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Magnitudes: a concept first developed
in 120 BC

When we look at the sky on a clear night we see
stars. Some appear bright and others very faint
as seen from Earth. Some of the faint stars are
intrinsically very bright, but are very distant.
Some of the brightest stars in the sky are very
faint stars that just happen to lie very close to
us. When observing, we are forced to stay on
Earth or nearby and can only measure the inten-
sity of the light that reaches us.
Unfortunately this does not immediately tell us
anything about a star’s internal properties. If we
want to know more about a star, its size or
physical/internal brightness, for example, we
need to know its distance from Earth.

Historically, the stars visible to the naked eye
were put into six different brightness classes,
called magnitudes. This system was originally
devised by the Greek astronomer Hipparchus
about 120 BC and is still in use today in a
slightly revised form. Hipparchus chose to cate-
gorise the brightest stars as magnitude 1, and
the faintest as magnitude 6.

Astronomy has changed a lot since Hipparchus
lived! Instead of using only the naked eye, light
is now collected by large mirrors in either
ground-based telescopes such as the VLT in the
Atacama Desert in Chile or the Hubble Space
Telescope above the Earth’s atmosphere. The

collected light is then analysed by instruments
able to detect objects billions of times fainter
than any human eye can see.

However, even today astronomers still use a
slightly revised form of Hipparchus’ magnitude
scheme called apparent magnitudes. The modern
definition of magnitudes was chosen so that the
magnitude measurements already in use did not
have to be changed.
Astronomers use two different types of magni-
tudes: apparent magnitudes and absolute magni-
tudes.

Apparent magnitude

The apparent magnitude, m, of a star is a meas-
ure of how bright a star appears as observed on
or near Earth.
Instead of defining the apparent magnitude
from the number of light photons we observe, it
is defined relative to the magnitude and inten-
sity of a reference star. This means that an as-
tronomer can measure the magnitudes of stars
by comparing the measurements with some
standard stars that have already been measured
in an absolute (as opposed to relative) way.

The apparent magnitude, m, is given by:

m = mref – 2.5 log10 (I/Iref)

where mref is the apparent magnitude of the

Figure 1: Hipparchus of Nicaea (c.190 –
c.120 BC) at work
Hipparchus, a Greek astronomer, invented the
first scale to rate the brightness of the stars.
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reference star, I is the measured intensity of
the light from the star, and Iref is the intensity
of the light from the reference star. The scale
factor 2.5 brings the modern definition into
line with the older, more subjective apparent
magnitudes.

It is interesting to note that the scale that Hip-
parchus selected on an intuitive basis, using
just the naked eye, is already logarithmic as a
result of the way our eyes respond to light.

For comparison, the apparent magnitude of the
full Moon is about –12.7, the magnitude of Ve-
nus can be as high as –4 and the Sun has a
magnitude of about –26.5.

Absolute magnitude

We now have a proper definition for the appa-
rent magnitude. It is a useful tool for astrono-
mers, but does not tell us anything about the
intrinsic properties of a star. We need to estab-
lish a common property that we can use to com-
pare different stars and use in statistical analy-
sis. This property is the absolute magnitude.

The absolute magnitude, M, of a star is defined
as the relative magnitude a star would have if it
were placed 10 parsecs (read about parsecs in
the Mathematical Toolkit if needed) from the
Sun.

Since only a very few stars are exactly 10 par-
secs away, we can use an equation that will al-
low us to calculate the absolute magnitude for
stars at different distances: the distance equa-
tion. The equation naturally also works the
other way — given the absolute magnitude the
distance can be calculated.

Different colours, different magni-
tudes

By the late 19th century, when astronomers
were using photographs to record the sky and to
measure the apparent magnitudes of stars, a
new problem arose. Some stars that appeared to
have the same brightness when observed with
the naked eye appeared to have different
brightnesses on film, and vice versa. Compared
to the eye, the photographic emulsions used
were more sensitive to blue light and less so to
red light.
Accordingly, two separate scales were devised:
visual magnitude, or mvis, describing how a star
looked to the eye and photographic magnitude,
or mphot, referring to measurements made with
blue-sensitive black-and-white film. These are
now abbreviated to mv and mp.
However, different types of photographic emul-
sions differ in their sensitivity to different co-
lours. And people’s eyes differ too! Magnitude
systems designed for different wavelength ran-
ges had to be more firmly calibrated.

Figure 2: Temperature and colour of stars
This schematic diagram shows the relationship between the colour of a star and its surface temperature. Intensity is plotted
against wavelength for two hypothetical stars. The visible part of the spectrum is indicated. The star’s colour is determined by
where in the visible part of the spectrum, the peak of the intensity curve lies.
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Figure 3: Surface temperature versus B-V colour index
This diagram shows the relation between the surface temperature of a star, T, and its B-V colour index. Knowing either the
surface temperature or the B-V colour index you can find the other value from this diagram.

Today, precise magnitudes are specified by
measurements from a standard photoelectric
photometer through standard colour filters. Se-
veral photometric systems have been devised;
the most familiar is called UBV after the three
filters most commonly used. The U filter lets
mostly near-ultraviolet light through, B mainly
blue light, and V corresponds fairly closely to
the old visual magnitude; its wide peak is in the
yellow-green band, where the eye is most sensi-
tive. The corresponding magnitudes in this sys-
tem are called mU, mB and mV.

From B-V colour index to temperature

The term B-V colour index (nicknamed B–V by as-
tronomers) is defined as the difference in the
two magnitudes, mB–mV (as measured in the
UBV system). A pure white star has a B–V colour
index of about 0.2, our yellow Sun of 0.63, the
orange-red Betelgeuse of 1.85 and the bluest
star possible is believed to have a B–V colour
index of –0.4. One way of thinking about colour
index is that the bluer a star is, the more nega-
tive its B magnitude and therefore the lower the
difference mB–mV will be.
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There is a clear relation between the surface
temperature T of a star and its B-V colour index
(see Reed, C., 1998, Journal of the Royal Socie-
ty of Canada, 92, 36–37) so we can find the
surface temperature of the star by using a dia-
gram of T versus mB–mV (see Fig. 3).

log10(T) = (14.551 – (mB – mV) )/ 3.684

The distance equation

The distance equation is written as:

m-M = 5 log10 (D/10 pc) = 5 log10(D) – 5

This equation establishes the connection be-
tween the apparent magnitude, m, the absolute
magnitude, M, and the distance, D, measured in
parsec. The value m-M is known as the distance
modulus and can be used to determine the di-
stance to an object.

A little algebra will transform this equation
to an equivalent form that is sometimes
more convenient (feel free to test this your-
selves):

D = 10(m-M+5)/5

When determining distances to objects in the
Universe we measure the apparent magnitude m
first. Then, if we also know the intrinsic bright-
ness of an object (its absolute magnitude M),
we can calculate its distance D. Much of the
hardest work in finding astronomical distances
is concerned with determining the absolute
magnitudes of certain types of astronomical ob-
jects. Absolute magnitudes have for instance
been measured by ESA’s HIPPARCOS satellite.
HIPPARCOS is a satellite that, among many
other things, measured accurate distances and
apparent magnitudes of a large number of near-
by stars.

Short training tasks

These short tasks should familiarise you with
the different quantities just introduced.

Task AT1

The star α-Orionis (Betelgeuse) has an apparent
magnitude of m = 0.45 and an absolute magni-
tude of M = –5.14.

Figure 4: The ESA HIPPARCOS satellite
The HIPPARCOS satellite was launched on the
night of 8 August 1989 by a European Ariane
4 launcher. The principal objective of ESA’s
HIPPARCOS mission was the production of a
star catalogue of unprecedented precision.
The positions and the distances of a set of
about 120,000 preselected stars with
magnitudes down to mB = 13 were
determined with high accuracy. The
HIPPARCOS mission ended in 1993 and the
final star catalogue was published in 1997.
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? Find the distance to Betelgeuse.

Betelgeuse is the red star at the left shoulder of
Orion (seen from Earth) and is a red supergiant.
When viewed with the naked eye, it has a clear
orange-red hue.

Task AT2

α-Lyrae (Vega), with an absolute magnitude of
0.58, is at a distance of 7.76 parsec.

? Calculate Vega’s apparent magnitude.

Vega is the brightest star in the constellation of
Lyra (the Lyre) and the upper right star in the
Summer Triangle.

Task AT3

α-Cygni (Deneb) is the upper left star in the
Summer Triangle and the main star in the Swan.
Its apparent magnitude is 1.25 and the distance
is 993 parsec.

? Calculate the absolute magnitude.
What does this tell you about the nature of
Deneb?

Task AT4

The star α-Canis Majoris (Sirius) is the brightest
star in the sky. It is at a distance of 2.64 par-
secs and its apparent magnitude is –1.44.

? Calculate the absolute magnitude of Sirius.
If you compare with the absolute magni-
tudes for the three other stars what is your
judgement of Sirius’ physical or intrinsic
brightness?

Task AT5

? If the stars Vega, Sirius, Betelgeuse and
Deneb were located 10 parsecs from the
Earth (in the same region of the sky), what
would we see?

Photo 1: Betelgeuse (Orion – The Hunter)

Photo 2: Vega (Lyra – The Lyre)

Photo 3: The Summer Triangle: (clockwise)
Deneb (Cygnus – The Swan), Vega (Lyra –
The Lyre), Altair (Aquila – The Eagle)

Photo 4: Sirius (Canis Major - The Greater Dog)
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a b

Figure 5: Intensity of light
This drawing shows how the same amount of radiation from a light source must illuminate an ever-increasing area as distance
from the light source increases. The area increases as the square of the distance from the source, so the intensity decreases as
the square of the distance increases.

Task AT6

The absolute magnitude, M, is defined as the
apparent magnitude a star would have if it were
placed 10 parsecs from the Sun.

? But wouldn’t it be more correct to measure
this distance from the Earth? Why doesn’t it
make a difference whether we measure this
distance from the Sun or from the Earth?

Luminosity and Intensity

Up to now we have been talking about stellar
magnitudes, but we have never mentioned how
much light energy is really emitted by the star.
The total energy emitted as light by the star
each second is called its luminosity, L, and is
measured in watts (W). It is equivalent to the
power emitted.

Luminosity and magnitudes are related. A re-
mote star with a high luminosity can have the
same apparent magnitude as a nearby star with
a low luminosity. Knowing the apparent magni-
tude and the distance of a star, we are able to
determine its luminosity.

The star radiates light in all directions so that
its emission is spread over a sphere. To find the
intensity, I, of light from a star at the Earth
(the intensity is the emission per unit area), we
divide its luminosity by the area of a sphere,
with the star at the centre and radius equal to
the distance of the star from Earth, D. See
Fig. 5.

I = L/(4πD2)

The luminosity of a star can also be measured as
a multiple of the Sun’s luminosity, Lsun =
3.85 × 1026 W. As the Sun is ‘our’ star and the
best-known star, it is nearly always taken as the
reference star.

Using some algebra we find the formula for cal-
culating the luminosity, L, of a star relative to
the Sun’s luminosity:

L/Lsun = (D/Dsun)
2·I/Isun

The ratio I/Isun can be determined using the for-
mula given in the Apparent Magnitudes section
of the Astronomical Toolkit (msun = –26.5).

7



Mathematical Toolkit

M
at

he
m

at
ic

al
 T

oo
lk

it

Small angles and long distances

Have a look at Fig. 6:
If b is small compared to c, we can assume that
the two longer sides of the triangle, c, have the
same length as the centre line.
With the usual equations for a right-angled tri-
angle we find:

sin(β/2) = (b/2)/c

We can use the small-angle approximation sin x
= x, if we are dealing with very small angles
(but only when the angle is measured in radi-
ans). This approximation may seem less justi-

fied, but it can be mathematically proven to be
very good for small angles.

Task MT1

? Try this approximation yourself by calcula-
ting sin(1°), sin(1’), sin (1’’). Note that you
have first to convert the angles from de-
grees to radians.

Now you have a simple relationship between b,
c, and β without the trigonometric function:

β/2 = (b/2)/c

c = b/β

Figure 6: Dealing with small angles
If b is small compared to c, this implies that β is a small angle. We can therefore get a relationship between b, c and β without
trigonometric functions.

Units and other basic data

1 arcminute = 1’ = 1/60 of a degree = 2.9089 × 10-4  radians
1 arcsecond = 1’’ = 1/3600 of a degree = 4.8481 × 10–6 radians
1 milliarcsecond (mas) = 1/1000 arcsecond
Speed of light (c) = 2.997 × 108 m/s
1 parsec (pc) = 3.086 × 1013 km = 3.26 light-years
1 kiloparsec (kpc) = 1000 parsec
1 Megaparsec (Mpc) = 106 parsec
1 nanometer (nm) = 10–9 m

8



Te
ac

he
r’s

 G
ui

de

Teacher’s Guide

This teacher’s guide contains solutions to the short training tasks.

Task AT1: D = 131 parsecs

Task AT2: m = 0.03

Task AT3: M = –8.73

This is an unusually bright star.

Task AT4: M = 1.45

Compared with Deneb (M = –8.73), Betelgeuse (M = –5.14), and Vega (M = 0.58) Sirius is actually
rather a faint star. This demonstrates that our senses are not always well-equipped to detect the phy-
sical reality of the world around us.

Task AT5:

If placed at a distance of 10 pc, Vega and Sirius would be somewhat fainter, but still be among the
brightest stars in the sky. However the stars Deneb and Betelgeuse would both be very much brighter
than any stars we see in the night sky from Earth.

Task AT6:

There is no reason to distinguish between measuring the distance from Earth and from the Sun since
the distance from Earth to the Sun is very small compared with 10 parsecs.
Calculating the difference in apparent magnitudes by using the distances from, respectively the Earth
and the Sun, gives a difference of, at most, the order of 10–6 mag.

Task MT1:

sin(1º) = sin(0.017453293 rad) = 0.017452406
sin(1’) = sin(0.000290888 rad) = 0.000290888
sin(1’’) = sin(4.84814 × 10-6 rad) = 4.84814 ××××× 10-6
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