
The ALMA Common Software (ACS) as a basis for a
distributed software development

Gianni Ra�, Gianluca Chiozzi

European Southern Observatory (ESO), 85748 Garching, Germany

Brian Glendenning

National Radio Astronomy Observatory (NRAO), Socorro, NM 87801

Abstract.
The Atacama Large Millimeter Array (ALMA) is a joint project in-

volving astronomical organisations in Europe, North America and Japan.
ALMA will consist of 64 12-meter antennas operating in the millimetre
and sub-millimetre wavelength range, with baselines of more than 10 km.
It will be located at an altitude above 5000m in the Chilean Atacama
desert. The ALMA Computing group is a joint group with sta� scattered
on 3 continents and is responsible for all the control and data ow soft-
ware related to ALMA, including tools ranging from support of proposal
preparation to archive access of automatically created images.

Early in the project it was decided that an ALMA Common Software
(ACS) would be developed as a way to provide to all partners involved in
the development a common software platform. The original assumption
was that some key middleware like communication via CORBA and the
use of XML and JAVA would be part of the project. It was intended
from the beginning to develop this software in an incremental way based
on releases, so that it would then evolve into an essential embedded part
of all ALMA software applications. In this way we would build a basic
unity and coherence into a system that will have been developed in a
distributed fashion.

This paper evaluates our progress after 1.5 year of work, following a
few tests and preliminary releases. It analyses the advantages and di�-
culties of such an ambitious approach, which creates an interface across
all the various control and data ow applications.

1. ALMA Project in Summary

The ALMA project will consist of 64 antennas. Each of them will have a 12 m
diameter, with a total surface accuracy better than 25 microns and point within
0.6 arcsec. It will be possible to de�ne ALMA array con�gurations ranging from
having all antennas within 150m to 10Km.

The selected site is over 5000m altitude in the Chilean Andes at the border
with Argentina and Bolivia near the village of S.Pedro de Atacama.

1



2. ALMA Computing work

During the ALMA design phase (Phase 1) the ALMA computing work has been
tackled in di�erent ways. First a Top-down approach was used to de�ne the
high level requirements and elaborate on them with Use Cases. Next came
the work of the High-level Analysis and Design team aiming to a �rst global
architecture with analysis classes being merged into Packages. This will form
the general frame for the development of subsystems:

� Control and Correlator software (input: 96 Gb/s per antenna)
� On-line Pipeline, O�-line Data Reduction, Telescope Calibration
� Archiving (Data rate: 10MB/s - 300 TB/year)
� Observing Preparation, Scheduling (automatic operation support)
At the same time a Bottom-up approach was also needed to create the

control software for the prototype antennas, test correlator and the resulting
test interferometer. It was decided that this would use from the beginning the
ALMA Common Software in order to validate it.

The third component of the Phase 1 work is theCommon infrastructure.
While any computing project has to de�ne early its standards, it is equally
important that procedures are de�ned ahead of development. These include
con�guration control and change request procedures, standard environments for
development and common make�le scripts.

Another important element was the establishment of a common software
layer between the operating systems and the speci�c ALMA software, as ex-
plained below.

3. ALMA Common Software (ACS)

The ALMA Common Software (ACS) is a comprehensive framework on top
of the operating system, o�ering a complete environment and structures at the
base of application software developments. ACS is meant to be a general system,
based on available middleware (CORBA) and the easy embedding of languages
like JAVA and Python.

We believe that the use of a common software layer in a very geographically
distributed development situation will be the best way to enforce the use of com-
mon constructs. ACS shall provide a well tested platform that embeds standard
design patterns (much better than a set of written rules) and avoids duplica-
tion of e�ort. At the same time this will provide a platform where upgrades
can be incorporated and brought to all developers. It will also standardize the
underlying architecture of software modules, making maintenance a�ordable.

ACS will be released every 6 months. Being distributed at �xed dates it
will provide the pace for software development iterations in the whole ALMA
software e�ort. The ESO team has developed and released for 8 years now
a similar system, which is in successful use at the ESO Very Large Telescope
(VLT) Observatory (Ra�, Filippi 2000).

2



Figure 1. User Interface based on JavaBeans

4. ACS software status

In order to start e�ectively with limited resources a project like ACS, it was
decided to look for a suitable existing software that could give already a good
basis for ACS and bring in from the beginning all the relevant CORBA know-
how. A system developed by Jozef Stefan Institute (JSI) in Slovenia was found
to ful�ll these pre-requisites (Plesko 1996) and therefore a collaborative e�ort
was started by the ESO team contracting further developments to JSI.

This lead to a prototype release of ACS (ACS 0.0) tested at the Kitt-
Peak 12m radio antenna in Dec.2000. The �rst production release of ACS (1.0)
was distributed in Sept.2001. ACS is already used with the test interferometer
software and is going to be integrated shortly within the test correlator control
software.

5. ACS Architecture

The ACS architecture is based on the concept of Distributed Object. This is a
base class that can be mapped into physical devices in the case of control soft-
ware or into more abstract kinds of objects for other kinds of software. The ACS
architecture uses a 3-tier model: Distributed Object (DO), Property, Character-
istics. Examples of DO implementations are physical devices like temperature

3



sensors and motors. Each DO has read-only or Read/Write Properties, for
example status values, position values, control and monitor points. DOs and
Properties have Characteristics, which are static data like units, ranges, default
values. Characteristics are stored in a Con�guration Database and so they can
also be changed with tools and GIUIs of the database. DOs can be browsed
with the ACS Object Explorer.

ACS comes also with integrated JavaBeans to construct user interfaces.
These can be created on the client side automatically from the DO interface in
IDL (Interface De�nition Language). The user interface based on JavaBeans
that was used in the Kitt-Peak 12m antenna test can be seen in Figure 1.

The di�erent components of ACS, most of which are at least partly im-
plemented in Release 1.0, consist of layers of increasing complexity: Base tools
(CORBA, ACE, drivers, tools), Core components (Distributed Object, Data
Channel, Error system, Logging, Time, Astro libraries), Services (Archiving,
Commands, Alarms, Sampling, Management and access control), High-level
APIs and Tools (GUI libraries, Scripting, Application framework, FITS lib-
raries).

A detailed description of the ACS architecture is given in (Chiozzi, Gust-
afsson, Jeram 2001), while its requirements can be found in (Ra�, Glendenning
2000).

6. ACS underlying technology

ACS runs on Linux and VxWorks and is tested for interoperability with the
CORBA ORBs TAO and Orbacus, while for Python work is on-going to integrate
Omniorb. Programming in C++, JAVA and Python is supported. DB2 is being
evaluated as the �nal con�guration database.

Although ACS is driven by ALMA requirements and based on its standards,
it is quite general and can be used by any project, which would decide to go
for an object oriented approach in a distributed project based on CORBA and
Linux. It is intended to make ACS freely available under the usual GNU free
license scheme.

Acknowledgments. The ACS software is the result of the work of the
ACS team lead by G.Chiozzi, mainly based at ESO but with contributions also
from other ALMA centres (IRAM, Bochum, NRAO) in collaboration with JSI.
Information on Computing work and Computing Documents can be found at:
www.alma.nrao.edu/development/computing/docs

References

Ra�, G. Filippi, G. 2000, SPIE, 4009, 197

Plesko, M. 1996, PPAC Workshop, DESY, Hamburg

Chiozzi, G. Gustafsson, B. Jeram B. 2001 ALMA Computing Document N.16

Ra�, G., Glendenning, B. 2000 ALMA Computing Document N.5

4


