ESO OBSERVING PROGRAMMES COMMITTEE

80th Meeting
Garching
21 - 25 May 2007

DRAFT MINUTES
80th Meeting of the
ESO Observing Programmes Committee
held in Garching from 21 to 25 May 2007

A. OPC meeting - Part 1 (21 May, 2007)
B. Panel Sessions (22/23/24 May, 2007)
C. OPC meeting - Part 2 (24/25 May, 2007)

The meeting took place with the following participants:

Chairperson: Dr. Simon Morris (United Kingdom)

Members: Dr. Danielle Alloin (France)
Dr. Omar Almaini (United Kingdom)
Dr. Svetlana Berdyugina (Switzerland)
Dr. Hermann Boehnhardt (Germany)
Dr. Mike Disney (United Kingdom)
Dr. Thierry Forveille (France)
Dr. Roland Gredel (Germany)
Dr. Rodrigo Ibata (France)
Dr. Leopoldo Infante (Chile)
Dr. Rafael Rebolo Lopez (Spain)
Dr. Antonella Nota (StScI)
Dr. Tom Richtler (Chile)
Dr. Stella Seitz (Germany)
Dr. Monica Tosi (Italy)
Dr. Sylvie Vauclair (France)

On behalf of ESO: Dr. Catherine Cesarsky
Dr. Bruno Leibundgut
Dr. Carlos de Breuck
Dr. Gautier Mathys
Dr. Andreas Kaufer
Dr. Piero Rosati

Secretariat: Elisabeth Hoppe
A. OPC meeting – Part 1

The OPC chairman, Dr. Simon Morris, opened the 80th OPC meeting and addressed a special welcome to the new OPC members. All participants to the meeting introduced themselves in a tour-de-table. Dr. Morris then outlined the most important aspects of the internal guideline documents regarding the Panel discussions, the procedure for Large Programmes and the feedback comments. This set of guidelines had initially been laid out by the former OPC chairman as an “advisory tool” especially for OPC newcomers and was up-dated by Dr. Morris for P80.

1. Introduction by the Director General

The Director General expressed her highest appreciation for the work performed by the OPC and its Panels, not only during the OPC week but also in the weeks before and after the meeting. Due to ever increasing number of proposals the workload of the Panels had reached an unacceptable level in P79. The Director General was looking forward to receiving the feedback from OPC as concerns the first measures taken against this, such as the creation of two additional sub-panels, the extension of Panel meetings by half a day and the introduction of the category of “Short Programmes”.

News to be reported was:

La Silla
In P80 submission of Normal Programme proposals for the 2.2m telescope could be accepted only for Chilean programmes. The rest of the ESO time on this telescope was already committed for continuation of ongoing Large Programmes that started in previous periods. A limited amount of time may become available again in future periods for new Normal Programme proposals from non-Chilean PIs.

The future of La Silla is under discussion at the STC and in Council. It is intended to look into ways to continue running the observatory with minimal support. In this context, programmes requesting substantial numbers of nights are encouraged as of P80.

COROT
In view of the fact that in P80 a new COROT LP proposal was submitted, the DG reminded the OPC of the agreement between the executives of ESO and ESA to cooperate on science planning issues in order to exploit the synergies of ground and space. The aim is to optimize the scientific return of space missions with follow-up observations. Considering these aspects the Director General stated that it should be of ESO’s foremost interest to help COROT be a success.
Chajnantor

APEX
ESO is still offering only APEX-2A and the MPIfR PI instrument FLASH. Pending the outcome of ongoing tests a Delta Call for LABOCA may be issued. A decision should be taken at the APEX board meeting to be held end of May. The OPC will be informed accordingly without delay.

Paranal

VST
The status of the VST was reviewed at INAF by a delegation of ESO engineers and an integration planning between Paranal and INAF is ongoing. The M1 and M2 mirrors are stored on Paranal. The M1 cell and M2 hexapod underwent a critical design review in Naples with a not very positive outcome. INAF is now taking action in order to recover the programme. However it is not clear when the telescope will become available to the community.

In view of the considerable delay of this telescope Dr. Forveille wondered if the accepted VST surveys will have to be re-evaluated.

The Director General replied that the time allocation process for the submitted VST surveys including a final review of the Survey Management Plans has been completed, and that it will not be possible to restart the whole process from scratch. However the survey teams may be requested to review their proposals taking into account the evolution of the science in the meanwhile.

Dr. Morris asked if parts of the approved surveys could be started by the proposing teams on other telescopes.

The DG answered that the OmegaCAM GTO consortium asked to have their guaranteed nights on the VLT already now, and approval was given for allocation of part of these nights in P80. The possibility to allocate more such nights prior to the start of operations of the VST is under review. It may also make sense to convert some of the VST consortium GTO for allocation on the VLT. These issues will be considered by the Council.

VISTA
VISTA is in very good shape and advancing very well. However delays occurred in the polishing of the primary mirror, which is now expected to be shipped from Russia in July. It is hoped to have first light still this year, followed by commissioning in the first quarter of next year.
2./3. Adoption of the Agenda and Approval of the Draft Minutes of the 79th Meeting

The agenda of the 80th OPC meeting was adopted with the suggestion to shorten the overview of Large Programmes and ToOs and instead extend the review of action items from previous period in part I of the meeting. The minutes of the 79th OPC meeting were approved without any changes.

4. Dates of the next meeting

The next OPC meeting is scheduled in the week of November 19-23, 2007.

5. Advanced Data Products from Large Programmes

On behalf of the Virtual Observatory Systems Department (VOS), Dr. Piero Rosati gave an overview on the status, goals, procedures and guidelines of the ESO Science Archive Facility, including the ingestion and verification of Advanced Data Products (ADP) from Large Programmes and introduced the Web-based product submission and upload interface that is under development (see Annex 1).

Considering that so far, no Advanced Data Products from Large Programmes started in P75 or later have been submitted to the archive, and that only a couple of PIs have contacted ESO towards such submissions, VISAS will ask the PIs of all qualifying Large Programmes for information on their plans in this respect. In the future, an effort will be made to improve the communication to the PIs of Large Programmes of the guidelines for submitting their data products to the archive.

Prof. Disney inquired as to whether there is any feedback from the users of the archive with regard to the quality and usefulness of the data. Following discussion, there was a general consensus that a procedure should be established for assessment that the delivery of ADP complies with the requirements. Dr. Morris mentioned that the OPC would be happy to help defining such a procedure.

It was suggested that Large Programme Phase 1 proposals should include a description of the proposers’ plans for releasing their ADP. The DG mentioned that ESO could have a review of these plans during the week following the OPC meeting, according to the model of the Public Survey management plan review.
6. Reports on on-going Large Programmes

The progress reports on the 13 Large Programmes that had scheduled runs in P78 were reviewed. After a thorough discussion, which went on in the second part of the OPC meeting on Friday, May 25, all of these on-going Large Programmes with runs in P80 or beyond as per their original time allocation were approved for continuation.

The OPC is looking forward to seeing first publications of recently finished LPs. Dr. Mathys inquired if the presentation of finished LPs should be re-introduced as an agenda item of the OPC meeting. The OPC was of the opinion that this would go beyond the scope of the OPC meeting and was instead in favor of holding LP workshops on a more regular basis.

7. Review of Action Items from Previous Periods and Guideline Documents

Action Items
The OPC chairman reviewed the action items for future OPC procedures arising from the 79th meeting (http://www.eso.org/public/about-eso/committees/opc/opc80/P79-action-items.pdf). On behalf of the OPC he expressed his appreciation for the measures taken by ESO so that most of them could be considered as closed.

Guideline Documents
The OPC chairman sketched out several noteworthy aspects of the internal guideline documents that were introduced by his predecessor and were edited by him for P80 and are meant to serve as instructions for OPC and Panel members. OPC thanked the authors for this initiative which was regarded as very valuable, especially for newcomers.

8. Overview of P80 Large Programmes and Targets of Opportunity

Large Programmes

For P80 14 Large Programmes (LPs) were submitted (5 to Panel A, 5 to Panel B, and 2 each to Panels C and D).

The question was raised if comments from previous meetings should be consulted for the LP discussion. It was concluded that this should be left to the discretion of the individual Panels.
ToOs
For P80 38 ToOs were submitted (7 to Panel A, 1 to Panel B, 2 to Panel C and 28 to Panel D).
Dr. Morris reminded the OPC that the chair of each Panel to which ToO proposals are assigned is expected to participate in the OPC sub-group for ToOs to take place after the individual Panel meetings.
Dr. Tosi explained procedures applied in this sub-group: every Panel Chair should submit the individual ranking in the given Panel, then all participants will converge on a merged recommendation of all Panels with the indication of recommended targets and triggers for each proposal.
Dr. Mathys pointed out that this is a very important process since ToOs have a very high priority of execution and therefore constitute a major investment of telescope time. In addition ToOs usually are quite expensive in terms of operational overheads.

Highest-ranked non-scheduled P79 runs

Dr. Mathys presented the list of highest-ranked non-scheduled P79 runs that had been included in the OPC Web page and explained the various categories of reasons for non-scheduling.

On behalf of the OPC, Dr. Morris thanked Dr. Mathys for providing this detailed information, which is very useful. He warned the OPC to keep in mind for the feedback comments that even highly ranked proposals might not get time.
Panel Sessions

1. Welcome and Information to Panel Members

On behalf of the Director General, Dr. Mathys welcomed all participants and in particular the new Panel members to the 80th meeting. He expressed thanks for all the work that they had already done for preparation of the meeting, and the additional work to be done during the meeting itself.

The OPC Chairman, Dr. Morris, introduced the Panel chairs to all participants, and gave a summary of the agenda of the week and of the guidelines and special aspects to be considered with reference to the evaluation of Normal Programmes, GTOs, Large Programmes and ToOs. He reminded the OPC that category changes of proposals, if any were left, should be identified at the beginning of the Panel discussions in order to avoid late notice problems with those Panels the proposals will be re-assigned to.

2. Report by Dr. Mathys

Dr. Mathys gave an overview on the number of submitted proposals for P80, their distribution over the scientific categories and the pressure on the individual telescopes (Annex 2). Furthermore Dr. Mathys explained the new method for building a single ranked list across the OPC categories for each telescope, based on the renormalized grades.

3. Report on Instruments

Dr. Kaufer presented the La Silla Paranal status report including recent developments and news (Annex 3).

Review of Applications by the Panels

The Panels reviewed the applications for P80 on May 22, 23 and 24. Joint discussions of the sub-panels and of their chairpersons on LPs, ToOs and Normal Programmes were scheduled in order to sort out possible duplications and to co-ordinate the ranking
C. OPC meeting – Part 2

1. **Ranking of Large and ToO Programmes**

 a) **Large Programmes**

 The Panel chairs gave a detailed summary of the joint discussions of the Large Programmes submitted in their category, reporting the individual Panel grades and the results of the voting, including the aspect of conversion from LP to NP. After a short presentation of the individual proposals by the Panel chairs and a thorough discussion concluding in final votes the OPC recommended 3 Large Programmes for implementation in P80. In addition, three LPs were recommended for conversion from LP to NP.

 b) **ToOs**

 On behalf of the OPC sub-group for ToOs, Dr. Tosi presented the joint recommendation for implementation of ToOs for P80 based on a ranked list of the proposals indicating the approximate commitments as concerns the numbers of targets and triggers. In general all ToO proposals were very highly ranked in the sub-panels. This fact proves that this category of proposals still presents very high level science. Thanks to the additional detailed information provided on the last page of the proposal (hard/soft trigger, number of targets per run and triggers per target) the merging process across the panels has become much easier than in the past. Dr. Morris thanked the OPC sub-group for ToOs for the valuable input provided. The OPC unanimously approved this proposal as official recommendation for implementation.

2. **Scientific Highlights (reports from the Panels)**

 The Panel chairs gave a summary of the scientific highlights in their panels. (The following account is adapted from the OPC chairman report to Council.) The quality of proposals was viewed as generally high, with a significant number of extremely exciting projects being put forward. A selection of these includes:

 - Measuring the radius of M dwarfs with Flames spectroscopy and also with AMBER.
 - A number of 20th birthday proposals for SN 1987A.
 - A Target of Opportunity proposal to obtain spectropolarimetry of expanding Supernovae to investigate clumpiness.
 - A search for high proper motion stars in Globular clusters using NACO to look for evidence of ejection by a central blank hole.
 - Observations of the Uranus ring plane crossing event to understand the dynamical processes that shape the rings and to measure the thermal inertia of moon surfaces by occultation.
 - Planet searches around intermediate mass stars after they evolve off the main sequence.
• A proper motion survey of the Carina and Fornax dwarf galaxies using SUSI2.
• Proposals to clear up uncertainties about the distribution of Dark Matter around nearby galaxies.
• A couple of Target of Opportunity proposals specifically aiming for $z>5$ Gamma Ray Bursts.
• A risky but innovative proposal to set limits on possible axion masses by searching for decay lines from a rich cluster of galaxies.
• Observations of a gravitationally lensed galaxy at $z=3$ with SINFONI and LGS.

3. Status of action items arising from the 80th OPC meeting

Workload in the Panels
The measures taken by ESO to decrease the workload of the Panels (12 subpanels instead of 10 and the increase of the duration of the Panel meetings from 2.0 to 2.5 days) were considered as very positive by the OPC. As a result no subpanel had more than 100 proposals to consider which reduced the stress in the subpanels, and allowed them to rank the proposals in a more careful and considered manner. Until further notice no further changes are required in this respect.

It was found that the additional logistic requirements (office containers, catering tent) were met in an adequate way. Until further notice the existing set-up is preferred to an OPC location outside the ESO premises.

Short Programmes
The introduction of Short Programmes was very well received by the OPC. A fraction of the OPC members consider that this format would even be fully sufficient for all programmes. However it was concluded that for the time being no further action is needed.

New page in ToO proposals
As stated by the ToO OPC sub-group the new ToO page was extremely helpful and it was found that no new procedures are needed in this respect.

Panel Tool
To facilitate the fine tuning in the Panel discussions two decimals are needed for the grades.

Electra
Considering the circumstances described by Dr Mathys the OPC agreed not to ask for further updates of Electra for P81. Dr. Mathys confirmed that all efforts will be taken to distribute and support Electra as best as can be.

Scientific subcategories
Incoming suggestions for changes should be collected and a new proposed list should be submitted at the next OPC meeting for final decision.
4. Conclusions by the Director General

Dr. Catherine Cesarsky bid farewell to the OPC as Director General and thanked all participants to the meeting for their contributions to make it a very successful one.

Dr. Morris stated that the OPC fully appreciated what an outstanding job she had done as Director General.

5. Other business

Dr. Carlos de Breuck, the ESO APEX Project Scientist, reported that the commissioning of the LABOCA bolometer array at APEX was successful. Science Verification (SV) is ongoing. Based on the outcome of the SV, which will be continued during the July ESO time, the final sensitivities of the instrument will be determined. For the remaining ESO observing time in 2007 (tentatively 2 weeks in September and 2 weeks in November), ESO proposes to issue a Delta Call. The LABOCA committee should be composed of 6 people. It is recommended to have half of the committee composed of OPC80 members to allow a merging of the APEX-2A/FLASH and new LABOCA proposals. The tentative schedule is to issue this Delta Call at the end of June, with a deadline at the end of July. The OPC agreed with this proposal.

End of document
Advanced Data Products from Large Programmes

ingestion and publication in the ESO Science Archive

P. Rosati (ESO – VO System Dept.)
In 2005 ESO (VO System Dept.) embarked on a new mission: populate the SAF with an increasing number of Advanced Data Products (ADP), i.e. science ready calibrated data (both imaging and spectra) + ancillary products (e.g. catalogs)

Call for Proposal:
“Since Period 75, the PIs of successful proposals for Large Programmes are required to provide all data products (processed images and spectra, catalogues) to the ESO archive by the time of the publication of their scientific result in a refereed publication”.

Motivations:

1) Enhance the Legacy of ESO data (Large Programmes, Public Surveys) facilitating further scientific exploitation

2) An increasing demand from the community to access high-level data products in the SAF

3) A prompt scientific exploitation of the VO infrastructures heavily relies on the availability of large volumes of ADP
Publications using ESO archival data

E.g. GOODS/ISAAC/FORS2 ADP success

See also HST Archive experience
Publishing ESO Science-ready Data Products into the Science Archive

Advanced Data Products
- Selected GO Products
- Large Programmes >P75
- Public Surveys (VISTA & VST)
- ESO products
- Special cases (HARPS)

- Provided by to the community
- ESO product

First Ingestion/publication scheduled: z-COSMOS prelease (July 07)
Ingestion and Verification of LP Data Products into VO-compliant SAF

1. **LP PIs upload survey products**
 - README, FITS images, figures, catalogs, etc.

2. **VOS validates Data Products:**
 - full characterization of DPs to enable immediate science exploitation: provenance, instrument/observations, target, calibration params+error bars
 - ✓ Verifies integrity of DPs (formats, metadata, readme)
 - ✓ Extract metadata and check compliancy with requirements
 - ✓ Iterate with PIs until all requirements are met

3. **VOS releases Data Products into SAF via the standard interface, and eventually into VO**
Guidelines for submitting ADPs

http://archive.eso.org/archive/adp/submission/index.html

ESO Science Archive
Submission of Advanced Data Products

Submission of ADPs

<table>
<thead>
<tr>
<th>Introduction Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presentation Imaging</td>
</tr>
<tr>
<td>Spectroscopy</td>
</tr>
<tr>
<td>Readme file</td>
</tr>
<tr>
<td>Current procedure</td>
</tr>
</tbody>
</table>

Current procedure

Steps to deliver ADPs to the Science Archive before the ingestion interface is available:

1. Collect your data products in one or more TAR files; these may include fully processed and calibrated images and spectra, ancillary files (such as weight maps, variance spectra, masks, finding charts, diagrams, catalogues), and in some cases master calibration files. The main science products will have to be in FITS format, ancillary information can be in any standard graphic format (ps, pdf, jpg, etc.)

2. Build metadata information by making sure that FITS headers contain the required information as described in the Guidelines.

3. Provide a readme file as described in the Guidelines.

4. Prepare a presentation file describing the scientific program and all the delivered data products, as described in the Guidelines.

5. Contact the ADP/VOS group so the necessary arrangements can be made. The email address is archive@eso.org.
To retrieve observational data you have to register as an ESO/ST-ECF Archive user.

Advanced Data Products

ADP Home Page
- HARPS data release (April 2007)
- 30 Doradus/WFI data release (December 2006)
- Garching-Bonn Deep Survey/WFI data release (April 2006)
- GOODS/FORS2 data release (January 2006)
- GOODS/ISAAC data release (September 2005)
- XMM/WFI Survey Release (September 2005)

ADP Submission Guidelines

ESO Imaging Survey

EIS Home Page

Major Data Releases
- EIS Wide
- EIS Deep: HDF-S
- EIS Deep: AXAF-Field
- EIS First Data Release of the Pre-FLAMES Survey
- EIS Second Data Release of the Pre-FLAMES Survey

Quick-look Releases
- HDF-South
 - HDF-S1: STIS field *(SUSI and SOFI data)*
 - HDF-S2: WFPC-2 field *(SOFI data)*
 - HDF-S3: NICMOS field *(SOFI data)*
- Pilot Public Survey
 - EIS Patches C&D
 - Stellar Fields
 - Deep Public Survey

Public ESO VLT/VLTI datasets

Commissioning
- FORS2 *(Kueyen)* commissioning data

Other public datasets

ESO data releases
- APEX-2A Science Verification

ANNEX 2
Total number of proposals received in P80

<table>
<thead>
<tr>
<th>OPC category</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normal</td>
<td>Large</td>
<td>Normal</td>
<td>Large</td>
<td>Normal</td>
</tr>
<tr>
<td>Paranal only</td>
<td>110</td>
<td>4</td>
<td>134</td>
<td>4</td>
<td>198</td>
</tr>
<tr>
<td>LaSilla only</td>
<td>19</td>
<td>1</td>
<td>20</td>
<td>0</td>
<td>52</td>
</tr>
<tr>
<td>APEX only</td>
<td>2</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Paranal & LaSilla</td>
<td>6</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>Paranal & APEX</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>137</td>
<td>5</td>
<td>166</td>
<td>5</td>
<td>288</td>
</tr>
</tbody>
</table>

* Including 38 ToO proposals (28 in Panel D)
Proposal submission history

Number of Proposals

Period

1977

2007

80th OPC meeting, May 21-25, 2007
85% of the submissions in the last 36h before the deadline...
Distribution by OPC category (2)

2A, 2B, 2C, 2D

3C, 3D

4C, 4D

80th OPC meeting, May 21-25, 2007
P80: scientific areas

Submitted programmes per category

Short Programmes:
A: 15
B: 31
C: 65
D: 68
Total: 179

Requested amount of time per category
Pressure
Demand per telescope

- UT1
- UT2
- UT3
- UT4
- 3.6
- NTT
- 2.2
Site distribution

The graph shows the distribution of proposals over a period from 1963 to 1980. The x-axis represents the period, and the y-axis represents the number of proposals. The graph compares the proposals for several sites, including Paranal, LaSilla, APEX, Paranal_LaSilla, Paranal_APEX, and LaSilla_APEX.
P80 time distribution

Available to OPC80

Total: 1260 nights + APEX
Establish a single ranking (per telescope) for all Normal Programme and Short Programme proposals.

Your task:

- Best
- Worst
- Cutoff line
- Do not schedule below

Grade:

- 1.0
- 3.0
- 5.0

80th OPC meeting, May 21-25, 2007
Merging panels (per telescope)

(re-normalisation (for grades < 3.0)

(illustration based on P78 grades)
Merging panels (per telescope)

• For each telescope, a single ranked list is built, across OPC categories, based on renormalised grades
 • Runs with identical grades from the same subpanel (frequent): ranked in the order defined by the subpanel
 • Runs with identical grades from different subpanels (very rare - real numbers!): ranked by run id
• Time allocation based on this single ranked list
• Regularisation: time allocated to each OPC category on a given telescope is proportional to time requested in this category on this telescope
A/B/C rank class

GTO
Chilean (≤ 10%)
Large
ToO
Normal

OPC ranked list

Seeing ≥ 1.2"
Transp. ≠ PHO
PSO approved

Fillers

~0.15 \(N_s \) h rank C

Telescope schedule

VM/SM time ratio
P79 - UT:
SM ≤ 60%
VM ≤ 50%

N\(V \) VM nights

N\(S \) SM hours

N\(S /2 \) h rank A

N\(S /2 \) h rank B

80th OPC meeting, May 21-25, 2007
A and B rank classes

Composition of SM queues - P78

Composition of SM queues - P79
P79 scheduling information

Proposals for cycle 79A – normal only (LN21)

Panel: A2 – Cosmology

<table>
<thead>
<tr>
<th>NO</th>
<th>RUN CODE</th>
<th>PI</th>
<th>TITLE</th>
<th>AFFIL</th>
<th>STAT</th>
<th>RANK</th>
<th>GRADE</th>
<th>TGRADE</th>
<th>MODE</th>
<th>TEL.</th>
<th>INSTR.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>079.A</td>
<td></td>
<td>Distance scale in th ..</td>
<td>D</td>
<td>S</td>
<td>1</td>
<td>1.1</td>
<td>1.25</td>
<td>s</td>
<td>VLT1</td>
<td>AMBER</td>
</tr>
<tr>
<td>2</td>
<td>079.A</td>
<td></td>
<td>The nature of massiv ..</td>
<td>NL</td>
<td>S</td>
<td>2</td>
<td>1.2</td>
<td>1.34</td>
<td>v</td>
<td>UT4</td>
<td>SINFONI</td>
</tr>
<tr>
<td>3</td>
<td>079.A</td>
<td></td>
<td>The physical nature ..</td>
<td>P</td>
<td>S</td>
<td>1</td>
<td>1.2</td>
<td>1.34</td>
<td>s</td>
<td>UT4</td>
<td>SINFONI</td>
</tr>
<tr>
<td>4</td>
<td>079.A</td>
<td></td>
<td>Temperature and ion ..</td>
<td>D</td>
<td>S</td>
<td>1</td>
<td>1.3</td>
<td>1.43</td>
<td>s</td>
<td>UT2</td>
<td>UVES</td>
</tr>
<tr>
<td>5</td>
<td>079.A</td>
<td></td>
<td>Tracing star–formati ..</td>
<td>F</td>
<td>S</td>
<td>1</td>
<td>1.4</td>
<td>1.52</td>
<td>s</td>
<td>2.2</td>
<td>WIFI</td>
</tr>
<tr>
<td>6</td>
<td>079.A</td>
<td></td>
<td>The SWIRE VIP Survey ..</td>
<td>UK</td>
<td>N</td>
<td>1</td>
<td>1.5</td>
<td>1.61</td>
<td>s</td>
<td>UT3</td>
<td>VIMOS</td>
</tr>
<tr>
<td>7</td>
<td>079.A</td>
<td></td>
<td>A deep and sharp loo ..</td>
<td>CH</td>
<td>S</td>
<td>3</td>
<td>1.5</td>
<td>1.61</td>
<td>s</td>
<td>UT4</td>
<td>NACO</td>
</tr>
<tr>
<td>8</td>
<td>079.A</td>
<td></td>
<td>Narrow–band measurem ..</td>
<td>OTHER</td>
<td>S</td>
<td>2</td>
<td>1.5</td>
<td>1.61</td>
<td>s</td>
<td>UT2</td>
<td>FORS1</td>
</tr>
<tr>
<td>9</td>
<td>079.A</td>
<td></td>
<td>Spectroscopic verifi ..</td>
<td>UK</td>
<td>S</td>
<td>2</td>
<td>1.5</td>
<td>1.61</td>
<td>v</td>
<td>NTT</td>
<td>EMMI</td>
</tr>
<tr>
<td>10</td>
<td>079.A</td>
<td></td>
<td>The SWIRE VIP Survey ..</td>
<td>UK</td>
<td>N</td>
<td>1</td>
<td>1.5</td>
<td>1.61</td>
<td>s</td>
<td>UT3</td>
<td>VIMOS</td>
</tr>
<tr>
<td>11</td>
<td>079.A</td>
<td></td>
<td>The First z>6.4 Qu ..</td>
<td>UK</td>
<td>S</td>
<td>1</td>
<td>1.5</td>
<td>1.61</td>
<td>v</td>
<td>NTT</td>
<td>EMMI</td>
</tr>
<tr>
<td>12</td>
<td>079.A</td>
<td></td>
<td>A deep and sharp loo ..</td>
<td>CH</td>
<td>N</td>
<td>3</td>
<td>1.5</td>
<td>1.61</td>
<td>s</td>
<td>UT4</td>
<td>NACO</td>
</tr>
<tr>
<td>13</td>
<td>079.A</td>
<td></td>
<td>Spectroscopic verifi ..</td>
<td>UK</td>
<td>S</td>
<td>2</td>
<td>1.5</td>
<td>1.61</td>
<td>v</td>
<td>NTT</td>
<td>EMMI</td>
</tr>
<tr>
<td>14</td>
<td>079.A</td>
<td></td>
<td>Ultra–Deep Integrati ..</td>
<td>D</td>
<td>S</td>
<td>2</td>
<td>1.6</td>
<td>1.70</td>
<td>s</td>
<td>UT3</td>
<td>VIMOS</td>
</tr>
<tr>
<td>15</td>
<td>079.A</td>
<td></td>
<td>Studying the Weak Le ..</td>
<td>ESO</td>
<td>S</td>
<td>3</td>
<td>1.6</td>
<td>1.70</td>
<td>v</td>
<td>NTT</td>
<td>EMMI</td>
</tr>
<tr>
<td>16</td>
<td>079.A</td>
<td></td>
<td>Ultra–Deep Integrati ..</td>
<td>D</td>
<td>S</td>
<td>2</td>
<td>1.6</td>
<td>1.70</td>
<td>s</td>
<td>UT3</td>
<td>VIMOS</td>
</tr>
<tr>
<td>17</td>
<td>079.A</td>
<td></td>
<td>Studying the Weak Le ..</td>
<td>ESO</td>
<td>S</td>
<td>3</td>
<td>1.6</td>
<td>1.70</td>
<td>v</td>
<td>NTT</td>
<td>EMMI</td>
</tr>
<tr>
<td>18</td>
<td>079.A</td>
<td></td>
<td>The Properties of Ga ..</td>
<td>D</td>
<td>S</td>
<td>1</td>
<td>1.7</td>
<td>1.79</td>
<td>s</td>
<td>UT1</td>
<td>ISAAC</td>
</tr>
<tr>
<td>19</td>
<td>079.A</td>
<td></td>
<td>Unravelling the myst ..</td>
<td>CH</td>
<td>S</td>
<td>3</td>
<td>1.7</td>
<td>1.79</td>
<td>s</td>
<td>UT2</td>
<td>FLAMES</td>
</tr>
<tr>
<td>20</td>
<td>079.A</td>
<td></td>
<td>The Properties of Ga ..</td>
<td>D</td>
<td>S</td>
<td>1</td>
<td>1.7</td>
<td>1.79</td>
<td>s</td>
<td>UT1</td>
<td>FORS2</td>
</tr>
<tr>
<td>21</td>
<td>079.A</td>
<td></td>
<td>The Properties of Ga ..</td>
<td>D</td>
<td>S</td>
<td>1</td>
<td>1.7</td>
<td>1.79</td>
<td>s</td>
<td>UT1</td>
<td>ISAAC</td>
</tr>
<tr>
<td>22</td>
<td>079.A</td>
<td></td>
<td>The Properties of Ga ..</td>
<td>D</td>
<td>N</td>
<td>4</td>
<td>1.7</td>
<td>1.79</td>
<td>s</td>
<td>UT2</td>
<td>FORS1</td>
</tr>
</tbody>
</table>
Highly ranked, not scheduled...

<table>
<thead>
<tr>
<th>Telescope</th>
<th>All runs</th>
<th>OPC grade < 3.0</th>
<th>Scheduled</th>
<th>Run id</th>
<th>Grade</th>
<th>Merged rank</th>
<th>Non-scheduling reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>UT1</td>
<td>257</td>
<td>235</td>
<td>101</td>
<td></td>
<td>1.64</td>
<td>39</td>
<td>Local oversubscription of parameter space (RA)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.70</td>
<td>54</td>
<td>Local oversubscription of parameter space (RA)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.79</td>
<td>69</td>
<td>Local oversubscription of parameter space (RA)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.80</td>
<td>83</td>
<td>Oversubscription of OPC science category</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.80</td>
<td>85</td>
<td>Oversubscription of OPC science category</td>
</tr>
<tr>
<td>UT2</td>
<td>191</td>
<td>177</td>
<td>95</td>
<td></td>
<td>1.79</td>
<td>40</td>
<td>Local oversubscription of parameter space (RA)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.79</td>
<td>41</td>
<td>Local oversubscription of parameter space (RA)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.82</td>
<td>44</td>
<td>Local oversubscription of parameter space (RA)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.86</td>
<td>49</td>
<td>Required associated run not scheduled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.88</td>
<td>50</td>
<td>Local oversubscription of parameter space (RA)</td>
</tr>
<tr>
<td>UT3</td>
<td>128</td>
<td>104</td>
<td>70</td>
<td></td>
<td>1.61</td>
<td>17</td>
<td>Local oversubscription of parameter space (RA)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.61</td>
<td>18</td>
<td>Local oversubscription of parameter space (RA)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.80</td>
<td>32</td>
<td>Local oversubscription of parameter space (RA)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.80</td>
<td>33</td>
<td>Local oversubscription of parameter space (RA)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.80</td>
<td>34</td>
<td>Visitor instrument unavailable on observation date</td>
</tr>
<tr>
<td>UT4</td>
<td>167</td>
<td>155</td>
<td>60</td>
<td></td>
<td>1.50</td>
<td>22</td>
<td>Oversubscription of OPC science category</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.61</td>
<td>29</td>
<td>Oversubscription of OPC science category</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.68</td>
<td>35</td>
<td>Local oversubscription of parameter space (RA)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.68</td>
<td>38</td>
<td>Local oversubscription of parameter space (RA)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.70</td>
<td>41</td>
<td>Oversubscription of OPC science category</td>
</tr>
</tbody>
</table>
Highest-ranked non-scheduled P79 runs (per telescope)

<table>
<thead>
<tr>
<th>Telescope</th>
<th>All runs</th>
<th>OPC grade < 3.0</th>
<th>Scheduled</th>
<th>Run id</th>
<th>Grade</th>
<th>Merged rank</th>
<th>Non-scheduling reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLTI</td>
<td>141</td>
<td>122</td>
<td>69</td>
<td></td>
<td>1.66</td>
<td>37</td>
<td>Target non-visible in offered time slots</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.76</td>
<td>38</td>
<td>Global oversubscription</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.86</td>
<td>51</td>
<td>Global oversubscription</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.86</td>
<td>52</td>
<td>Global oversubscription</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.97</td>
<td>71</td>
<td>Global oversubscription</td>
</tr>
<tr>
<td>3.6</td>
<td>60</td>
<td>58</td>
<td>43</td>
<td></td>
<td>2.00</td>
<td>29</td>
<td>Time constraints incompatible with ranking</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.00</td>
<td>30</td>
<td>Time constraints incompatible with ranking</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.00</td>
<td>31</td>
<td>Time constraints incompatible with ranking</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.27</td>
<td>41</td>
<td>Local oversubscription of parameter space (RA)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.29</td>
<td>44</td>
<td>Local oversubscription of parameter space (RA)</td>
</tr>
<tr>
<td>NTT</td>
<td>154</td>
<td>129</td>
<td>92</td>
<td></td>
<td>1.77</td>
<td>34</td>
<td>Local oversubscription of parameter space (RA)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.05</td>
<td>70</td>
<td>Local oversubscription of parameter space (RA)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.09</td>
<td>79</td>
<td>Local oversubscription of parameter space (RA)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.09</td>
<td>81</td>
<td>Local oversubscription of parameter space (RA)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.09</td>
<td>82</td>
<td>Local oversubscription of parameter space (RA)</td>
</tr>
<tr>
<td>2.2</td>
<td>88</td>
<td>81</td>
<td>17</td>
<td></td>
<td>1.33</td>
<td>2</td>
<td>Target non-visible in offered time slots</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.76</td>
<td>18</td>
<td>Target non-visible in offered time slots</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.80</td>
<td>20</td>
<td>Time-critical observation during non-ESO time</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.82</td>
<td>22</td>
<td>Global oversubscription</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.82</td>
<td>23</td>
<td>Global oversubscription</td>
</tr>
</tbody>
</table>
The VISAS Team

Gautier Mathys
Head of VISAS

Elisabeth Hoppe
Administrative Assistant (OPC)

Silvia Cristiani
Administrative Assistant (UC, logistics)

Angelika Beller
Administrative Assistant (travel)

NN.
Astronomer
(ex-M. Lombardi)

Expected June 4
Total number of proposals received in P80

<table>
<thead>
<tr>
<th>OPC category</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normal</td>
<td>Large</td>
<td>Normal</td>
<td>Large</td>
<td>Normal</td>
</tr>
<tr>
<td>Paranal only</td>
<td>110</td>
<td>4</td>
<td>134</td>
<td>4</td>
<td>198</td>
</tr>
<tr>
<td>LaSilla only</td>
<td>19</td>
<td>1</td>
<td>20</td>
<td>0</td>
<td>52</td>
</tr>
<tr>
<td>APEX only</td>
<td>2</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Paranal & LaSilla</td>
<td>6</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>Paranal & APEX</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>137</td>
<td>5</td>
<td>166</td>
<td>5</td>
<td>288</td>
</tr>
</tbody>
</table>

* Including 38 ToO proposals (28 in Panel D)
Proposal submission history

The graph shows the number of proposals submitted from 1977 to 2007, with a linear trend line indicating the growth over the years.
85% of the submissions in the last 36h before the deadline...
Distribution by OPC category (2)

2A, 2B, 2C, 2D

3C, 3D

4C, 4D

80th OPC meeting, May 21-25, 2007
P80: scientific areas

Submitted programmes per category

Short Programmes:
A: 15
B: 31
C: 65
D: 68
Total: 179

Requested amount of time per category
Demand per telescope

![Graph showing demand per telescope over different periods](image_url)

- UT1
- UT2
- UT3
- UT4
- 3.6
- NTT
- 2.2

80th OPC meeting, May 21-25, 2007
P80 time distribution

Total: 1260 nights + APEX

Available to OPC80

Non-Science Time
Calibration Time
LP commitments
GTO + SV/SDT
DDT (5%)
Establish a single ranking (per telescope) for all Normal Programme and Short Programme proposals.

Your task:

1. Establish a single ranking (per telescope) for all Normal Programme and Short Programme proposals.
2. Do not schedule below the cutoff line.
Merging panels (per telescope)

Grade

re-normalisation
(for grades < 3.0)

(illustration based on P78 grades)
Merging panels (per telescope)

- For each telescope, a single ranked list is built, across OPC categories, based on renormalised grades
 - Runs with identical grades from the same subpanel (frequent): ranked in the order defined by the subpanel
 - Runs with identical grades from different subpanels (very rare - real numbers!): ranked by run id
- Time allocation based on this single ranked list
- Regularisation: time allocated to each OPC category on a given telescope is proportional to time requested in this category on this telescope
A/B/C rank class

- GTO
 - Chilean (≤ 10%)
 - Large
 - ToO
- Normal

- OPC ranked list

- VM/SM time ratio
 - P79 - UT:
 - SM ≤ 60%
 - VM ≤ 50%

- Seeing ≥ 1.2" Transp. ≠ PHO PSO approved

- Fillers
 ~0.15 \(N_s \) h rank C

- Telescope schedule
 - \(N_V \) VM nights
 - \(N_s \) SM hours
 - \(N_s/2 \) h rank A
 - \(N_s/2 \) h rank B

- Transp. ≠ PHO PSO approved

80th OPC meeting, May 21-25, 2007
A and B rank classes

Composition of SM queues - P78

Composition of SM queues - P79
P79 scheduling information

Proposals for cycle 79A – normal only (LN21)

Panel: A2 – Cosmology

<table>
<thead>
<tr>
<th>NO</th>
<th>RUN COLE</th>
<th>PI</th>
<th>TITLE</th>
<th>APPL</th>
<th>STAT</th>
<th>RANK</th>
<th>GRADE</th>
<th>TGRADE</th>
<th>MODE</th>
<th>TEL.</th>
<th>INSTR.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>079.A</td>
<td></td>
<td>Distance scale in th</td>
<td>D</td>
<td>S</td>
<td>1</td>
<td>1.1</td>
<td>1.25</td>
<td>s</td>
<td>VLT1</td>
<td>AMBER</td>
</tr>
<tr>
<td>2</td>
<td>079.A</td>
<td></td>
<td>The nature of massiv</td>
<td>NL</td>
<td>S</td>
<td>2</td>
<td>1.2</td>
<td>1.34</td>
<td>v</td>
<td>UT4</td>
<td>SINFONI</td>
</tr>
<tr>
<td>3</td>
<td>079.A</td>
<td></td>
<td>The physical nature</td>
<td>P</td>
<td>S</td>
<td>1</td>
<td>1.2</td>
<td>1.34</td>
<td>s</td>
<td>UT4</td>
<td>SINFONI</td>
</tr>
<tr>
<td>4</td>
<td>079.A</td>
<td></td>
<td>Temperature and ioni</td>
<td>D</td>
<td>S</td>
<td>1</td>
<td>1.3</td>
<td>1.43</td>
<td>s</td>
<td>UT2</td>
<td>UVES</td>
</tr>
<tr>
<td>5</td>
<td>079.A</td>
<td></td>
<td>Tracing star–formati</td>
<td>F</td>
<td>S</td>
<td>1</td>
<td>1.4</td>
<td>1.52</td>
<td>s</td>
<td>2.2</td>
<td>WF/</td>
</tr>
<tr>
<td>6</td>
<td>079.A</td>
<td></td>
<td>The SWIRE VIP Survey</td>
<td>UK</td>
<td>N</td>
<td>1</td>
<td>1.5</td>
<td>1.61</td>
<td>s</td>
<td>UT3</td>
<td>VIMOS</td>
</tr>
<tr>
<td>7</td>
<td>079.A</td>
<td></td>
<td>A deep and sharp loo</td>
<td>CH</td>
<td>S</td>
<td>3</td>
<td>1.5</td>
<td>1.61</td>
<td>s</td>
<td>UT4</td>
<td>NACO</td>
</tr>
<tr>
<td>8</td>
<td>079.A</td>
<td></td>
<td>Narrow–band measurem</td>
<td>OTHER</td>
<td>S</td>
<td>2</td>
<td>1.5</td>
<td>1.61</td>
<td>s</td>
<td>UT2</td>
<td>FORS1</td>
</tr>
<tr>
<td>9</td>
<td>079.A</td>
<td></td>
<td>Spectroscopic verifi</td>
<td>UK</td>
<td>S</td>
<td>2</td>
<td>1.5</td>
<td>1.61</td>
<td>v</td>
<td>NTT</td>
<td>EMMI</td>
</tr>
<tr>
<td>10</td>
<td>079.A</td>
<td></td>
<td>The SWIRE VIP Survey</td>
<td>UK</td>
<td>N</td>
<td>1</td>
<td>1.5</td>
<td>1.61</td>
<td>s</td>
<td>UT3</td>
<td>VIMOS</td>
</tr>
<tr>
<td>11</td>
<td>079.A</td>
<td></td>
<td>The First z>=6.4 Qu</td>
<td>UK</td>
<td>S</td>
<td>1</td>
<td>1.5</td>
<td>1.61</td>
<td>v</td>
<td>NTT</td>
<td>EMMI</td>
</tr>
<tr>
<td>12</td>
<td>079.A</td>
<td></td>
<td>A deep and sharp loo</td>
<td>CH</td>
<td>N</td>
<td>3</td>
<td>1.5</td>
<td>1.61</td>
<td>s</td>
<td>UT4</td>
<td>NACO</td>
</tr>
<tr>
<td>13</td>
<td>079.A</td>
<td></td>
<td>Spectroscopic verifi</td>
<td>UK</td>
<td>S</td>
<td>2</td>
<td>1.5</td>
<td>1.61</td>
<td>v</td>
<td>NTT</td>
<td>EMMI</td>
</tr>
<tr>
<td>14</td>
<td>079.A</td>
<td></td>
<td>Ultra–Deep integrati</td>
<td>D</td>
<td>S</td>
<td>2</td>
<td>1.6</td>
<td>1.70</td>
<td>s</td>
<td>UT3</td>
<td>VIMOS</td>
</tr>
<tr>
<td>15</td>
<td>079.A</td>
<td></td>
<td>Studying the Weak Le</td>
<td>ESO</td>
<td>S</td>
<td>3</td>
<td>1.6</td>
<td>1.70</td>
<td>v</td>
<td>NTT</td>
<td>EMMI</td>
</tr>
<tr>
<td>16</td>
<td>079.A</td>
<td></td>
<td>Ultra–Deep integrati</td>
<td>D</td>
<td>S</td>
<td>2</td>
<td>1.6</td>
<td>1.70</td>
<td>s</td>
<td>UT3</td>
<td>VIMOS</td>
</tr>
<tr>
<td>17</td>
<td>079.A</td>
<td></td>
<td>Studying the Weak Le</td>
<td>ESO</td>
<td>S</td>
<td>3</td>
<td>1.6</td>
<td>1.70</td>
<td>v</td>
<td>NTT</td>
<td>EMMI</td>
</tr>
<tr>
<td>18</td>
<td>079.A</td>
<td></td>
<td>The Properties of Ga</td>
<td>D</td>
<td>S</td>
<td>1</td>
<td>1.7</td>
<td>1.79</td>
<td>s</td>
<td>UT1</td>
<td>ISAAC</td>
</tr>
<tr>
<td>19</td>
<td>079.A</td>
<td></td>
<td>Unravelling the myst</td>
<td>CH</td>
<td>S</td>
<td>3</td>
<td>1.7</td>
<td>1.79</td>
<td>s</td>
<td>UT2</td>
<td>FLAMES</td>
</tr>
<tr>
<td>20</td>
<td>079.A</td>
<td></td>
<td>The Properties of Ga</td>
<td>D</td>
<td>S</td>
<td>1</td>
<td>1.7</td>
<td>1.79</td>
<td>s</td>
<td>UT1</td>
<td>FORS2</td>
</tr>
<tr>
<td>21</td>
<td>079.A</td>
<td></td>
<td>The Properties of Ga</td>
<td>D</td>
<td>S</td>
<td>1</td>
<td>1.7</td>
<td>1.79</td>
<td>s</td>
<td>UT1</td>
<td>ISAAC</td>
</tr>
<tr>
<td>22</td>
<td>079.A</td>
<td></td>
<td>The Properties of Ga</td>
<td>D</td>
<td>N</td>
<td>4</td>
<td>1.7</td>
<td>1.79</td>
<td>s</td>
<td>UT2</td>
<td>FORS1</td>
</tr>
</tbody>
</table>
Highest-ranked non-scheduled P79 runs (per telescope)

<table>
<thead>
<tr>
<th>Telescope</th>
<th>All runs</th>
<th>OPC grade < 3.0</th>
<th>Scheduled</th>
<th>Run id</th>
<th>Grade</th>
<th>Merged rank</th>
<th>Non-scheduling reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>UT1</td>
<td>257</td>
<td>235</td>
<td>101</td>
<td></td>
<td>1.64</td>
<td>39</td>
<td>Local oversubscription of parameter space (RA)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.70</td>
<td>54</td>
<td>Local oversubscription of parameter space (RA)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.79</td>
<td>69</td>
<td>Local oversubscription of parameter space (RA)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.80</td>
<td>83</td>
<td>Oversubscription of OPC science category</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.80</td>
<td>85</td>
<td>Oversubscription of OPC science category</td>
</tr>
<tr>
<td>UT2</td>
<td>191</td>
<td>177</td>
<td>95</td>
<td></td>
<td>1.79</td>
<td>40</td>
<td>Local oversubscription of parameter space (RA)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.79</td>
<td>41</td>
<td>Local oversubscription of parameter space (RA)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.82</td>
<td>44</td>
<td>Local oversubscription of parameter space (RA)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.86</td>
<td>49</td>
<td>Required associated run not scheduled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.88</td>
<td>50</td>
<td>Local oversubscription of parameter space (RA)</td>
</tr>
<tr>
<td>UT3</td>
<td>128</td>
<td>104</td>
<td>70</td>
<td></td>
<td>1.61</td>
<td>17</td>
<td>Local oversubscription of parameter space (RA)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.61</td>
<td>18</td>
<td>Local oversubscription of parameter space (RA)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.80</td>
<td>32</td>
<td>Local oversubscription of parameter space (RA)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.80</td>
<td>33</td>
<td>Local oversubscription of parameter space (RA)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.80</td>
<td>34</td>
<td>Visitor instrument unavailable on observation date</td>
</tr>
<tr>
<td>UT4</td>
<td>167</td>
<td>155</td>
<td>60</td>
<td></td>
<td>1.50</td>
<td>22</td>
<td>Oversubscription of OPC science category</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.61</td>
<td>29</td>
<td>Oversubscription of OPC science category</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.68</td>
<td>35</td>
<td>Local oversubscription of parameter space (RA)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.68</td>
<td>38</td>
<td>Local oversubscription of parameter space (RA)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.70</td>
<td>41</td>
<td>Oversubscription of OPC science category</td>
</tr>
</tbody>
</table>
Highest-ranked non-scheduled P79 runs (per telescope)

<table>
<thead>
<tr>
<th>Telescope</th>
<th>All runs</th>
<th>OPC grade < 3.0</th>
<th>Scheduled</th>
<th>Run id</th>
<th>Grade</th>
<th>Merged rank</th>
<th>Non-scheduling reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLTI</td>
<td>141</td>
<td>122</td>
<td>69</td>
<td></td>
<td>1.66</td>
<td>37</td>
<td>Target non-visible in offered time slots</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.76</td>
<td>38</td>
<td>Global oversubscription</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.86</td>
<td>51</td>
<td>Global oversubscription</td>
</tr>
<tr>
<td>3.6</td>
<td>60</td>
<td>58</td>
<td>43</td>
<td></td>
<td>2.00</td>
<td>29</td>
<td>Time constraints incompatible with ranking</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.00</td>
<td>30</td>
<td>Time constraints incompatible with ranking</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.00</td>
<td>31</td>
<td>Time constraints incompatible with ranking</td>
</tr>
<tr>
<td>NTT</td>
<td>154</td>
<td>129</td>
<td>92</td>
<td></td>
<td>1.77</td>
<td>34</td>
<td>Local oversubscription of parameter space (RA)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.05</td>
<td>70</td>
<td>Local oversubscription of parameter space (RA)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.09</td>
<td>79</td>
<td>Local oversubscription of parameter space (RA)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.09</td>
<td>81</td>
<td>Local oversubscription of parameter space (RA)</td>
</tr>
<tr>
<td>2.2</td>
<td>88</td>
<td>81</td>
<td>17</td>
<td></td>
<td>1.33</td>
<td>2</td>
<td>Target non-visible in offered time slots</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.76</td>
<td>18</td>
<td>Target non-visible in offered time slots</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.80</td>
<td>20</td>
<td>Time-critical observation during non-ESO time</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.82</td>
<td>22</td>
<td>Global oversubscription</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.82</td>
<td>23</td>
<td>Global oversubscription</td>
</tr>
</tbody>
</table>
The VISAS Team

Gautier Mathys
Head of VISAS

Elisabeth Hoppe
Administrative Assistant (OPC)

Silvia Cristiani
Administrative Assistant (UC, logistics)

Angelika Beller
Administrative Assistant (travel)

NN.
Astronomer
(ex-M. Lombardi)

Expected June 4

80th OPC meeting, May 21-25, 2007