closure phases. But this is not currently done for lack of an analytical
expression for the bias.

Another issue with the bias correction using incoherent scans is that they are currently com-
bined in a single fit, whereas ideally each coherent scan would be corrected with the incoherent
scan immeadiately following it. Implementation has been delayed however because of the new
possibility to do bias correction with unused fringe frequencies.

20.3 Photometry

With this we do not mean to talk about using NPOI as an interferometer. Instead, photometric
calibration is an important part of checking the system and calibrating visibility amplitudes of
the 6-station array.

20.4 Calibration of visibilities

In OYSTER , the visibility amplitudes and phases of the program stars are calibrated using cal-
ibrator stars, for which those variables are modeled and the resulting model coefficients trans-
ferred to the program star data.

In practical terms, the software keeps four “copies” of the amplitudes (squared and triple),
which correspond to the uncalibrated amplitudes, the uncalibrated but normalized amplitudes,
the calibrated amplitudes, and the normalized and calibrated amplitudes. Normalization is
based on a model of the star, currently a single disk with a diameter taken from a file compiled
with a STARBASE procedure. When calibrating the data, the user should begin by looking
at the calibrated and normalized amplitudes first to see whether the data has already been
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calibrated (for example when a .cha file was read). In addition, this data type is the only one
which should approach unity for the calibrator stars after calibration. (In the case of visibility
phases, there are no normalized quantities.)

When writing calibrated data into a .cha output file, both the uncalibrated and calibrated
visibilities are written, but not the normalized data. This is because normalization is done every
time the data is read from the output file. The calibration table, which can be used to undo
specific calibration and which is updated during the calibration process is only needed for this
purpose; any calibration can be reset without it and thus start over for a new calibration.

20.5 Astrometry data reduction

20.5.1 Introduction

Astrometry with NPOI is based on the measurement of fringe delays, which are related to the
baseline orientation and star position. There are three different corrections to the uncalibrated
FDL delays, which are due to atmospheric refractive index fluctuations, path length variations in
the feed system, and motions of the siderostat pivots. We call the application of these corrections
to the raw FDL delays calibration of the delays. OYSTER , similar to the visibility calibration,
has storage for three calibrated delays, i.e. group, dry, and wet delays. These are the result of the
dispersion correction procedure (dispcorr), which computes cumulative corrections based on the
white light fringe position (group delay), the dry and wet air dispersion constants, respectively.
All subsequent metrology corrections are only applied to these three calibrated delays. Note that
OYSTER does not have separate variables for delays with and without metrology corrections, for
example. The user has to keep track of the actual calibration status of the delays.

20.5.2 CONSTRICTOR parameters for astrometric reductions

Atmospheric dispersion corrections are based on the variation of the visibility phase with wave-
length. In order to increase the SNR for these data, we coherently integrate the complex
visibility for typically 200 ms. The coherent integration is done using the COBRA procedure
cohstrictor. In order to provide the necessary input file for this step, the following CON-
STRICTOR parameters should be used.

• OutFile = YYYY-MM-DD.coh. The .coh extension is standard for coherent integration.

• Raw = On. Write the raw data of every scan into a separate HDS file. These files are
needed by cohstrictor to compute the complex visibilities and fringe delays.

• NumAv = 100. Integrate 100 2ms samples. This seems to be a good trade-off between
SNR and possible systematic error at longer integration times.

• Metrology = On. Pass on metrology data

20.5.3 Coherent integration

As explained in the chapter on COBRA, CONSTRICTOR no longer does coherent integrations
due to the complexity of the steps involved. Instead, procedure cohstrictor is used, with a
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single parameter telling it the file name of the CONSTRICTOR output. (Do not confuse this
procedure with another COBRA procedure, constrictor, which is a general purpose procedure
to replace or add certain variables in .con files.)

20.5.4 Dispersion correction

OYSTER procedure dispcorr is used to compute group delays and dispersion corrections for the
data read from the .coh file.

The dispersion corrections are computed for every data point, as well as the corrections due
to the motions of the siderostat pivots. The latter are solutions for the X, Y, and Z coordinates
done by INCHWORM. They are transformed into delays and interpolated to the time stamps
of the data points by metrocorr. Both are applied when the point data is averaged. (The
delay corrections due to pivot motions are also available in the data file from INCHWORM, in
which case the astrocorr procedure is used to just do the interpolation. The results of both
procedures are stored in the same variable.)

20.5.5 Metrology corrections

After averaging the point data, the only remaining delay correction is the fringe position of the
white light source used to monitor the feed system path length. This is implemented as a toggle,
i.e. a procedure which applies the correction when called the first time, then removes it when
called again, and so forth. The procedure name is whitecorr.

For greater flexibility, the siderostat metrology corrections can also be postponed until after
the averaging, in which case they are derived from the averaged XYZ pivot coordinates. This
is done by the procedure pivotcorr, the scan data equivalent to the point data procedure
metrocorr. It too is implemented as a toggle. It is important however to use pivotcorr before
whitecorr, since pivotcorr will have to correct the white light delays too! This is because
the white light fringe position not only depends on the feed system path, but also on the pivot
motion.

If one decides to apply pivot and constant term corrections after the data has been averaged
(so that the changes may be studied more easily), the situation may arise where raw pivot
coordinates from the INCHWORM file have to be averaged; this can be done using the inchav
procedure.

20.5.6 A standard recipe

So here are the steps for a standard astrometry reduction.

get data,’2001-03-16.coh’ (Read a CONSTRICTOR file with coherent integrations.)

hds close

Reduce|BG Data|Default BG (To make sure every scan has a back ground rate and set it
to zero since we don’t care about the visibility calibration.)

Reduce|Point Data|Astrometry|PhaseEdit (Flag all channels higher than 20 as well as
the laser channel 11. Data after about May 2002 only need channel 12 of spectrometer 1
flagged. This is done automatically.)
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flagphase,2,1,chan=indgen(16)+1 Optional flagging of baseline 1 in beam 2, in this example.
This is needed if the same baseline occurs twice in the data. In the case of a reference
baseline, the one in the first beam would be overwritten by the one in the second beam,
and so on, in the dispersion correction procedure.

Reduce|Point Data|Astrometry|PhaseWrap (Unwrap the phases as a function of chan-
nel.)

Reduce|Point Data|Astrometry|DispCorr (Compute dispersion correction.)

Reduce|Point Data|Astrometry|PLOT (Plot VacDelay, i.e. the dispersion corrected
delay relative to the predicted geometric delay and flag. Use Plot|Auto. The reference
station values are zero by definition.)

hds open,’2001-03-16.inch’ (Open INCHWORM file.)

get metroconfig

get motiongroup,1

hds close

pivotfit. An optional step which fits siderostat pivot coordinates. RMS residuals should be
on the order of a couple of microns. After this step, plotting ParXYZ corr. will display
the residuals (see next step).

Reduce|Inch Data|Plot. Plot azimuth versus elevation, connecting data points with lines.
Smooth curves should be the result. This is a test whether proper siderostat models are
loaded. Also plot ParX,Y,Z to look for outliers.

Reduce|Inch Data|Init (For now, we plan on computing and applying the metrology cor-
rection after averaging, so we have to initialize the metrology correction to zero for the
calibrated delays not to be flagged during averaging.)

average

inchav

Calibrate|Astrometry|MetroCorr (Compute and apply constant term and pivot correc-
tions.)

Calibrate|Astrometry|SOLVE (Compute astrometric solutions)

20.6 Imaging simulations

To use OYSTER for imaging simulations, first create a data set using the fakedata procedure.
This will create scans, for which one can compute model values using calcmodel after reading
a model file. calcmodel will compute the complex visibilities (scans.complexvis) and squared
visibilities (scans.vissqm). If one wants to write this data into a FITS file, nothing needs to be
copied since the procedure put fits uses the complex visibilities to derive the FITS visibility
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variables amplitude and phase. If noise is to be added to the visibilities, it should be added to
the real and imaginary parts of scans.complexvis.

The data can then be mapped in AIPS with or without using phase self-calibration.
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HDS procedures

We list here all available procedures for the HDS access. Italic names, e.g. value, have to be
replaced with variable names; they will be allocated automatically and return the data requested.
If a type is specified, e.g. value< double>, the variable must be declared and initialized before.
Optional arguments are in square brackets, e.g. status; if several optional arguments are listed,
only one can be selected as such and arguments to the left then are compulsory! Please refer to
the HDS manual for explanations on the individual commands.

21.1 hds

hds open,name< char>,[mode< char>],[status
hds new,filename< char>],[name< char>],[type< char>],[status

21.2 cmp

cmp shape,name< char>,ndim,dims
cmp get0i,name< char>,value
cmp get1i,name< char>,num< long>,values
cmp getnd,name< char>,ndim< long>,dims< long>,values
cmp get0d,name< char>,value
cmp get1d,name< char>,num< long>,values
cmp getnd,name< char>,ndim< long>,dims< long>,values
cmp get1r,name< char>,num< long>,values
cmp get0c,name< char>,data
cmp get1c,name< char>,num< long>,data
cmp getnc,name< char>,data< char>
cmp put0c,name< char>,string< char>
cmp put0i,name< char>,value< long>
cmp put0r,name< char>,value< float>
cmp put0d,name< char>,value< double>
cmp put1i,name< char>,values< long>
cmp put1r,name< char>,values< float>
cmp put1d,name< char>,values< double>
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cmp putnd,name< char>,ndim< long>,dims< long>,values< double>
cmp putnr,name< char>,ndim< long>,dims< long>,values< float>
cmp putni,name< char>,ndim< long>,dims< long>,values< long>
cmp putnc,name< char>,ndim< long>,dims< long>,values< char>
cmp put1c,name< char>,data< char>

21.3 dat

dat name,name
dat type,type
dat ncomp,ncomp
dat index,index< long>
dat find,name< char>
dat annul
dat cell,ndim< long>,cell< long>
dat shape,ndim,dims
dat get1d,num< long>,values
dat get1r,num< long>,values
dat get1i,num< long>,values
dat getnd,ndim< long>,dims< long>,values
dat getnr,ndim< long>,dims< long>,values
dat getni,ndim< long>,dims< long>,values
dat clen,clen
dat size,size
dat prim,reply
dat there,name< char>,reply
dat erase,name< char>
dat new0c,name< char>,len< long>
dat new,name< char>,type< char>,ndim< long>,dims< long>
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Programmer’s reference

22.1 Widget routines
In the following, we will list the IDL widget procedures connected to buttons in the main widget.
The names of all these procedures start with ww .

22.1.1 File

ww file

ww fileopen

ww filecancel

ww filehelp

22.1.2 Access|Browse

ww access

ww look

ww lookdestroyed

ww find

22.1.3 Access|Interferometry

ww access cont’d

get GenConfig

get Date
get SystemId
get Format

get GeoParms

get scantable

get bgtable
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get bgscans

get ObserverLog

get ConstrictorLog

22.1.4 Access|PointData

ww access cont’d

ww loadstarsel

ww loadstar

22.1.5 Access|Write

ww write

put Syslog

put ConstrictorLog

put GeoParms

put GenConfig

put ScanData

put mark3data

22.1.6 Reduce

ww reduce

ww reducept

ww reducebg

ww reducedl

22.1.7 Reduce|PointData|Plot

ww reducept

init plotsel

ww plot

ww plotdestroyed
ww plotoptions
ww plothelp
ww plotok

ww plot cont’d

ww setxaxis

ww setyaxis
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ww setzaxis

ww datasel

ww setslice

ww setstdir

ww setstarsel

ww setwsize

ww datasel

ww setyinbeam

ww setyoutbeam

ww setybldir

ww setytrdir

ww setychdir

ww setyptdir

ww setysel

ww yseldestroyed

22.1.8 Calibrate

ww calibrate

ww cal

ww plot

ww astrom

ww cal

ww caldestroyed

ww calindicator

ww calfunction

ww caloptions

ww calstars

ww calok

ww listcalreasons
ww caledit

22.1.9 Catalog

ww catalog

ww starinfo
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22.1.10 WAVE

ww wave

ww restore

ww restorecancel

ww restorehelp

ww quit

22.2 Organization of data

The data inside CHAMELEON is organized in tables (e.g. ScanTable), structures (e.g. Gen-
Config), arrays of structures (e.g. scans), and plain arrays (e.g. VisSq). Some of the choices
made might be different from what one would make today if one were to write CHAMELEON
from scratch, but obviously can’t be changed that easily anymore.

Common blocks exist for the major data groups, i.e.:

• RawData: unaveraged, typically 2 ms integrations, flat arrays (bin counts, laser positions,
quad cell counts)

• MetroData: unaveraged, typically 1/4 to several Hz, flat arrays (temperature data, sidero-
stat laser metrology, etc.; very incomplete since INCHWORM is mainly used to process
these data.)

• InchData: 15 s averaged integrations, output from INCHWORM, flat arrays

• PointData: 1 s averaged fringe data, output from CONSTRICTOR, flat arrays

• ScanData: scan averaged data (scans, bgscans), output from CHAMELEON, as well as
data used in AMOEBA, velocities (spectrosopy) , positions (relative astrometry), magni-
tudes (photometry), arrays of structures

All flat array data have a pair of indices per group containing first and last elements for
every corresponding scan loaded. Depending on size due to sampling time, some arrays have
only data from a single scan, others have all night’s data. In particular, point data is meant to
be loaded one star at a time, overwriting the previous copy. The scan data is always allocated
for the whole night.

Tables are identical to arrays of structures in IDL, but were not in PV-WAVE. Since the
latter was the first language for CHAMELEON, we still speak of tables. Two tables accompany
the interferometric scan data, the scantable and the bgtable (back ground table). They exist
for historical reasons, related to being convenient containers for auxilliary scan related data
when reading the point data, but they could have been incorporated into the scan structures.
Aside from the flag tables and the station table, the startable is the only other tables worth
mentioning, as it contains all stellar data and is subject to the manipulations through the
STARBASE procedures.
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The interferometric configuration is stored in structures (genconfig, metroconfig, geoparms),
and arrays of structures (geninfo, geoinfo). The latter are expansions of single date configura-
tions to multiple day configurations for use in AMOEBA.

In general, any interferometric data from a single night are not buffered. Thus, the two
standard procedures to read data into CHAMELEON, get scandata and get xdr empty the
buffer and only initialize the geoinfo and geninfo structures for use in AMOEBA. Similarly,
any procedures creating a CHAMELEON data set from other formats do the same, with the
exception of get oifits because these files may contain multiple data sets. Finally, fakedata,
which simulates a data set, also empties the buffer.

Finally, model and image data are contained in two common blocks.

22.3 Array configuration

22.3.1 Optical path lengths

The total optical path through the NPOI can be found by adding various contributions listed in
the files npoi/stations.config, npoi/fdl.config, and npoi/6way.config. For the purpose of calculat-
ing delay constant term and optical path lengths, we break up the paths into segments of four
types, associated with siderostat station, delay line, beam combiner number (ID), and beam
combiner input number. It is best to make the break between station- and delay-line associated
lengths at the intersection of the N and E arms. However, the west arm never reaches that
point. We treat the feed pipes associated with delay lines 4, 5, and 6 as if they run to the N-
and E-arm intersection. If they feed the W arm, the path length is reduced by 1.4455m, which
is why D for the west arm stations is reduced by that amount.

In the file stations.config, D contains the path from the siderostat pivot point to the mirror
at the intersection of the N and E arms, but excluding the vertical path in the elevator can which
belongs to the delay line based path.

In file fdl.config, the paths do not include about 86m of path from the mirror at the inter-
section of the N and E arms through the feed system to the FDL entrance.

In file 6way.config, about 4m of path through the beam combiner are not included. That is
to say that the delays in this file and the previous one are relative paths. This is a result from
their having been created using the npoiconfig procedure from measurements of the white light
fringe positions in different configurations.

22.3.2 Basic definitions and sign conventions

This section is partially derived from “Basic definitions for the USNO and NRL Optical Inter-
ferometers” by D. Buscher.

A baseline vector B12 is oriented from telescope 1 to telescope 2, i.e. the baseline coordinates
are the coordinates of station 2 minus the coordinates from station 1. In the aperture plane,
the u coordinate increases to the East, and the v coordinate increases to the North. (Remember
though that uv coverages are plotted in OYSTER as seen on the sky, so that the source structure
and visibility function can be easily superposed.)

In PEARL, a map on the sky is allocated with the x-coordinate corresponding to RA, which
increases to the left (East). The relationship between visibility and map is then
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V (u, v) =
∫
B(ξ, η)exp(−j2π[uξ + vη])dξ dη

22.4 Command line procedures

22.5 Plotting

22.5.1 Adding plot variables

Plot variables are identified by a sequence number in OYSTER , and are defined in terms of
OYSTER data variables in set plotdata (and the corresponding function set ploterr. The
corresponding plot variable name is defined in the set axitems function, which should have
exactly the same ordering. The following additional information needs to be entered for each
plot variable.

Each plot variable’s ID is entered in set plotlabels for the index label it requires so that
it is displayed together with the name in the plots. In set plotloops, the loop count is set to
one for those indices which do not occur in the plot variable. These functions and procedures
are all found in plotting.pro. Finally, the plot variable’s ID need to be entered in ww setxaxis,
ww setyaxis, and set zaxis if it’s selection requires and additional index selection by the user.

22.5.2 Adding plot classes

A plot class is basically defined by the list of plot variables displayed in the x,y, and z axis
selections of the plot selection widget. The plot selection widget is recycled upon selecting a
different plot class. Any plot variable can be put on more than one selection list associated
with a plot classes. Variables are selected for a plot class because of a specific purpose of these
plots. Therefore, the definition of a plot class requires the following information to be coded. In
ww plot, the appropriate checkdata call and plot widget title need to be specified. Furthermore,
in the same widget procedure, the name of the new plot class needs to be added to each selection
button if required. Then, in ww plotok, an entry must be made for the new class for the plotting
procedure associated with the new class. Note that so far all plots in OYSTER are handled by
just three different procedures, plotdata, plotncal, and plotuv. This is to have similar kinds
of plots handled by the same procedure in order to make the plotting code shorter. However,
some kinds of plots are sufficiently different in their logic so as to require a different plotting
procdure to be written. Finally, as far as the plot widgets are concerned, the new class needs to
be added for each necessary index selection in ww indexsel.

Whereas the widget routines for plotting in OYSTER are found in plotwidget.pro, the plot
procedures and initialization functions are found in plotting.pro. Here we have to add an entry
of the new class in init class for the definition of the auxilliary information which is displayed
if the user selects the “Identify” button. Then, which plot variables are to be listed in the plot
selection widget is defined in set axitems. Finally, the information of how multiple plots should
be arranged in a plot for each plot class is specified in the plot procedure associated with the
new plot class.
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Chapter 23

Introduction

For completeness’ sake, we include here a description of the raw data averaging software, called
CONSTRICTOR, which produces the input files for OYSTER . CONSTRICTOR is written in
C, but uses a mixed C and FORTRAN library for HDS file access. (This library is described in
the OYSTER manual.)

CONSTRICTOR reads NPOI raw data files and observation logs, and decodes and integrates
data such as visibilities, delays, photon rates, etc. NPOI raw data is written by the embedded
system in form of packets, with different types depending on which data they hold. The packet
definitions are contained in packetdefs.h. The packet headers, all conforming to the same format,
contain information as to the type of the packet, its length and a time stamp.

CONSTRICTOR first reads the packet headers from all raw files associated with one night of
observing and creates a combined packet directory in which all packets are in chronological order.
Packet directories for the individual raw files are stored on disk (working directory), and can be
read later for a faster restart on CONSTRICTOR should that become necessary. (More recently,
OYSTER has been upgraded to create these auxiliary files for CONSTRICTOR with the added
benefit of additional data integrity checks.) CONSTRICTOR then reads the FILE HEADER
and SYS CONFIG packets for date and configuration information. It then proceeds to process
all packets whose time stamps fall in between start and stop times defined in the input parameter
file. The packets of the high rate data types, FRINGE DATA (or BG DATA for 6-way data),
FDL POSITION, and NAT COUNTS, are processed by the fringeav.c, fdlav.c, and natav.c
modules, respectively. Individual 2ms records of these packets are aligned (synchronized), and
missing matches discarded. The integration length is defined by the number of records, not by
a time interval. This is a pecularity which one has to keep in mind especially when reducing
data for nights with very bad seeing.

In earlier versions of CONSTRICTOR, it was enabled to do both incoherent and coherent
integrations of the visibilities. Since the latter has never worked well, this capability has been
removed and is now part of OYSTER ’s COBRA procedures. The lean version of CONSTRICTOR
therefore serves two purposes now: provide an output file with incoherently averaged data, and,
optionally, reformat the raw data and store individual scans in separate HDS files for COBRA.
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Chapter 24

How to use CONSTRICTOR

24.1 NPOI raw data files

High rate data files are files with the extensions .fringeData and .alignData. Metrology data
files have the extension .sidData.?, where the index refers to the SIDcon ID, not the siderostat
ID. Other files include the observer log (extension .log) and the scan log (extension .starlog).

24.2 Preparation of parameter file

The parameter file contains information for CONSTRICTOR on the location of the raw data
files, start and stop times, integration time, etc. These are parameters used to control the
output, but not parameters describing system configuration.

The parameter file, YYYY-MM-DD.par, can now be created using the rawlist procedure of
OYSTER . If you want to create the parameter file for the previous night, just run rawlist from
the OYSTER prompt, for other dates you should supply the date, e.g. rawlist,’2002-12-13’.
This procedure will look for files YYYY-MMDD.* in datacon11 if run on the site data reduction
computer octans. On any other computer, the raw data files should be in the current directory.
Should you want to exclude certain files from being processed, compress them since rawlist
ignores compressed files.

The procedure will do some basic file integrity tests, and it will also update header time
stamps (in the packet directories) with the first time stamp found in the packet body. This is
to prevent buffer overflows in CONSTRICTOR when synchronizing the records.

The rawlist procedure will also write the packet directories (.dir files) and packet listings
(.lst files). The latter were previously produced by the pktlist program.

Check beginning and tail of the listing for each file. There should be an END OF DISK
packet. If not, there will be an appropriate entry for the MaxPacket parameter in the parameter
file. Also check if the data at the tail of the listing is from the same night as the data at the
beginning. If the timestamps are not monotonically increasing in the entire listing, this is an
indication that DATAcon crashed and you are looking at data from a previous night at the end
of the disk. (EXCEPTION for metrology data: if there is no END OF DISK packet, another
file for the same siderostat (see extension number) might have it if the file was broken into two
or more pieces.
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24.3 Parameters

• InFiles: The order of the input files is irrelevant.

• DirFiles: These must be in the same order as InFiles and MaxPacket.

• MaxPacket: The maximum number of packets to process for each file

• DayNumber: Even though this number is in the data, some packet headers have the wrong
number and it makes it a whole lot easier to have the user check and enter this number
correctly. If observations started before 0 UT, choose the day number of that previous day.
CONSTRICTOR will add a multiple of 24 hours to the time tag when the day number
changes. Remember to set the StopTime to, say, 48 hours if you use a DayNumber of one
less than the actual day number.

• StartTime:

• StopTime: These times are for day number corrected time tags, i.e. if the day number
changes during the observations, 24 hours are added to the tags and compared to the
StartTime and StopTime parameters. This means you may have to specify a StopTime of
48 hours.

• LogFile: The observers log file, usually named YYYY-MMDD.log. If none is found, none
is included in the output.

• ScnFile: The star log file, usually names YYYY-MMDD-XXXXXX.starlog. If none is,
none is included in the output.

• OutFile: The name of the output file, should be YYYY-MM-DD.con, or YYYY-MM-
DD.coh. The latter extension can be used as a memo for files which will have coherently
integrated visibilities added later by OYSTER . Please do not use other extensions.

• Raw: Write the raw data of every scan into a separate HDS file. This can then be read by
the COBRA scripts of OYSTER . (Off)

• Lock: Only average continuous locks. (Off)

• Triple: Compute and write the triple product. (On)

• NumAv: Number of samples in an incoherent integration. (500)

• RefStation: Which station to reference delays to. Choose one which is common to all
spectrometers. (1)

• SmartFDLAverage:Average the difference between measured and pred. delays? (Off)

• Metrology: Decode and pass on metrology data (On)

• Nat: Process NAT data (On)

Here is an example of a CONSTRICTOR parameter file.
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InFiles = "/datacon11/2003-0330-104722.fringeData","/datacon11/2003-0330-105135.fringeData","/datacon11/2003-0330-143510.fringeData","/datacon11/2003-0330-143855.fringeData","/datacon11/2003-0330-144301.fringeData","/datacon11/2003-0330-030203.alignData","/datacon11/2003-0330-013326.sidData.1","/datacon11/2003-0330-013329.sidData.3"
DirFiles = "2003-03-30.1.dir","2003-03-30.2.dir","2003-03-30.3.dir","2003-03-30.4.dir","2003-03-30.5.d
ir","2003-03-30.6.dir","2003-03-30.7.dir","2003-03-30.8.dir"
MaxPacket = 5076, 5059, 4620, 4943, 5541, 17518, 1931, 1931
DayNumber = 89
StartTime = "00:00:00"
StopTime = "24:00:00"
LogFile = /datacon11/2003-0330.log
ScnFile = /datacon11/2003-0330-030621.starLog
OutFile = 2003-03-30.con
Raw = Off
Lock = Off
Triple = On
NumAv = 500
RefStation = 2
SmartFDLAverage = Off
Metrology = On
Nat = On

24.4 System configuration
As described in Chapter VI, the system configuration is not yet automatically produced by
the control system. Neither is the system.config file, which is used by CONSTRICTOR for
system configuration information, used to control the NPOI configuration. Ideally, the system
configuration file is deposited in the same directory used for the observing list the day before
observing. A script on sextans automatically transfers this file to the proper system area. If this
is not done, the file system.config can always be placed in the directory where CONSTRICTOR
is run, and will be loaded automatically, overriding any system configuration embedded in the
raw data stream.

The system configuration is supposed to be written by the control system into the SYS CONFIG
packet stored in the raw data stream. This however is not currently implemented and instead
the text packet, in KEYIN format, is fetched from disk (file system.config). Therefore, the stored
system configuration can be wrong, if the configuration file was out of date. In this case, placing
this file in the current directory for CONSTRICTOR will cause the software to load this file
automatically and use it instead of the SYS CONFIG packet. Make sure this file does not exist
in the current directory if you want to use the SYS CONFIG packet instead.

Here is an example of a system configuration.

MAX_WAV=16
MAX_FRFREQ=6
MAX_SID=4

Latitude = 35.0966666666667
Longitude = -111.535
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Altitude = 2200.66

TDTminusUTC = 60.184
UT1minusUTC = 0

InstrCohInt = 2

NumBin = 64
BeamcombinerID = 2

InputBeam.NumSid = 6
InputBeam.StationID = "E02", "AC0", "AE0", "AW0", "W07", "AN0"
InputBeam.SiderostatID = 6, 1, 2, 3, 5, 4
InputBeam.Stroke = -1.0e-6, -3.0e-6, -3.0e-6, +3.0e-6, +2.0e-6, +2.0e-6
InputBeam.FDLTankID = 1, 2, 3, 4, 5, 6
InputBeam.BCInputID = 1, 2, 3, 4, 5, 6
InputBeam.StationCoord(01:04) = 5.599326, -1.792619, 0.010397, 8.429653
InputBeam.StationCoord(05:08) = -0.499984, -5.639917, 0.000035, 13.415900
InputBeam.StationCoord(09:12) = 16.989235, -12.896476, -0.001264, 31.406569
InputBeam.StationCoord(13:16) = -20.389907, -15.497607, -0.000635, 27.541854
InputBeam.StationCoord(17:20) = -44.203123, -32.988367, -0.081429, 56.867758
InputBeam.StationCoord(21:24) = -0.627300, 17.212581, -0.008760, 20.285819

OutputBeam.NumOutBeam = 2
OutputBeam.BCOutputID = 2, 3
OutputBeam.APDArrayID = 2, 3
OutputBeam.NumSid = 4, 4
OutputBeam.NumBiasFreq = 1, 3
OutputBeam.NumSpecChan = 16, 16
OutputBeam.BiasMod(01:06) = 8, 7, 10, 5, 3, 5
OutputBeam.BiasMod(07:12) = 1, 7, 10, 8, 3, 5
OutputBeam.StationID(01:04) = 1, 3, 4, 6
OutputBeam.StationID(05:08) = 1, 2, 4, 5

OutputBeam.Wavelength(01:04) = 849.4e-9, 820.9e-9, 793.9e-9, 768.3e-9
OutputBeam.Wavelength(05:08) = 744.2e-9, 722.9e-9, 701.5e-9, 683.1e-9
OutputBeam.Wavelength(09:12) = 664.6e-9, 648.9e-9, 617.7e-9, 603.5e-9
OutputBeam.Wavelength(13:16) = 590.7e-9, 577.9e-9, 566.5e-9, 556.6e-9

OutputBeam.Wavelength(17:20) = 849.4e-9, 820.9e-9, 793.9e-9, 768.3e-9
OutputBeam.Wavelength(21:24) = 744.2e-9, 722.9e-9, 701.5e-9, 683.1e-9
OutputBeam.Wavelength(25:28) = 664.6e-9, 648.9e-9, 617.7e-9, 603.5e-9
OutputBeam.Wavelength(29:32) = 590.7e-9, 577.9e-9, 566.5e-9, 556.6e-9

OutputBeam.WavelengthErr(01:04) = 0.1e-9, 0.1e-9, 0.1e-9, 0.1e-9
OutputBeam.WavelengthErr(05:08) = 0.1e-9, 0.1e-9, 0.1e-9, 0.1e-9
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OutputBeam.WavelengthErr(09:12) = 0.1e-9, 0.1e-9, 0.1e-9, 0.1e-9
OutputBeam.WavelengthErr(13:16) = 0.1e-9, 0.1e-9, 0.1e-9, 0.1e-9

OutputBeam.WavelengthErr(17:20) = 0.1e-9, 0.1e-9, 0.1e-9, 0.1e-9
OutputBeam.WavelengthErr(21:24) = 0.1e-9, 0.1e-9, 0.1e-9, 0.1e-9
OutputBeam.WavelengthErr(25:28) = 0.1e-9, 0.1e-9, 0.1e-9, 0.1e-9
OutputBeam.WavelengthErr(29:32) = 0.1e-9, 0.1e-9, 0.1e-9, 0.1e-9

OutputBeam.ChanWidth(01:04) = 31.3e-9, 28.9e-9, 26.7e-9, 24.7e-9
OutputBeam.ChanWidth(05:08) = 22.9e-9, 21.3e-9, 19.8e-9, 18.5e-9
OutputBeam.ChanWidth(09:12) = 17.2e-9, 16.1e-9, 15.1e-9, 14.2e-9
OutputBeam.ChanWidth(13:16) = 13.4e-9, 12.7e-9, 12.0e-9, 11.3e-9

OutputBeam.ChanWidth(17:20) = 31.3e-9, 28.9e-9, 26.7e-9, 24.7e-9
OutputBeam.ChanWidth(21:24) = 22.9e-9, 21.3e-9, 19.8e-9, 18.5e-9
OutputBeam.ChanWidth(25:28) = 17.2e-9, 16.1e-9, 15.1e-9, 14.2e-9
OutputBeam.ChanWidth(29:32) = 13.4e-9, 12.7e-9, 12.0e-9, 11.3e-9

OutputBeam.ChanWidthErr(01:04) = 0.1e-9, 0.1e-9, 0.1e-9, 0.1e-9
OutputBeam.ChanWidthErr(05:08) = 0.1e-9, 0.1e-9, 0.1e-9, 0.1e-9
OutputBeam.ChanWidthErr(09:12) = 0.1e-9, 0.1e-9, 0.1e-9, 0.1e-9
OutputBeam.ChanWidthErr(13:16) = 0.1e-9, 0.1e-9, 0.1e-9, 0.1e-9

OutputBeam.ChanWidthErr(17:20) = 0.1e-9, 0.1e-9, 0.1e-9, 0.1e-9
OutputBeam.ChanWidthErr(21:24) = 0.1e-9, 0.1e-9, 0.1e-9, 0.1e-9
OutputBeam.ChanWidthErr(25:28) = 0.1e-9, 0.1e-9, 0.1e-9, 0.1e-9
OutputBeam.ChanWidthErr(29:32) = 0.1e-9, 0.1e-9, 0.1e-9, 0.1e-9

Note the OutputBeam.NumSid and OutputBeam.StationID parameters; these parameters
replace the old OutputBeam.FringeMod and OutputBeam.InputPair parameters which specified
the baselines and their modulations directly. Even though CONSTRICTOR still understands
the old parameters, the new ones are easier to use since CONSTRICTOR will compute the
combinations and their modulations amplitudes automatically from the list of stations in each
spectrometer and their strokes. OutputBeam.StationID tells which stations are in a given spec-
trometer, by giving its index in the InputBeam.StationID array (starting with 1). (That means
that th values specified should always be smaller or equal to the number of stations used, a
common mistake!)

MAX SID, like the other MAX parameters, is used to tell CONSTRICTOR the number
of places allocated, but not necessarily used, for the specifications in the KEYIN style system
configuration. For example, OutputBeam.StationID in the KEYIN file is a one-dimensional
array (KEYIN does not recognize more than one dimension), but needs to be converted to a
two-dimensional array which specifies for each output beam what stations it contains. The
MAX SID parameter is used to determine where in the KEYIN vector the next output beam
section begins (here: after the first 4 numbers).

Similarly, the MAX FRFREQ is used to decode the OutputBeam.BiasMod numbers. Again,
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the actual number of baselines can be less (but not more of course) than this parameter allows.
Also note that the FDLTankID numbers are used to determine at which position in the

FDL POSITION packet one can find the delay data for a given station. (This is only true
for 6-station data; in the case of the 3-station data all three delay lines occupy the first three
dimensions in the FDL POSITION packet.) The same holds for SiderostatID, which actually
should have been called SidCon numbers. This is because NAT, SidModel, and Motor counts are
stored in the order of SidCon IDs, not in the station order. CONSTRICTOR uses SiderostatID
to put the data into the right place. Here for example, the E02 NAT data is not the first entry
in its packet, but the sixth.

One word on the BeamCombinerID. It is one for the 3-station combiner, 2 for the 6-station
combiner, and 3 for the 6-station combiner used for astrometry. The only difference between the
last two cases is whether or not the white light (α Lab) fringe modulation needs to be doubled.
If BeamCombinerID=3, then the modulation has to doubled.

24.5 Running CONSTRICTOR
Type: /home/cah/constrictor/constrictor

You will see a ‘*’ prompt. This is KEYIN communication; you can modify parameters inter-
actively (which you should NOT, unless you edit the parameter file accordingly). Type, e.g.,
@1997-08-02.par, and KEYIN will read the parameter file. Type show, and you will get the
current setting of the parameters. Then, if everything is OK (check carefully!), hit ‘/’. CON-
STRICTOR will now open all files, create packet listings which are saved in the .dir files (or
read a .dir file if available from rawlist), and process all data (falling in between StartTime
and StopTime). At the end, you will be returned to KEYIN, at which point you should type
quit to exit CONSTRICTOR.

24.6 Programmer’s reference
Parts of CONSTRICTOR got fairly complicated over time due to pecularities of the raw data,
the requirement of backward compatibility, and other issues.
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Chapter 25

Introduction

INCHWORM, written by N. Elias II, is not part of the OYSTER software, but we document a
few instructions here on how to use it.

To create a .inch file from a .con file, startup INCHWORM and then type inchworm inch1
/gemini/npoi/con/2003-03-15.con -dir. You can delete the inch1 object by typing inch1 delete.

Then open the file and go to Raw|ScanData, double click on sid 1, and go to Edit|De-glitch.
In this widget deselect tuple (1,2,4) and (1,3,5), and then click on Find. Fix every glitch listed
by double-clicking the glitch and then, judging by the plot, the laser which glitched. Select this
laser (Calc) and click Fix. Note that lasers 2&4, as well as 3&5 are degenerate since they are 180
degrees apart. Also, lasers 2&5 and 3&4 are on the same side of the plate and should therefore
move in the same way. You do not have to work on the glitches in sequence, but note that of
course every fix will shift all laser values from current to end by that amount. Typically, there is
up to a three count difference between calculated and predicted values of the glitch. 100 counts
= 0.5 µm. Any notes can be entered into the INCHWORM log using View—Logs—InchwormLog.

After fixing all glitches, go to Average, (Re)create|ScanData, then Calculate|By Time, then
Calibrate and then Done.

To prepare the motion group, go to Motion, )(Re)create|Go, Calculate, Calculate, Done, Done.
To exit, go to File|Done.
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Chapter 26

Introduction

A collection scripts capable of reading HDS formatted NPOI raw data for analysis and display.
There is also a small class of procedures which read packets directly from a NPOI raw file. These
are described at the end of this part.

26.1 Reading raw HDS scan files
In the first implementation of optional raw data output in CONSTRICTOR, NPOI raw data
of a scan was written into a single HDS formatted file. However, long scans (e.g. scans for
atmospheric studies exceed 30 minutes) and the advent of the 6-way fringe engine made the
current logic necessary, which is as follows. Scans will be divided into sub-scans, which have
an additional extension after the scan number, identifiying the sequence number. Sub-scan files
can still be read individually, but the standard procedure is to read and concatenate at least
the time stamps and delay line metrology data from all sub-scans, and then to read the fringe
data individually.

get rawdata,[file spec< char>]

Procedure to read raw time and delay data from one or more sub-scan files specified
by file spec. Example: get rawdata,’2001-10-25.raw.013’. Note that one does not
include the sub-scan extension, as the procedure itself checks how many sub-scan
files are present on disk. The data from all files found is read and concatenated. If
there is only one sub-scan file, it will be left open. If no file is specified, it is assumed
that a file is open, in which case the time and delay data of just this file will be read.
The file will be left open.

get bincounts,spectrometer< int>

Read the bin count data for the specified spectrometer. A raw HDS file must be
open. The spectrometer number, i.e. the output beam, is stored in a common block
for shared reference.

get data,filename

This standard procedure to read any kind of NPOI standard data files can be used
to read a single raw file if the full filename is specified. All spectrometers will be
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read, and therefore the cautionary notes as to the spectrometer index in bincounts
apply. The file will be left open.

26.2 Frames
At NPOI, a fringe frame is a two-dimensional array of count rates, whereby one dimension
corresponds to the 8 or 64 phase bins across the fringe, and the other dimension corresponds
to the channel axis. A frame is recorded every 2 m1997-05-15.chas. The frames are stored in
bincounts, which can have dimensions, in this order, of the number of spectrometers, number
of bins, number of channels, and the number of frames. This structure is the same whether
or not one is using the 3 or 6 way beam combiners. All COBRA functions are guaranteed to
work if a single spectrometer is selected; only a few accept frame or visibility variables with
a spectrometer index, as noted specifically below. Therefore, the default is that the bincounts
array does not have a spectrometer index.

displayframe, c

Display frames on the TV. Any index selections in the different dimensions can be dis-
played, provided all phase bins are always selected. Examples: displayframe,bincounts(0,*,*,0),
displayframe,bincounts(0,*,0,0:99).

rotateframe(c, l, a, g)

Function. Apply rotation by group delay d and airpath a to fringe frame c and return
rotated frame.

fringeframe(a, g, l, v, n[, /poisson])

Function. Return a simulated fringe frame for a given path in air, a, delay tracking
offset (group delay), g, wavelength grid, l, visibility amplitude, v, and photonrate,
n. Optionally include Poisson noise. a and g can be arrays, as well as v and n. The
number of bins is inferred from the genconfig.numbin variable. The default number
of bins is 8.

26.3 Visibilities
fringevis(bincounts),[k]

Function. Return complex visibility for bincounts. The parameter k selects a partic-
ular baseline, i.e. fringe frequency. Examples: v=fringevis(bincounts(*,0,*),7), which
returns the (complex) visibility of channel 1, and the baseline with the frequency
number 7. If no sub-array of bincounts is selected, then the returned visibility array
has the same dimensions as the input, minus the bin index.

fringevissq(bincounts< real>),[k,n]

Function. Return the (averaged) squared visibility amplitude for bincounts. The
parameter n selects how many samples will be averaged.
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visrotate(v, l, d)

Function. Return rotated complex visibility for input visibility v, wavelength scale
l, and group delay d.

26.4 Fringe delays

fdldelay(baseline[,spectrometer, /scan])

Function. Return residual FDL delay for specified baseline. The baseline parameter
can either be a string variable (e.g. ’AW0-AE0’), or an integer in conjuction with
the spectrometer number specifiying an entry in GenConfig.BaselineId. The scan
keyword specifies whether or not all records belonging to the scan will be returned.
If not, then only the records associated with the currently loaded bincount data (if
any) will be returned. The default is scan=1.

visdft(v, l, d)

Function. Return complex Fourier transform of visibility with respect to wavenum-
ber, computed at delay values d. l are the channel wavelengths in the same units as
d.

groupdelay(p, l, d)

Function. Return position of peak of amplitude of complex power spectrum p.

whitedelay(v, l)

Function. Return white light phase delay for complex visibility v. Caution: phases
should be unwrapped before!

26.5 Photon rates

fringenphot(bincounts< real>)

Function. Return photonrate.

26.6 NAT data

natoffset(c)

Function. Return x and y offset (in units of the airy disk) of the image on the nat
quad cell.
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26.7 Compound plot procedures
These procedures use more elementary functions to produce diagnostic plots.

plot fdldelay,baseline< int>[,beam< int>][,/slide]

Plot the residual FDL delay in microns. If keyword slide is 1, then open a sliding
plot widget.

plot fdlpower,baseline< int>[,beam< int>][,/sf]

Plot a power spectrum (or structure function if sf=1) of the delay. The time stamps
must be integer multiples of the instrumental coherent integration time (2 ms cur-
rently at NPOI). Example: plot delayseries, fdlstamp(),fdldelay(’AE0-AW0’).

plot vispower,baseline< int>[,beam< int>][,numav=numav]

Plot visibility power spectra in a special browser plot.

plot fringepower[,channels=channels][,numav=numav]

Plot mean of squared visibility amplitude averaged over numav samples (default 10
samples) as a function of k frequency.

plot fringeimage[,channels=channels]

Display image of fringes from the frame data.

plot images,frames

Display fringe frames in a special browser window. Example: plot images,bincounts

plot powerpeaks,baseline< int>[,beam< int>,scanfile< char>] [,numav=numav]

Compute and plot scatter plots of primary and secondary peak heights in the fringe
powerspectra.

plot spectrumpeaks,baseline< int>[,beam< int>,scanfile< char>] [,channels=channels][,numav=numav]

Compute fringe spectra of the squared visibility amplitude averaged incoherently over
numav samples as a function of fringe frequency. Make a scatter plot of the peak
amplitude at the k value corresponding to the selected baseline, versus the maximum
peak amplitude over all the other fringe frequencies which are not supposed to contain
any signal.

plot groupdelay,baseline< int>[,beam< int>,scanfile< char>] [,numav=numav][,classic=classic][,slide=slide]

Plot the groupdelay.

plot fringephase,baseline< int>[,beam< int>,scanfile< char>]

For the specified baseline, plot the corrected fringe phase. If beam is not specified,
use currently loaded data. With the datum parameter, all available scan files will be
read and analysed.
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plot dispsol,baseline< int>[,beam< int>,scanfile< char>] [,compute=compute][,classic=classic]

Plot the dispersion corrected delays, along with the raw FDL delays for comparison.

plot ratehist,channels

Plot count rate histograms for the specified channels.

plot coherence,baseline,channels

Plot coherence analysis for the selected baseline and channel.

plot nathist,sid

Plot NAT count rate histograms.
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Chapter 27

NPOI raw packet data files

A small number of procedures capable of directly accessing NPOI raw packet files.

packetdir,file

Function. Return packet directory for specified file. This is an array of struc-
tures, each one specifying file, day number, time, type, length, and offset in bytes
from the beginning of the file for a packet. Example: pdr=packetdir(’2001-1121-
131547.fringeData’).

packettype,type

Function. Return human-readable name of packet type specified through type. Ex-
ample: print,packettype(’0x000b0000’).

readpacket,packet dir record

Function. Read and return packet specified in argument, which is an entry in the
packet directory. Example: p=readpacket,pdr(17).

packetlist,YYYY-MMDD

Open all raw packet files corresponding do embedded system date YYYY-MMDD.
Create GUI displaying packetlistings for each file, and a combined list of stars. If
one or more stars are selected (click and/or drag mouse cursor), scans corresponding
to the star selection are listed, which in turn can be clicked to display the packets
corresponding to a specific scan. If packets are clicked (i.e. selected), the packet is
read (if that type is implemented), and some information is displayed and/or stored
in OYSTER global variables, like Date, GenConfig, etc. The packet contents are made
available in the common block variable packet.
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Chapter 28

Introduction

28.1 About VOLVOX
A small number of procedures dealing with global astrometric fits to interferometric delay data.
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Chapter 29

Introduction

29.1 About PEARL
A collection of procedures capable of imaging interferometric data. These were written to develop
an algorithm for combining multi-channel data by accounting for the wavelength dependence of
the image if composed of black-body radiators (or stellar atmospheres). A corresponding multi-
channel CLEAN was implemented together with a self-calibration routine, following a difference
mapping scheme. In the latter, a model (list of CLEAN components) is built-up incrementally
between phase self-calibrations. The CLEAN algorithm is controlled with a slider widget to
adjust the number of components to be added to the model, updating the residual image for
each component added or subtracted.

PEARL will work with the complex visibilities, which have to be initialized with the observed
visibility and closure phase data using the set complexvis procedure. For testing purposes,
if PEARL is called directly after computing model visibilities with calcmodel, the complex
visibilities used by PEARL correspond exactly to the model.

The PEARL widget has two HELP buttons for further information on how to use it. The
final PEARL image consists of a white light image and two maps, one of the effective temperature
and the other one of the surface gravity. Together, these fully constrain images of stellar surfaces
and multiple stellar systems.

29.2 Getting started
First, let us start with a simple example which will also test the code of PEARL. Execute the
following commands to read a data set delivered with OYSTER and the model of a double star
fit to these data. Compute the complex model visibilities (calcmodel) to have a “perfect” data
set for which one should be able to get a good image.

cd oyster/lab/data/2001
oyster
get_data,’1997-05-01.cha’
readmodel,’zetuma.model’
binary_model.period=200 ; Binary will move during obs. otherwise
scans.vissqcerr=abs(scans.vissqcerr) ; Use all data
scans.triplephasecerr=abs(scans.triplephasecerr) ; Use all data
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Figure 29.1: Main PEARL GUI

calcmodel ; Compute model visibilities
pearl,’FKV0497’,cellsize=0.3,imsize=129

After starting PEARL, you will be presented with GUI as shown in Fig. 29.1.
Drag the slider under the large display of the synthesized point spread function (aka “dirty

beam”) to the right to run an interactive version of the CLEAN algorithm (the counter above
the slider shows the number of CLEAN components added to the model and subtracted from the
“dirty image” shown in then lower-right display (green dots show the locations of the CLEAN
components). You can also drag the slider to the left to remove the CLEAN components from
the model. The convolution of the model with the CLEAN beam (central peak of the dirty
beam) is shown in the small upper-right display.

When you click the Update button, the current model is used to compute the complex
model visibilites, run a phase self-calibration, and display the residual image in the lower right
panel, and the final image (CLEAN components convolved with the CLEAN beam added to the
residual image) in the upper right panel.

29.3 Phase self-calibration

Image reconstruction based on the Fourier transform of the complex visibilities requires the
visibility phases in addition to the amplitudes. Since phase information is only available as
closure phases, phase self-calibration is used with an initial model to minimize the differences
between model closure phases and observed phases by adjusting telescope-based phase offsets
(which caused by the atmosphere). The procedure set complexvis performs this operation
using a point-source model and must be called before the use of pearl. Within the latter, the
phase self-calibration is performed with the current image by selfcal (button SelfCal).
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Figure 29.2: Main PEARL GUI

29.4 Programmer’s reference
The pearldata routine is the first one called after starting pearl. The data used
are the complex visibilities (scans.complexvis) and their weights (scans.complexweight),
the uv coordinates, and the photometry (scans.photometry). The measurements are
stored in one-dimensional vectors, and auxiliary information such as scan IDs,
spectrometers, baselines, and channels are stored in the same vector format.
Only measurements with the same time stamp are considered to be belonging to
the same interferometer and can be combined in the self-calibration process.

29.5 Beam procedures and functions
displaybeam,starid< char>

Procedure; compute the dirty beam for a given star and display it on
the screen. Example: displaybeam,’FKV0621’

contourbeam,starid< char>

Procedure; plot a contour map of the dirty beam.

cleanbeam,beam

Function; return parameters of an ellipse fitted to the half-maximum
points of the dirty beam. Example: print,cleanbeam(dirtybeam(’FKV0621’))
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Appendix A

Plot variables and their indices

Some data selection widgets for plotting display more indices than needed for
some of the plot variables in order to avoid recycling of the data selection
widget if the variables change. In the following tables, an overview is presented
over the indices applicable to the plot variables. They are organized by class,
even though, strictly speaking, an OYSTER plot class refers only to a specific
selection of variables listed in a plot selection widget. More precisely, the
integration interval (if applicable) is the same for all variables for a table.

Also note that the IDL variables in italic font denote a derivation from this
variable, i.e. the data is not exactly identical to the variable contents. Where
the IDL variable field is left blank, the formula is more complicated and might
involve more than one variable.

Table A.1: Plot variables (class point) and their indices
Plot variable IDL name inbeam outbeam triple channel baseline point
Time pointtime pt
PointNo pt
VisSq vissq ob ch bl pt
VisAmp visamp ob ch bl pt
VisPhase visphase ob ch bl pt
TripleAmp tripleamp tr ch pt
TriplePhase triplephase tr ch pt
PhotonRate photonrate ob ch pt
FDLPath fdlpos ib pt
FDLDelay fdlpos ib pt
DelayJitter delayjitter ob bl pt
NATJitter natjitter ib pt
GrpDelay grpdelay ib pt
DryDelay drydelay ib pt
WetDelay wetdelay ib pt
VacDelay ib pt
MetroDelay metropos ib pt
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Table A.2: Plot variables (class bg) and their indices
Plot variable IDL name inbeam outbeam triple channel baseline point
Time bgscans.time sc
ScanNo sc
BGRate bgscans.rate ob ch sc

Table A.3: Plot variables (class scan) and their indices
Plot variable IDL name inbeam outbeam triple channel baseline point
Time scans.time sc
ScanNo sc
VisSq scans.vissq ob ch bl sc
VisSq c scans.vissqc ob ch bl sc
VisSq/e scans.vissqe ob ch bl sc
VisSq c/e scans.vissqec ob ch bl sc
TripleAmp scans.tripleamp tr ch sc
TripleAmp c scans.tripleampc tr ch sc
TripleAmp/e scans.tripleampe tr ch sc
TripleAmp c/e scans.tripleampec tr ch sc
PhotonRate scans.photonrate ob ch sc
NATCounts scans.natcounts ib sc
BeamCounts scans.natcounts ob sc
SpecCounts scans.photonrate ob sc
BackgndRate scans.backgndrate ob ch sc
FDLPath scans.fdlpos ib sc
DelayJitter scans.delayjitter ob bl sc
TrackJitter scans.natjitter ob bl sc
FDLDelay scans.fdlpos ib sc
GeoDelay scans.geodelay ib sc
uv-radius scans.uvw ob ch bl sc
HourAngle scans.ha sc
ZenithAngle scans.za sc
MirrorAngle scans.ma sc
U scans.uvw ob ch bl sc
V scans.uvw ob ch bl sc
W scans.uvw ob ch bl sc
FDL O-C ib sc
Grp O-C ib sc
Dry O-C ib sc
Wet O-C ib sc
VisSq m scans.vissqm ob ch bl sc
TripleAmp m scans.tripleampm tr ch sc
TriplePhase m scans.triplephasem tr ch sc
ModelDelay scans.modeldelay ib sc
MetroDelay scans.metrodelay ib sc
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Table A.4: Plot variables (class metro) and their indices
Plot variable IDL name inbeam outbeam triple channel baseline point
MetroTime metrotime pt
Par X parx ib pt
Par Y pary ib pt
Par Z parz ib pt
MetroPath metropath ib pt
MetroDelay metropath ib pt

Table A.5: Miscellaneous plot variables and their indices
Plot variable IDL name inbeam outbeam triple channel baseline point
Wavelength genconfig.wavelength ob ch
Channel ch
BLlength ob bl
Baseline ob bl
Triple tr
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Appendix B

CONSTRICTOR output file
structure

The data are in an HDS (Hierarchical Data System [Starlink Project]) struc-
ture, somewhat analogous to a directory structure. It differs from a direc-
tory structure in that a “directory” can actually be an array. Each element
of the array will have the same set of sub-directories. Since the structure is
like a directory tree, the order of variables listed below is not meaningful.
Furthermore, variables can be added or removed in the future. Therefore, this
list amounts to a list of the data we think we want, and of the names we have
agreed to give them.

In addition to the natural array dimensions such as spectral channel number,
point number, etc., we use one more to label the real and imaginary parts of
a complex number, indicated by “[R/I]”. The uncertainties for complex numbers
have three components, which may be the major axis, minor axis, and position
angle of the error ellipse.

For locations, we use three-element vectors with “East, North, Up” as the
order of the elements

For directions, we use two-element vectors with the first element (θ) being
the angle from the zenith, and the second element (φ) being the angle in the
horizontal plane, measured from east through north.

We have not specified the units in the database description. For lengths, we
will use meters. Time stamps are offsets from 0 h UT of DataSet.Date. For time
stamps and sample intervals, we will use milliseconds. We use <_integer> (which
is int*4, with a range of +/-2e9, or +/-68 days) for time stamps, and <_double>
for times (e.g., start and stop times).

The format for the descriptions is:

VariableName [IndexLimit(source)][ ... ] <Data type>

So, for instance,

ComplexVis[NumPoint][NumBaseline(beam)][NumSpecChan(beam)][R/I]
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under ScanData.PointData.OutputBeam[NumOutBeam] is a four-dimensional array,
with the first dimension ranging from 0 to NumPoint - 1, the second from 0 to
NumBaseline(beam) - 1 (where NumBaseline can differ from one beam combiner
output beam to another), and the third ranging from 0 to NumSpecChan(beam) - 1.
In the fourth index, 0 corresponds to the real part and 1 to the imaginary
part. In this example, [NumPoint] could have been indicated as [NumPoint(scan)];
however, we suppress listing the source of the parameter if that source is in the
same object as the indexed variable. In this example, the variable NumScan is
in the ScanData object that contains ComplexVis, so the source for NumPoint
is suppressed, but NumOutBeam is in the GenConfig object, so the source for
NumBaseline is indicated.

We use the C convention, where the last index listed is the most rapidly
varying.

Tables are not part of the HDS system, but they are easily implemented. A
table, such as ScanData, is simply a structure like any other, containing a set
of substructures, each of which is an array. What makes it a table is our agree-
ment that the items (a primitive, a structure, or a sub-array) pointed to by the
first index of each array correspond with one another, e.g., PointData[1] (where
PointData[] is itself a complicated structure) was taken between StartTime[1]
and StopTime[1] while we observed StarID[1], and so on.

We use two kinds of table here: <Table> and <ExtTable>. Both are slightly
different from the table type described in the previous paragraph. Both types
contain one integer scalar quantity giving the number of rows (e.g., NumData),
followed by the contents of the table, i.e., one or more arrays of variables for
which the first index runs from 1 to (NumData - 1). The <ExtTable> (extended
table) type also allows array variables whose first index does not correspond
with row number. However, the primitives that make up that variable must be
array primitives whose first index does correspond with row number.

Session
Format <_char>
Date <_char>
SystemID <_char>
ObserverLog <_char>
ConstrictorLog <_char>
GeoParms

Latitude <_double>
Longitude <_double>
Altitude <_double>
EarthRadius <_double>
J2 <_double>
LeapSeconds <_integer>
EarthRotation <_double>

GenConfig
InstrCohInt <_double>
BeamCombinerID <_integer>
NumLaserP2P <_integer>
P2PLaunchPlate [NumLaserP2P] <_integer>
P2PRetroPlate[NumLaserP2P] <_integer>
MasterPlateID <_char*>
NumPlate <_integer>
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Plate [NumPlate]
NumCluster <_integer>
PlateEmbedded <_integer>
PlateID <_char*>
PlateLoc [3] <_double>
PlateLocErr [3] <_double>

InputBeam <Table>
NumSid <_integer>
StationID [NumSid] <_char>
SiderostatID [NumSid] <_integer>
DelayLineID [NumSid] <_integer>
BCInputID [NumSid] <_integer>
StarTrackerID [NumSid] <_integer>
StationCoord [NumSid][4] <_double> four coords incl delay

OutputBeam <Table>
NumOutBeam <_integer>
SpectrometerID [NumOutBeam] <_char>
NumBaseline [NumOutBeam] <_integer>
NumSpecChan [NumOutBeam] <_integer>
FringeMod [MaxNumBaseline][NumOutBeam] <_integer>
BaselineID [MaxNumBaseline][NumOutBeam] <_char>
Wavelength [MaxNumSpecChan][NumOutBeam] <_double>
WavelengthErr [MaxNumSpecChan][NumOutBeam] <_double>
ChanWidth [MaxNumSpecChan][NumOutBeam] <_double>
ChanWidthErr [MaxNumSpecChan][NumOutBeam] <_double>

Triple <Table>
NumTriple <_integer>
OutputBeam [NumTriple][3] <_integer>
Baseline [NumTriple][3] <_integer>
NumSpecChan [NumTriple] <_integer>
SpecChan [NumTriple][3] <_integer>

SidMetConfig [NumPlate]
NumLaser <_integer>
CountsPerWaveln <_integer>
LaserWavelength <_double>
SampleInterval <_integer>
IFBox [NumLaser] <_integer>
Channel [NumLaser] <_integer>
Theta [NumLaser] <_integer>
ThetaErr [NumLaser] <_integer>
Phi [NumLaser] <_integer>
PhiErr [NumLaser] <_integer>
LaunchInfo [NumLaser]

NumGlass <_integer>
NumAirGap <_integer>
Loc [3] <_double>
LocErr [3] <_double>
GlassThick [NumGlass] <_double>
GlassThickErr [NumGlass] <_double>
GlassCode [NumGlass] <_integer>
ExFrac [NumGlass] <_double>
ExFracErr [NumGlass] <_double>
AirGapThick [NumAirGap] <_double>
AirGapThickErr [NumAirGap] <_double>

RetroInfo [NumLaser]
NumGlass <_integer>
NumAirGap <_integer>
Loc [3] <_double>
LocErr [3] <_double>
GlassThick [NumGlass] <_double>
GlassThickErr [NumGlass] <_double>
GlassCode [NumGlass] <_integer>
ExFrac [NumGlass] <_double>
ExFracErr [NumGlass] <_double>
AirGapThick [NumAirGap] <_double>
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AirGapThickErr [NumAirGap] <_double>
OptAnchConfig [NumPlate][MaxNumCluster]

NumLaser <_integer>
CountsPerWaveln <_integer>
LaserWavelength <_double>
SampleInterval <_integer>
IFBox [NumLaser] <_integer>
Channel [NumLaser] <_integer>
Theta [NumLaser] <_integer>
ThetaErr [NumLaser] <_integer>
Phi [NumLaser] <_integer>
PhiErr [NumLaser] <_integer>
LaunchInfo [NumLaser]

NumGlass <_integer>
NumAirGap <_integer>
Loc [3] <_double>
LocErr [3] <_double>
GlassThick [NumGlass] <_double>
GlassThickErr [NumGlass] <_double>
GlassCode [NumGlass] <_integer>
ExFrac [NumGlass] <_double>
ExFracErr [NumGlass] <_double>
AirGapThick [NumAirGap] <_double>
AirGapThickErr [NumAirGap] <_double>

RetroInfo [NumLaser]
NumGlass <_integer>
NumAirGap <_integer>
Loc [3] <_double>
LocErr [3] <_double>
GlassThick [NumGlass] <_double>
GlassThickErr [NumGlass] <_double>
GlassCode [NumGlass] <_integer>
ExFrac [NumGlass] <_double>
ExFracErr [NumGlass] <_double>
AirGapThick [NumAirGap] <_double>
AirGapThickErr [NumAirGap] <_double>

Pier2PierConfig
NumLaser <_integer>
CountsPerWaveln <_integer>
LaserWavelength <_double>
SampleInterval <_integer>
IFBox [NumLaser] <_integer>
Channel [NumLaser] <_integer>
Theta [NumLaser] <_integer>
ThetaErr [NumLaser] <_integer>
Phi [NumLaser] <_integer>
PhiErr [NumLaser] <_integer>
LaunchInfo [NumLaser]

NumGlass <_integer>
NumAirGap <_integer>
Loc [3] <_double>
LocErr [3] <_double>
GlassThick [NumGlass] <_double>
GlassThickErr [NumGlass] <_double>
GlassCode [NumGlass] <_integer>
ExFrac [NumGlass] <_double>
ExFracErr [NumGlass] <_double>
AirGapThick [NumAirGap] <_double>
AirGapThickErr [NumAirGap] <_double>

RetroInfo [NumLaser]
NumGlass <_integer>
NumAirGap <_integer>
Loc [3] <_double>
LocErr [3] <_double>
GlassThick [NumGlass] <_double>
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GlassThickErr [NumGlass] <_double>
GlassCode [NumGlass] <_integer>
ExFrac [NumGlass] <_double>
ExFracErr [NumGlass] <_double>
AirGapThick [NumAirGap] <_double>
AirGapThickErr [NumAirGap] <_double>

ExtCatEyeConfig [NumPlate]
NumLaser <_integer>
CountsPerWaveln <_integer>
LaserWavelength <_double>
SampleInterval <_integer>
IFBox [NumLaser] <_integer>
Channel [NumLaser] <_integer>
Theta [NumLaser] <_integer>
ThetaErr [NumLaser] <_integer>
Phi [NumLaser] <_integer>
PhiErr [NumLaser] <_integer>
LaunchInfo [NumLaser]

NumGlass <_integer>
NumAirGap <_integer>
Loc [3] <_double>
LocErr [3] <_double>
GlassThick [NumGlass] <_double>
GlassThickErr [NumGlass] <_double>
GlassCode [NumGlass] <_integer>
ExFrac [NumGlass] <_double>
ExFracErr [NumGlass] <_double>
AirGapThick [NumAirGap] <_double>
AirGapThickErr [NumAirGap] <_double>

RetroInfo [NumLaser]
NumGlass <_integer>
NumAirGap <_integer>
Loc [3] <_double>
LocErr [3] <_double>
GlassThick [NumGlass] <_double>
GlassThickErr [NumGlass] <_double>
GlassCode [NumGlass] <_integer>
ExFrac [NumGlass] <_double>
ExFracErr [NumGlass] <_double>
AirGapThick [NumAirGap] <_double>
AirGapThickErr [NumAirGap] <_double>

PlateExpConfig [NumPlate]
NumLaser <_integer>
CountsPerWaveln <_integer>
LaserWavelength <_double>
SampleInterval <_integer>
IFBox [NumLaser] <_integer>
Channel [NumLaser] <_integer>
Theta [NumLaser] <_integer>
ThetaErr [NumLaser] <_integer>
Phi [NumLaser] <_integer>
PhiErr [NumLaser] <_integer>
LaunchInfo [NumLaser]

NumGlass <_integer>
NumAirGap <_integer>
Loc [3] <_double>
LocErr [3] <_double>
GlassThick [NumGlass] <_double>
GlassThickErr [NumGlass] <_double>
GlassCode [NumGlass] <_integer>
ExFrac [NumGlass] <_double>
ExFracErr [NumGlass] <_double>
AirGapThick [NumAirGap] <_double>
AirGapThickErr [NumAirGap] <_double>

RetroInfo [NumLaser]
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NumGlass <_integer>
NumAirGap <_integer>
Loc [3] <_double>
LocErr [3] <_double>
GlassThick [NumGlass] <_double>
GlassThickErr [NumGlass] <_double>
GlassCode [NumGlass] <_integer>
ExFrac [NumGlass] <_double>
ExFracErr [NumGlass] <_double>
AirGapThick [NumAirGap] <_double>
AirGapThickErr [NumAirGap] <_double>

MetAirTempConf [NumPlate]
NumSensor <_integer>
SampleInterval <_integer>
Chain [NumSensor] <_integer>
BRAD [NumSensor] <_integer>
Offset [NumSensor] <_double>
OffsetErr [NumSensor] <_double>
Scale [NumSensor] <_double>
ScaleErr [NumSensor] <_double>
Cross [NumSensor] <_double>
Loc [NumSensor][3] <_double>
LocErr [NumSensor][3] <_double>

MetSolidTmpConf [NumPlate]
NumSensor <_integer>
SampleInterval <_integer>
Chain [NumSensor] <_integer>
BRAD [NumSensor] <_integer>
Offset [NumSensor] <_double>
OffsetErr [NumSensor] <_double>
Scale [NumSensor] <_double>
ScaleErr [NumSensor] <_double>
Cross [NumSensor] <_double>
Loc [NumSensor][3] <_double>
LocErr [NumSensor][3] <_double>

MetPressConf [NumPlate]
NumSensor <_integer>
SampleInterval <_integer>
Chain [NumSensor] <_integer>
BRAD [NumSensor] <_integer>
Offset [NumSensor] <_double>
OffsetErr [NumSensor] <_double>
Scale [NumSensor] <_double>
ScaleErr [NumSensor] <_double>
Cross [NumSensor] <_double>
Loc [NumSensor][3] <_double>
LocErr [NumSensor][3] <_double>

MetHumConf [NumPlate]
NumSensor <_integer>
SampleInterval <_integer>
Chain [NumSensor] <_integer>
BRAD [NumSensor] <_integer>
Offset [NumSensor] <_double>
OffsetErr [NumSensor] <_double>
Scale [NumSensor] <_double>
ScaleErr [NumSensor] <_double>
Cross [NumSensor] <_double>
Loc [NumSensor][3] <_double>
LocErr [NumSensor][3] <_double>

LabAirTempConf
NumSensor <_integer>
SampleInterval <_integer>
Chain [NumSensor] <_integer>
BRAD [NumSensor] <_integer>
Offset [NumSensor] <_double>
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OffsetErr [NumSensor] <_double>
Scale [NumSensor] <_double>
ScaleErr [NumSensor] <_double>
Cross [NumSensor] <_double>
Loc [NumSensor][3] <_double>
LocErr [NumSensor][3] <_double>

LabSolidTmpConf
NumSensor <_integer>
SampleInterval <_integer>
Chain [NumSensor] <_integer>
BRAD [NumSensor] <_integer>
Offset [NumSensor] <_double>
OffsetErr [NumSensor] <_double>
Scale [NumSensor] <_double>
ScaleErr [NumSensor] <_double>
Cross [NumSensor] <_double>
Loc [NumSensor][3] <_double>
LocErr [NumSensor][3] <_double>

LabPressConf
NumSensor <_integer>
SampleInterval <_integer>
Chain [NumSensor] <_integer>
BRAD [NumSensor] <_integer>
Offset [NumSensor] <_double>
OffsetErr [NumSensor] <_double>
Scale [NumSensor] <_double>
ScaleErr [NumSensor] <_double>
Cross [NumSensor] <_double>
Loc [NumSensor][3] <_double>
LocErr [NumSensor][3] <_double>

LabHumConf
NumSensor <_integer>
SampleInterval <_integer>
Chain [NumSensor] <_integer>
BRAD [NumSensor] <_integer>
Offset [NumSensor] <_double>
OffsetErr [NumSensor] <_double>
Scale [NumSensor] <_double>
ScaleErr [NumSensor] <_double>
Cross [NumSensor] <_double>
Loc [NumSensor][3] <_double>
LocErr [NumSensor][3] <_double>

DLPressConf
NumSensor <_integer>
SampleInterval <_integer>
Chain [NumSensor] <_integer>
BRAD [NumSensor] <_integer>
Offset [NumSensor] <_double>
OffsetErr [NumSensor] <_double>
Scale [NumSensor] <_double>
ScaleErr [NumSensor] <_double>
Cross [NumSensor] <_double>
Loc [NumSensor][3] <_double>
LocErr [NumSensor][3] <_double>

FBPressConf
NumSensor <_integer>
SampleInterval <_integer>
Chain [NumSensor] <_integer>
BRAD [NumSensor] <_integer>
Offset [NumSensor] <_double>
OffsetErr [NumSensor] <_double>
Scale [NumSensor] <_double>
ScaleErr [NumSensor] <_double>
Cross [NumSensor] <_double>
Loc [NumSensor][3] <_double>
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LocErr [NumSensor][3] <_double>
WxAirTempConf

NumSensor <_integer>
SampleInterval <_integer>
Chain [NumSensor] <_integer>
BRAD [NumSensor] <_integer>
Offset [NumSensor] <_double>
OffsetErr [NumSensor] <_double>
Scale [NumSensor] <_double>
ScaleErr [NumSensor] <_double>
Cross [NumSensor] <_double>
Loc [NumSensor][3] <_double>
LocErr [NumSensor][3] <_double>

WxPressConf
NumSensor <_integer>
SampleInterval <_integer>
Chain [NumSensor] <_integer>
BRAD [NumSensor] <_integer>
Offset [NumSensor] <_double>
OffsetErr [NumSensor] <_double>
Scale [NumSensor] <_double>
ScaleErr [NumSensor] <_double>
Cross [NumSensor] <_double>
Loc [NumSensor][3] <_double>
LocErr [NumSensor][3] <_double>

WxHumConf
NumSensor <_integer>
SampleInterval <_integer>
Chain [NumSensor] <_integer>
BRAD [NumSensor] <_integer>
Offset [NumSensor] <_double>
OffsetErr [NumSensor] <_double>
Scale [NumSensor] <_double>
ScaleErr [NumSensor] <_double>
Cross [NumSensor] <_double>
Loc [NumSensor][3] <_double>
LocErr [NumSensor][3] <_double>

WindSpeedConf
NumSensor <_integer>
SampleInterval <_integer>
Chain [NumSensor] <_integer>
BRAD [NumSensor] <_integer>
Offset [NumSensor] <_double>
OffsetErr [NumSensor] <_double>
Scale [NumSensor] <_double>
ScaleErr [NumSensor] <_double>
Cross [NumSensor] <_double>
Loc [NumSensor][3] <_double>
LocErr [NumSensor][3] <_double>

WindDirConf
NumSensor <_integer>
SampleInterval <_integer>
Chain [NumSensor] <_integer>
BRAD [NumSensor] <_integer>
Offset [NumSensor] <_double>
OffsetErr [NumSensor] <_double>
Scale [NumSensor] <_double>
ScaleErr [NumSensor] <_double>
Cross [NumSensor] <_double>
Loc [NumSensor][3] <_double>
LocErr [NumSensor][3] <_double>

BGScanData <ExtTable>
NumBGScan <_integer>
ScanID [NumBGScan] <_integer>
Time [NumBGScan] <_double>



169

RA [NumBGScan] <_double>
Dec [NumBGScan] <_double>
OutputBeam [NumOutBeam] <ExtColumn>

Rate [NumBGScan][NumSpecChan(beam)] <_real>
ScanData <Table>

NumScan <_integer>
ScanID [NumScan] <_integer>
StartTime [NumScan] <_double>
StopTime [NumScan] <_double>
Code [NumScan] <_integer>
NumPoint [NumScan] <_integer>
StarID [NumScan] <_char>
WASA_Image [NumScan] intensity and position(s) of stars in field
NumCoh [NumScan] <_integer> instr. coh. int.s per CONSTRICTOR coh. int.
NumIncoh [NumScan] <_integer>
PointData [NumScan] <ExtTable>

NumPoint <_integer>
Time [NumPoint] <_double> time of mid-point
SoftDelay [NumPoint][NumSid] <_double>
InputBeam [NumSid]

FDLPos [NumPoint] <_double>
FDLPosErr [NumPoint] <_double>
NATJitter [NumPoint] <_real>
NATJitterErr [NumPoint] <_real>

OutputBeam [NumOutBeam] <ExtColumn>
SoftDelay [NumPoint][NumBaseline(beam)] <_real>
SoftDelayErr [NumPoint][NumBaseline(beam)] <_real>
DelayJitter [NumPoint][NumBaseline(beam)] <_real>
VisSq [NumPoint][NumBaseline(beam)][NumSpecChan(beam)] <_real>
VisSqErr [NumPoint][NumBaseline(beam)][NumSpecChan(beam)] <_real>
ComplexVis [NumPoint][NumBaseline(beam)][NumSpecChan(beam)][R/I] <_real>
ComplexVisErr [NumPoint][NumBaseline(beam)][NumSpecChan(beam)][A/B/C] <_real>
PhotonRate [NumPoint][NumSpecChan(beam)] <_real>
PhotonRateErr [NumPoint][NumSpecChan(beam)] <_real>

Triple [NumTriple] <ExtColumn>
ComplTriple [NumPoint][NumTripleChan][R/I] <_real>
ComplTripleErr [NumPoint][NumTripleChan][R/I] <_real>

SidMetData [NumPlate]
NumData <_integer>
TimeStamp [NumData] <_integer>
Data [NumData][NumLaser(plate)] <_integer>

OptAnchData [NumPlate][MaxNumCluster]
NumData <_integer>
TimeStamp [NumData] <_integer>
Data [NumData][NumLaserMax(plate,cluster)] <_integer>

Pier2PierData
NumData <_integer>
TimeStamp [NumData] <_integer>
Data [NumData][NumLaser(plate)] <_integer>

ExtCatEyeData [NumPlate]
NumData <_integer>
TimeStamp [NumData] <_integer>
Data [NumData][NumLaser(plate)] <_integer>

PlateExpData [NumPlate]
NumData <_integer>
TimeStamp [NumData] <_integer>
Data [NumData][NumLaser(plate)] <_integer>

MetAirTempData [NumPlate]
NumData <_integer>
TimeStamp [NumData] <_integer>
Data [NumData][NumSensor(plate)] <_word>

MetSolidTmpData [NumPlate]
NumData <_integer>
TimeStamp [NumData] <_integer>
Data [NumData][NumSensor(plate)] <_word>
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MetPressureData [NumPlate]
NumData <_integer>
TimeStamp [NumData] <_integer>
Data [NumData][NumSensor(plate)] <_word>

MetHumidityData [NumPlate]
NumData <_integer>
TimeStamp [NumData] <_integer>
Data [NumData][NumSensor(plate)] <_word>

LabAirTempData
NumData <_integer>
TimeStamp [NumData] <_integer>
Data [NumData][NumSensor] <_word>

LabSolidTmpData
NumData <_integer>
TimeStamp [NumData] <_integer>
Data [NumData][NumSensor] <_word>

LabPressData
NumData <_integer>
TimeStamp [NumData] <_integer>
Data [NumData][NumSensor] <_word>

LabHumData
NumData <_integer>
TimeStamp [NumData] <_integer>
Data [NumData][NumSensor] <_word>

DLPressData
NumData <_integer>
TimeStamp [NumData] <_integer>
Data [NumData][NumSensor] <_word>

FBPressData
NumData <_integer>
TimeStamp [NumData] <_integer>
Data [NumData][NumSensor] <_word>

WxAirTempData
NumData <_integer>
TimeStamp [NumData] <_integer>
Data [NumData][NumSensor] <_word>

WxPressureData
NumData <_integer>
TimeStamp [NumData] <_integer>
Data [NumData][NumSensor] <_word>

WxHumidityData
NumData <_integer>
TimeStamp [NumData] <_integer>
Data [NumData][NumSensor] <_word>

WindSpeedData
NumData <_integer>
TimeStamp [NumData] <_integer>
Data [NumData][NumSensor] <_word>

WindDirData
NumData <_integer>
TimeStamp [NumData] <_integer>
Data [NumData][NumSensor] <_word>
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CHAMELEON file structure

The file format of averaged data is described here. It closely follows the
format of the CONSTRICTOR files.

DATASET
FORMAT <_CHAR> CONSTRICTOR, CHAMELEON, INCHWORM
DATE <_CHAR> YYYY-MM-DD (UT date of first data point)
SYSTEMID <_CHAR> NPOI, Mark_III
USERID <_CHAR> Login name
OBSERVERLOG <_CHAR>
CONSTRICTORLOG <_CHAR> Parameters used to run CONSTRICTOR
GEOPARMS

LATITUDE <_DOUBLE> [degrees N]
LONGITUDE <_DOUBLE> [degrees E]
ALTITUDE <_DOUBLE> [m]
EARTHRADIUS <_DOUBLE> [m]
J2 <_DOUBLE>
TAI-UTC <_DOUBLE> [s]
TDT-TAI <_DOUBLE> [s]

GENCONFIG
INSTRCOHINT <_DOUBLE> Instrumental coherent integration time, [ms]
BEAMCOMBINERID <_INTEGER>
REFSTATION <_INTEGER> Station to which delays are referenced; First = 1
INPUTBEAM

NUMSID <_INTEGER>
SIDEROSTATID [NumSid] <_INTEGER> Unique ID
BCINPUTID [NumSid] <_INTEGER> Which beam combiner input?
STARTRACKERID [NumSid] <_INTEGER> Unique ID of quadcell
STATIONID [NumSid] <_CHAR*3> e.g. AW0, E02
DELAYLINEID [NumSid] <_INTEGER>
STATIONCOORD [ 4][NumSid] <_DOUBLE> x=east, y=north, z=up, d=delay constant, all in [m]

OUTPUTBEAM
NUMOUTBEAM <_INTEGER> Also the number of spectrometers
NUMBASELINE [NumOutBeam] <_INTEGER> Number of baselines in output for spectrometer
NUMSPECCHAN [NumOutBeam] <_INTEGER> Number of spectral channels for each spectrometer
SPECTROMETERID [NumOutBeam] <_CHAR*7> Unique ID
BASELINEID [MaxNumBaseline][NumOutBeam] <_CHAR*7> Made up of StationIDs, e.g. AW0-E02
WAVELENGTH [MaxNumSpecChan][NumOutBeam] <_DOUBLE> [m]
WAVELENGTHERR [MaxNumSpecChan][NumOutBeam] <_DOUBLE> [m]
CHANWIDTH [MaxNumSpecChan][NumOutBeam] <_DOUBLE> [m]
CHANWIDTHERR [MaxNumSpecChan][NumOutBeam] <_DOUBLE> [m]
FRINGEMOD [MaxNumBaseline][NumOutBeam] <_INTEGER>

TRIPLE
NUMTRIPLE <_INTEGER>
OUTPUTBEAM [ 3][ 1] <_INTEGER> For each baseline, which output beam is it from?
BASELINE [ 3][ 1] <_INTEGER> For each baseline, which baseline in that output beam is it?
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SPECCHAN [ 32][ 3][ 1] <_INTEGER> For each baseline, which channel number of these output beams
NUMSPECCHAN [ 1] <_INTEGER> How many spectral channels in this triple?

SCANDATA <TABLE>
NUMSCAN <_INTEGER>
SCANID [NumScan] <_INTEGER> Unique observed
STARID [NumScan] <_CHAR*7> e.g. BSC1948
SCANTIME [NumScan] <_DOUBLE> [s] from 0UT of date
OUTPUTBEAM [NumOutBeam] <EXTCOLUMN>

VISSQ [NumSpecChan(beam)][NumBaseline(beam)][NumScan] <_REAL>
VISSQERR [NumSpecChan(beam)][NumBaseline(beam)][NumScan] <_REAL>
VISSQC [NumSpecChan(beam)][NumBaseline(beam)][NumScan] <_REAL>
VISSQCERR [NumSpecChan(beam)][NumBaseline(beam)][NumScan] <_REAL>
DELAYJITTER [NumBaseline(beam)][NumScan] <_REAL> [m]
DELAYJITTERERR [NumBaseline(beam)][NumScan] <_REAL> [m]
PHOTONRATE [NumSpecChan(beam)][NumScan] <_REAL> per coherent integration
PHOTONRATEERR [NumSpecChan(beam)][NumScan] <_REAL>
BACKGNDRATE [NumSpecChan(beam)][NumScan] <_REAL> per coherent integration
BACKGNDERR [NumSpecChan(beam)][NumScan] <_REAL>

TRIPLE [NumTriple] <EXTCOLUMN>
COMPLTRIPLE [ 2][NumTripleChan(triple)][NumScan] <_REAL>
COMPLTRIPLEERR [ 2][NumTripleChan(triple)][NumScan] <_REAL>
TRIPLEAMP [NumTripleChan(triple)][NumScan] <_REAL>
TRIPLEAMPERR [NumTripleChan(triple)][NumScan] <_REAL>
TRIPLEPHASE [NumTripleChan(triple)][NumScan] <_REAL>
TRIPLEPHASEERR [NumTripleChan(triple)][NumScan] <_REAL>
TRIPLEAMPC [NumTripleChan(triple)][NumScan] <_REAL>
TRIPLEAMPCERR [NumTripleChan(triple)][NumScan] <_REAL>
TRIPLEPHASEC [NumTripleChan(triple)][NumScan] <_REAL>
TRIPLEPHASECERR[NumTripleChan(triple)][NumScan] <_REAL>

INPUTBEAM [NumSid] <EXTCOLUMN>
FDLPOS [NumScan] <_DOUBLE> [m], relative to ReferenceStation
FDLPOSERR [NumScan] <_REAL>
GRPDELAY [NumScan] <_DOUBLE> [m], including group delay
GRPDELAYERR [NumScan] <_REAL>
DRYDELAY [NumScan] <_DOUBLE> [m], dry air dispersion corrected
DRYDELAYERR [NumScan] <_REAL>
WETDELAY [NumScan] <_DOUBLE> [m], wet air dispersion corrected
WETDELAYERR [NumScan] <_REAL>
NATJITTER [NumScan] <_REAL>
NATJITTERERR [NumScan] <_REAL>
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COBRA file structure

The HDS file format of raw data is described here.

SESSION <SESSION>
DATE <_CHAR*10>
SYSTEMID <_CHAR*4>
FORMAT <_CHAR*11>
GENCONFIG <>

INSTRCOHINT <_DOUBLE>
BEAMCOMBINERID <_INTEGER>
REFSTATION <_INTEGER>
INPUTBEAM <TABLE>

NUMSID <_INTEGER>
STATIONID [ 3] <_CHAR*16>
SIDEROSTATID [ 3] <_INTEGER>
DELAYLINEID [ 3] <_INTEGER>
BCINPUTID [ 3] <_INTEGER>
STARTRACKERID [ 3] <_INTEGER>
STATIONCOORD [ 4][ 3] <_DOUBLE>

OUTPUTBEAM <TABLE>
NUMOUTBEAM <_INTEGER>
SPECTROMETERID [ 3] <_CHAR*16>
NUMSPECCHAN [ 3] <_INTEGER>
NUMBASELINE [ 3] <_INTEGER>
FRINGEMOD [ 1][ 3] <_INTEGER>
BASELINEID [ 1][ 3] <_CHAR*256>
WAVELENGTH [ 32][ 3] <_DOUBLE>
WAVELENGTHERR [ 32][ 3] <_DOUBLE>
CHANWIDTH [ 32][ 3] <_DOUBLE>
CHANWIDTHERR [ 32][ 3] <_DOUBLE>

TRIPLE <TABLE>
NUMTRIPLE <_INTEGER>
OUTPUTBEAM [ 3][ 1] <_INTEGER>
BASELINE [ 3][ 1] <_INTEGER>
NUMSPECCHAN [ 1] <_INTEGER>
SPECCHAN [ 32][ 3][ 1] <_INTEGER>

GEOPARMS <>
LATITUDE <_DOUBLE>
LONGITUDE <_DOUBLE>
ALTITUDE <_DOUBLE>
EARTHRADIUS <_DOUBLE>
J2 <_DOUBLE>

SCANDATA <>
NUMSCAN <_INTEGER>
SCANID [ 1] <_INTEGER>
NUMREC [ 1] <_INTEGER>
STARID [ 1] <_CHAR*12>
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STARTTIME [ 1] <_DOUBLE>
STOPTIME [ 1] <_DOUBLE>
RAWDATA [ 1] <TABLE>

TIME [ 42200] <_DOUBLE>
OUTPUTBEAM [ 3] <>

SOFTDELAY [ 1][ 42200] <_REAL>
BINCOUNTS [ 8][ 32][ 42200] <_BYTE>

INPUTBEAM [ 3] <>
FDLDELAY [ 42200] <_DOUBLE>
QUAD [ 4][ 42200] <_REAL>



Appendix E

INCHWORM file structure

The HDS file format of INCHWORM data is described here, as of the last
recorded revision September 28, 1995.

Note: All the metrology subsystems have not been included under the Mo-
tion HDS object yet. It will not be necessary to have all the metrology sub-
system data under the same cell of the Motion HDS object; some cells will
have solutions from different subsystems (done in different ways), that can be
combined in the INCHWORM software.

Session
Format <_char*> Format in the constrictor file
FormatInch <_char*> Format in the inchworm file
Date <_char*> Date in the constrictor file
DateInch <_char*> Date the inchworm file was created
SystemID <_char*>
GenConfig

NumLaserP2P <_integer>
P2PLaunchPlate [NumLaserP2P] <_integer>
P2PRetroPlate[NumLaserP2P] <_integer>
MasterPlateID <_char*>
NumPlate <_integer>
Plate [NumPlate]

NumCluster <_integer>
PlateEmbedded <_integer>
PlateID <_char*>
PlateLoc [3] <_double>
PlateLocErr [3] <_double>

SidMetConfig [NumPlate]
NumLaser <_integer>
CountsPerWaveln <_integer>
LaserWavelength <_double>
SampleInterval <_integer>
IFBox [NumLaser] <_integer>
Channel [NumLaser] <_integer>
Theta [NumLaser] <_integer>
ThetaErr [NumLaser] <_integer>
Phi [NumLaser] <_integer>
PhiErr [NumLaser] <_integer>
LaunchInfo [NumLaser]

NumGlass <_integer>
NumAirGap <_integer>
Loc [3] <_double>
LocErr [3] <_double>
GlassThick [NumGlass] <_double>
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GlassThickErr [NumGlass] <_double>
GlassCode [NumGlass] <_integer>
ExFrac [NumGlass] <_double>
ExFracErr [NumGlass] <_double>
AirGapThick [NumAirGap] <_double>
AirGapThickErr [NumAirGap] <_double>

RetroInfo [NumLaser]
NumGlass <_integer>
NumAirGap <_integer>
Loc [3] <_double>
LocErr [3] <_double>
GlassThick [NumGlass] <_double>
GlassThickErr [NumGlass] <_double>
GlassCode [NumGlass] <_integer>
ExFrac [NumGlass] <_double>
ExFracErr [NumGlass] <_double>
AirGapThick [NumAirGap] <_double>
AirGapThickErr [NumAirGap] <_double>

OptAnchConfig [NumPlate][MaxNumCluster]
NumLaser <_integer>
CountsPerWaveln <_integer>
LaserWavelength <_double>
SampleInterval <_integer>
IFBox [NumLaser] <_integer>
Channel [NumLaser] <_integer>
Theta [NumLaser] <_integer>
ThetaErr [NumLaser] <_integer>
Phi [NumLaser] <_integer>
PhiErr [NumLaser] <_integer>
LaunchInfo [NumLaser]

NumGlass <_integer>
NumAirGap <_integer>
Loc [3] <_double>
LocErr [3] <_double>
GlassThick [NumGlass] <_double>
GlassThickErr [NumGlass] <_double>
GlassCode [NumGlass] <_integer>
ExFrac [NumGlass] <_double>
ExFracErr [NumGlass] <_double>
AirGapThick [NumAirGap] <_double>
AirGapThickErr [NumAirGap] <_double>

RetroInfo [NumLaser]
NumGlass <_integer>
NumAirGap <_integer>
Loc [3] <_double>
LocErr [3] <_double>
GlassThick [NumGlass] <_double>
GlassThickErr [NumGlass] <_double>
GlassCode [NumGlass] <_integer>
ExFrac [NumGlass] <_double>
ExFracErr [NumGlass] <_double>
AirGapThick [NumAirGap] <_double>
AirGapThickErr [NumAirGap] <_double>

Pier2PierConfig
NumLaser <_integer>
CountsPerWaveln <_integer>
LaserWavelength <_double>
SampleInterval <_integer>
IFBox [NumLaser] <_integer>
Channel [NumLaser] <_integer>
Theta [NumLaser] <_integer>
ThetaErr [NumLaser] <_integer>
Phi [NumLaser] <_integer>
PhiErr [NumLaser] <_integer>
LaunchInfo [NumLaser]
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NumGlass <_integer>
NumAirGap <_integer>
Loc [3] <_double>
LocErr [3] <_double>
GlassThick [NumGlass] <_double>
GlassThickErr [NumGlass] <_double>
GlassCode [NumGlass] <_integer>
ExFrac [NumGlass] <_double>
ExFracErr [NumGlass] <_double>
AirGapThick [NumAirGap] <_double>
AirGapThickErr [NumAirGap] <_double>

RetroInfo [NumLaser]
NumGlass <_integer>
NumAirGap <_integer>
Loc [3] <_double>
LocErr [3] <_double>
GlassThick [NumGlass] <_double>
GlassThickErr [NumGlass] <_double>
GlassCode [NumGlass] <_integer>
ExFrac [NumGlass] <_double>
ExFracErr [NumGlass] <_double>
AirGapThick [NumAirGap] <_double>
AirGapThickErr [NumAirGap] <_double>

ExtCatEyeConfig [NumPlate]
NumLaser <_integer>
CountsPerWaveln <_integer>
LaserWavelength <_double>
SampleInterval <_integer>
IFBox [NumLaser] <_integer>
Channel [NumLaser] <_integer>
Theta [NumLaser] <_integer>
ThetaErr [NumLaser] <_integer>
Phi [NumLaser] <_integer>
PhiErr [NumLaser] <_integer>
LaunchInfo [NumLaser]

NumGlass <_integer>
NumAirGap <_integer>
Loc [3] <_double>
LocErr [3] <_double>
GlassThick [NumGlass] <_double>
GlassThickErr [NumGlass] <_double>
GlassCode [NumGlass] <_integer>
ExFrac [NumGlass] <_double>
ExFracErr [NumGlass] <_double>
AirGapThick [NumAirGap] <_double>
AirGapThickErr [NumAirGap] <_double>

RetroInfo [NumLaser]
NumGlass <_integer>
NumAirGap <_integer>
Loc [3] <_double>
LocErr [3] <_double>
GlassThick [NumGlass] <_double>
GlassThickErr [NumGlass] <_double>
GlassCode [NumGlass] <_integer>
ExFrac [NumGlass] <_double>
ExFracErr [NumGlass] <_double>
AirGapThick [NumAirGap] <_double>
AirGapThickErr [NumAirGap] <_double>

PlateExpConfig [NumPlate]
NumLaser <_integer>
CountsPerWaveln <_integer>
LaserWavelength <_double>
SampleInterval <_integer>
IFBox [NumLaser] <_integer>
Channel [NumLaser] <_integer>
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Theta [NumLaser] <_integer>
ThetaErr [NumLaser] <_integer>
Phi [NumLaser] <_integer>
PhiErr [NumLaser] <_integer>
LaunchInfo [NumLaser]

NumGlass <_integer>
NumAirGap <_integer>
Loc [3] <_double>
LocErr [3] <_double>
GlassThick [NumGlass] <_double>
GlassThickErr [NumGlass] <_double>
GlassCode [NumGlass] <_integer>
ExFrac [NumGlass] <_double>
ExFracErr [NumGlass] <_double>
AirGapThick [NumAirGap] <_double>
AirGapThickErr [NumAirGap] <_double>

RetroInfo [NumLaser]
NumGlass <_integer>
NumAirGap <_integer>
Loc [3] <_double>
LocErr [3] <_double>
GlassThick [NumGlass] <_double>
GlassThickErr [NumGlass] <_double>
GlassCode [NumGlass] <_integer>
ExFrac [NumGlass] <_double>
ExFracErr [NumGlass] <_double>
AirGapThick [NumAirGap] <_double>
AirGapThickErr [NumAirGap] <_double>

MetAirTempConf [NumPlate]
NumSensor <_integer>
SampleInterval <_integer>
Chain [NumSensor] <_integer>
BRAD [NumSensor] <_integer>
Offset [NumSensor] <_double>
OffsetErr [NumSensor] <_double>
Scale [NumSensor] <_double>
ScaleErr [NumSensor] <_double>
CrossEnv [NumSensor] <_double>
Loc [NumSensor][3] <_double>
LocErr [NumSensor][3] <_double>

MetSolidTmpConf [NumPlate]
NumSensor <_integer>
SampleInterval <_integer>
Chain [NumSensor] <_integer>
BRAD [NumSensor] <_integer>
Offset [NumSensor] <_double>
OffsetErr [NumSensor] <_double>
Scale [NumSensor] <_double>
ScaleErr [NumSensor] <_double>
CrossEnv [NumSensor] <_double>
Loc [NumSensor][3] <_double>
LocErr [NumSensor][3] <_double>

MetPressConf [NumPlate]
NumSensor <_integer>
SampleInterval <_integer>
Chain [NumSensor] <_integer>
BRAD [NumSensor] <_integer>
Offset [NumSensor] <_double>
OffsetErr [NumSensor] <_double>
Scale [NumSensor] <_double>
ScaleErr [NumSensor] <_double>
CrossEnv [NumSensor] <_double>
Loc [NumSensor][3] <_double>
LocErr [NumSensor][3] <_double>

MetHumConf [NumPlate]
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NumSensor <_integer>
SampleInterval <_integer>
Chain [NumSensor] <_integer>
BRAD [NumSensor] <_integer>
Offset [NumSensor] <_double>
OffsetErr [NumSensor] <_double>
Scale [NumSensor] <_double>
ScaleErr [NumSensor] <_double>
CrossEnv [NumSensor] <_double>
Loc [NumSensor][3] <_double>
LocErr [NumSensor][3] <_double>

LabAirTempConf
NumSensor <_integer>
SampleInterval <_integer>
Chain [NumSensor] <_integer>
BRAD [NumSensor] <_integer>
Offset [NumSensor] <_double>
OffsetErr [NumSensor] <_double>
Scale [NumSensor] <_double>
ScaleErr [NumSensor] <_double>
CrossEnv [NumSensor] <_double>
Loc [NumSensor][3] <_double>
LocErr [NumSensor][3] <_double>

LabSolidTmpConf
NumSensor <_integer>
SampleInterval <_integer>
Chain [NumSensor] <_integer>
BRAD [NumSensor] <_integer>
Offset [NumSensor] <_double>
OffsetErr [NumSensor] <_double>
Scale [NumSensor] <_double>
ScaleErr [NumSensor] <_double>
CrossEnv [NumSensor] <_double>
Loc [NumSensor][3] <_double>
LocErr [NumSensor][3] <_double>

LabPressConf
NumSensor <_integer>
SampleInterval <_integer>
Chain [NumSensor] <_integer>
BRAD [NumSensor] <_integer>
Offset [NumSensor] <_double>
OffsetErr [NumSensor] <_double>
Scale [NumSensor] <_double>
ScaleErr [NumSensor] <_double>
CrossEnv [NumSensor] <_double>
Loc [NumSensor][3] <_double>
LocErr [NumSensor][3] <_double>

LabHumConf
NumSensor <_integer>
SampleInterval <_integer>
Chain [NumSensor] <_integer>
BRAD [NumSensor] <_integer>
Offset [NumSensor] <_double>
OffsetErr [NumSensor] <_double>
Scale [NumSensor] <_double>
ScaleErr [NumSensor] <_double>
CrossEnv [NumSensor] <_double>
Loc [NumSensor][3] <_double>
LocErr [NumSensor][3] <_double>

DLPressConf
NumSensor <_integer>
SampleInterval <_integer>
Chain [NumSensor] <_integer>
BRAD [NumSensor] <_integer>
Offset [NumSensor] <_double>
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OffsetErr [NumSensor] <_double>
Scale [NumSensor] <_double>
ScaleErr [NumSensor] <_double>
CrossEnv [NumSensor] <_double>
Loc [NumSensor][3] <_double>
LocErr [NumSensor][3] <_double>

FBPressConf
NumSensor <_integer>
SampleInterval <_integer>
Chain [NumSensor] <_integer>
BRAD [NumSensor] <_integer>
Offset [NumSensor] <_double>
OffsetErr [NumSensor] <_double>
Scale [NumSensor] <_double>
ScaleErr [NumSensor] <_double>
CrossEnv [NumSensor] <_double>
Loc [NumSensor][3] <_double>
LocErr [NumSensor][3] <_double>

WxAirTempConf
NumSensor <_integer>
SampleInterval <_integer>
Chain [NumSensor] <_integer>
BRAD [NumSensor] <_integer>
Offset [NumSensor] <_double>
OffsetErr [NumSensor] <_double>
Scale [NumSensor] <_double>
ScaleErr [NumSensor] <_double>
CrossEnv [NumSensor] <_double>
Loc [NumSensor][3] <_double>
LocErr [NumSensor][3] <_double>

WxPressConf
NumSensor <_integer>
SampleInterval <_integer>
Chain [NumSensor] <_integer>
BRAD [NumSensor] <_integer>
Offset [NumSensor] <_double>
OffsetErr [NumSensor] <_double>
Scale [NumSensor] <_double>
ScaleErr [NumSensor] <_double>
CrossEnv [NumSensor] <_double>
Loc [NumSensor][3] <_double>
LocErr [NumSensor][3] <_double>

WxHumConf
NumSensor <_integer>
SampleInterval <_integer>
Chain [NumSensor] <_integer>
BRAD [NumSensor] <_integer>
Offset [NumSensor] <_double>
OffsetErr [NumSensor] <_double>
Scale [NumSensor] <_double>
ScaleErr [NumSensor] <_double>
CrossEnv [NumSensor] <_double>
Loc [NumSensor][3] <_double>
LocErr [NumSensor][3] <_double>

WindSpeedConf
NumSensor <_integer>
SampleInterval <_integer>
Chain [NumSensor] <_integer>
BRAD [NumSensor] <_integer>
Offset [NumSensor] <_double>
OffsetErr [NumSensor] <_double>
Scale [NumSensor] <_double>
ScaleErr [NumSensor] <_double>
CrossEnv [NumSensor] <_double>
Loc [NumSensor][3] <_double>
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LocErr [NumSensor][3] <_double>
WindDirConf

NumSensor <_integer>
SampleInterval <_integer>
Chain [NumSensor] <_integer>
BRAD [NumSensor] <_integer>
Offset [NumSensor] <_double>
OffsetErr [NumSensor] <_double>
Scale [NumSensor] <_double>
ScaleErr [NumSensor] <_double>
CrossEnv [NumSensor] <_double>
Loc [NumSensor][3] <_double>
LocErr [NumSensor][3] <_double>

SysLog <_char*>
ConstrictorLog <_char*>
ScanData <Table>

NumScan <_integer>
ScanID [NumScan] <_integer>
StartTime [NumScan] <_double>
StopTime [NumScan] <_double>

InchwormLog <_char*>
NumMap <_integer>
Map [NumMap]

SidMetMap [NumPlate]
NumLaser <_integer>
LaunchEnd [NumLaser]

MetAirTempSen <_integer>
MetSolidTmpSen <_integer>
MetPressureSen <_integer>
MetHumiditySen <_integer>

RetroEnd [NumLaser]
MetAirTempSen <_integer>
MetSolidTmpSen <_integer>
MetPressureSen <_integer>
MetHumiditySen <_integer>

ExtCatEyeMap [NumPlate]
NumLaser <_integer>
LaunchEnd [NumLaser]

MetAirTempSen <_integer>
MetSolidTmpSen <_integer>
MetPressureSen <_integer>
MetHumiditySen <_integer>

RetroEnd [NumLaser]
MetAirTempSen <_integer>
MetSolidTmpSen <_integer>
MetPressureSen <_integer>
MetHumiditySen <_integer>

PlateExpMap [NumPlate]
NumLaser <_integer>
LaunchEnd [NumLaser]

MetAirTempSen <_integer>
MetSolidTmpSen <_integer>
MetPressureSen <_integer>
MetHumiditySen <_integer>

RetroEnd [NumLaser]
MetAirTempSen <_integer>
MetSolidTmpSen <_integer>
MetPressureSen <_integer>
MetHumiditySen <_integer>

OptAnchMap [NumPlate][NumClusterMax]
NumLaser <_integer>
LaunchEnd [NumLaser]

MetAirTempSen <_integer>
MetSolidTmpSen <_integer>
MetPressureSen <_integer>
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MetHumiditySen <_integer>
RetroEnd [NumLaser]

MetAirTempSen <_integer>
MetSolidTmpSen <_integer>
MetPressureSen <_integer>
MetHumiditySen <_integer>

Pier2PierMap
NumLaser <_integer>
LaunchEnd [NumLaser]

MetAirTempSen <_integer>
MetSolidTmpSen <_integer>
MetPressureSen <_integer>
MetHumiditySen <_integer>

RetroEnd [NumLaser]
MetAirTempSen <_integer>
MetSolidTmpSen <_integer>
MetPressureSen <_integer>
MetHumiditySen <_integer>

NumAveGroup <_integer>
AveGroup[NumAveGroup]

NumAveIn <_integer>
NumAveOut <_integer>
TimeAveIn <_integer>
TimeAveOut <_integer>
NumTime <_integer>
Time [NumTime] <_double>
SidMetData [NumPlate][NumLaserMax]

NumData [NumTime] <_integer>
Data [NumTime] <_double>
DataErr [NumTime] <_double>

ExtCatEyeData [NumPlate][NumLaserMax]
NumData [NumTime] <_integer>
Data [NumTime] <_double>
DataErr [NumTime] <_double>

PlateExpData [NumPlate][NumLaserMax]
NumData [NumTime] <_integer>
Data [NumTime] <_double>
DataErr [NumTime] <_double>

MetAirTempData [NumPlate][NumSensorMax]
NumData [NumTime] <_integer>
Data [NumTime] <_double>
DataErr [NumTime] <_double>

MetSolidTmpData [NumPlate][NumSensorMax]
NumData [NumTime] <_integer>
Data [NumTime] <_double>
DataErr [NumTime] <_double>

MetPressData [NumPlate][NumSensorMax]
NumData [NumTime] <_integer>
Data [NumTime] <_double>
DataErr [NumTime] <_double>

MetHumData [NumPlate][NumSensorMax]
NumData [NumTime] <_integer>
Data [NumTime] <_double>
DataErr [NumTime] <_double>

OptAnchData [NumPlate][NumClusterMax][NumLaserMax]
NumData [NumTime] <_integer>
Data [NumTime] <_double>
DataErr [NumTime] <_double>

Pier2PierData [NumLaser]
NumData [NumTime] <_integer>
Data [NumTime] <_double>
DataErr [NumTime] <_double>

LabAirTempData [NumSensor]
NumData [NumTime] <_integer>
Data [NumTime] <_double>
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DataErr [NumTime] <_double>
LabSolidTmpData [NumSensor]

NumData [NumTime] <_integer>
Data [NumTime] <_double>
DataErr [NumTime] <_double>

LabPressData [NumSensor]
NumData [NumTime] <_integer>
Data [NumTime] <_double>
DataErr [NumTime] <_double>

LabHumData [NumSensor]
NumData [NumTime] <_integer>
Data [NumTime] <_double>
DataErr [NumTime] <_double>

DLPressData [NumSensor]
NumData [NumTime] <_integer>
Data [NumTime] <_double>
DataErr [NumTime] <_double>

FBPressData [NumSensor]
NumData [NumTime] <_integer>
Data [NumTime] <_double>
DataErr [NumTime] <_double>

WxAirTempData [NumSensor]
NumData [NumTime] <_integer>
Data [NumTime] <_double>
DataErr [NumTime] <_double>

WxPressData [NumSensor]
NumData [NumTime] <_integer>
Data [NumTime] <_double>
DataErr [NumTime] <_double>

WxHumData [NumSensor]
NumData [NumTime] <_integer>
Data [NumTime] <_double>
DataErr [NumTime] <_double>

WindSpeedData [NumSensor]
NumData [NumTime] <_integer>
Data [NumTime] <_double>
DataErr [NumTime] <_double>

WindDirData [NumSensor]
NumData [NumTime] <_integer>
Data [NumTime] <_double>
DataErr [NumTime] <_double>

NumEnvCorrGroup <_integer>
EnvCorrGroup [NumEnvCorrGroup]

AveGroup <_integer>
Map <_integer>
Refs <_char*>
SidMetData [NumPlate][NumLaserMax]

EnvSensorFlag [8] <_integer> # 1=air temperature, etc.
Data [NumTime] <_double>
DataErr [NumTime] <_double>

ExtCatEyeData [NumPlate][NumLaserMax]
EnvSensorFlag [8] <_integer> # 1=air temperature, etc.
Data [NumTime] <_double>
DataErr [NumTime] <_double>

PlateExpData [NumPlate][NumLaserMax]
EnvSensorFlag [8] <_integer> # 1=air temperature, etc.
Data [NumTime] <_double>
DataErr [NumTime] <_double>

OptAnchData [NumPlate][NumClusterMax][NumLaserMax]
EnvSensorFlag [8] <_integer> # 1=air temperature, etc.
Data [NumTime] <_double>
DataErr [NumTime] <_double>

Pier2PierData [NumLaser]
EnvSensorFlag [8] <_integer> # 1=air temperature, etc.
Data [NumTime] <_double>
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DataErr [NumTime] <_double>
NumMotionGroup <_integer>
MotionGroup [NumMotionGroup]

AveGroup <_integer>
EnvCorrGroup <_integer>
ZeroFlag <_integer>
Mode <_integer>
PlateList [NumPlateList] <_integer>
ClusterList [NumPlateList][NumClusterList] <_integer>
LaserListSid [NumPlateList][NumLaserList] <_integer>
LaserListOA [NumPlateList][NumClusterList][NumLaserList] <_integer>
LaserListP2P [NumLaserList] <_integer>
Siderostat [NumPlate]

NumPar <_integer> # NumPar = 3
Par [NumPar] <_char*>
NumCorr <_integer> # NumCorr = NumPar(NumPar-1)/2
Corr [NumCorr] <_char*>
ReducedChi2 [NumTime] <_double>
XCorr [NumTime][NumCorr] <_double>
NumSingVal [NumTime] <_integer>
SingValFlag [NumTime][NumPar] <_integer>
WRatio [NumTime][NumPar] <_double>
Par [NumTime][NumPar] <_double>
ParFitErr [NumTime][NumPar] <_double>
ParThErr [NumTime][NumPar] <_double>
MotCorrFlags [NumFlag] <_char*>

OpticalAnchor [NumPlate]
NumPar <_integer> # NumPar = 6
Par [NumPar] <_char*>
NumCorr <_integer> # NumCorr = NumPar(NumPar-1)/2
Corr [NumCorr] <_char*>
ReducedChi2 [NumTime] <_double>
XCorr [NumTime][NumCorr] <_double>
NumSingVal [NumTime] <_integer>
SingValFlag [NumTime][NumPar] <_integer>
WRatio [NumTime][NumPar] <_double>
Par [NumTime][NumPar] <_double>
ParFitErr [NumTime][NumPar] <_double>
ParThErr [NumTime][NumPar] <_double>
MotCorrFlags [NumFlag] <_char*>

Pier2Pier
NumPar <_integer> # NumPar = 3(NumPlate-1)
Par [NumPar] <_char*>
NumCorr <_integer> # NumCorr = NumPar(NumPar-1)/2
Corr [NumCorr] <_char*>
ReducedChi2 [NumTime] <_double>
XCorr [NumTime][NumCorr] <_double>
NumSingVal [NumTime] <_integer>
SingValFlag [NumTime][NumPar] <_integer>
WRatio [NumTime][NumPar] <_double>
Par [NumTime][NumPar] <_double>
ParFitErr [NumTime][NumPar] <_double>
ParThErr [NumTime][NumPar] <_double>
MotCorrFlags [NumFlag] <_char*>

AllBedrock
NumPar <_integer> # NumPar = 6NumPlate
Par [NumPar] <_char*>
NumCorr <_integer> # NumCorr = NumPar(NumPar-1)/2
Corr [NumCorr] <_char*>
ReducedChi2 [NumTime] <_double>
XCorr [NumTime][NumCorr] <_double>
NumSingVal [NumTime] <_integer>
SingValFlag [NumTime][NumPar] <_integer>
WRatio [NumTime][NumPar] <_double>
Par [NumTime][NumPar] <_double>
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ParFitErr [NumTime][NumPar] <_double>
ParThErr [NumTime][NumPar] <_double>
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