The 30 Doradus Molecular Cloud at 0.4 Parsec Resolution with ALMA: Physical Properties and the Boundedness of CO Emitting Structures

2	Tony Wong 🝺, ¹ Luuk Oudshoorn, ² Eliyahu Sofovich, ¹ Alex Green 🝺, ¹ Charmi Shah, ¹ Remy Indebetouw, ^{3,4}
3	Margaret Meixner, ⁵ Alvaro Hacar ⁽¹⁾ , ⁶ Omnarayani Nayak ⁽¹⁾ , ⁷ Kazuki Tokuda ⁽¹⁾ , ^{8,9,10}
4	Alberto D. Bolatto 🗅, 11, 12 Mélanie Chevance 🕩, 13 Guido De Marchi 🕩, 14 Yasuo Fukui 🕩, 15
5	ALEC S. HIRSCHAUER ^(D) , ⁷ K. E. JAMESON ^(D) , ¹⁶ VENU KALARI, ¹⁷ VIANNEY LEBOUTEILLER ^(D) , ¹⁸ LESLIE W. LOONEY ^(D) , ¹
6	Suzanne C. Madden 🔎, 19 Toshikazu Onishi 🕩, 10 Julia Roman-Duval 🕩, 7 Mónica Rubio 🕩, 20 and
7	A.G.G.M. TIELENS $\bigcirc^{21,2}$
8	¹ Astronomy Department, University of Illinois, Urbana, II, 61801, USA
9	² Leiden Observatoru, Leiden Universitu, Niels Bohrweg 2, 2333CA Leiden. The Netherlands
10	³ Department of Astronomy, University of Virainia, P.O. Box 3818, Charlottesville, VA 22903, USA
11	⁴ National Radio Astronomy Observatory, 520 Edgemont Rd., Charlottesville, VA, 22903, USA
12	⁵ SOFIA-USRA, NASA Ames Research Center, MS 232-12, Moffett Field, CA 94035, USA
13	⁶ Department of Astrophysics, University of Vienna, Türkenschanzstrasse 17, 1180 Vienna, Austria
14	⁷ Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA
15	⁸ Department of Earth and Planetary Sciences, Faculty of Sciences, Kyushy University, Nishi-ku, Fukuoka 819-0395, Japan
16	⁹ National Astronomical Observatory of Japan. National Institutes of Natural Sciences. 2-21-1 Osawa. Mitaka. Tokyo 181-8588. Japan
171	^D Department of Physics, Graduate School of Science, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531.
18	Japan
19	¹¹ Department of Astronomy and Joint Space Science Institute, University of Maryland, College Park, MD 20742, USA
20	¹² Visiting Astronomer, National Radio Astronomy Observatory, Charlottesville, VA 22903, USA
21	¹³ Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstraße 12-14, D-69120 Heidelberg,
22	Germany
23	¹⁵ Duroteen space Research and Technology Centre, Repletiaan 1, 2200 AG Noorawijk, Netherlands
24	¹⁶ CEIRO, Space and Astronomy, BO, Ban 1120, Bantley, WA, 6100, Australia
25	¹⁷ Carrieri Observatore, NSE NOIDLab, Casilla 602, La Sarrana, Chila
26	¹⁸ AIM CEA CNRS Université Barie Secley, Université Barie Dideret, Seclemente Barie Cité, 01101 Cif sur Viette, France
27	¹⁹ Department d'Astrophysical AIM/CEA Social Ormo des Marisians 01101 Cif sur Vuette France
28	²⁰ Departemento de Astronomía Universidad de Chile Casille 26 D. Santiago Chile
29	²¹ Departmento de Astronomia, Universidad de Chile, Casula 30-D, Santiago, Chile
30	Department of Astronomy, Oniversity of Maryland, College Fark, MD 20142, USA
31	(Received; Revised May 25, 2022; Accepted)
32	Submitted to ApJ
33	ADDIT(AOI
34	We present results of a wide-field (approximately 60×90 pc) ALMA mosaic of CO(2–1) and 13 CO(2–
35	1) emission from the molecular cloud associated with the 30 Doradus star-forming region. Three
36	main emission complexes, including two forming a bowtie-shaped structure extending northeast and
37	southwest from the central R136 cluster, are resolved into complex filamentary networks. Consistent
38	with previous studies, we find that the central region of the cloud has higher line widths at fixed size
39	relative to the rest of the molecular cloud and to other LMC clouds, indicating an enhanced level of
40	turbulent motions. However, there is no clear trend in gravitational boundedness (as measured by the
41	virial parameter) with distance from R136. Structures observed in 13 CO are spatially coincident with
42	filaments and are close to a state of virial equilibrium. In contrast, ¹² CO structures vary greatly in
.2	virialization, with low CO surface brightness structures outside of the main filamentary network being
40	maintained with fow eep surface or Shores structures outside of the main maintentary network being

Corresponding author: Tony Wong wongt@illinois.edu

2

45

48

WONG ET AL.

luminosity; they may be shredded remnants of previously star-forming gas clumps, or alternatively the

46 CO-emitting parts of more massive, CO-dark structures.

47 Keywords: galaxies: ISM — radio lines: ISM — ISM: molecules — Magellanic Clouds

1. INTRODUCTION

As the most luminous star forming region in the Local 49 ⁵⁰ Group, the supergiant HII region of the Large Magel-⁵¹ lanic Cloud known as the Tarantula Nebula or 30 Do-⁵² radus (hereafter 30 Dor) provides a unique opportu-53 nity to study massive star formation and how it drives ⁵⁴ and responds to stellar feedback. At the heart of 30 ⁵⁵ Dor lies R136, a young ($\sim 1-2$ Myr; Crowther et al. 56 2016; Bestenlehner et al. 2020) compact $(r \sim 1 \text{ pc})$ 57 star cluster with extraordinarily high stellar densities $_{58}$ of $> 1.5 \times 10^4 M_{\odot} \text{ pc}^{-3}$ (Selman & Melnick 2013) and ⁵⁹ containing several stars with initial masses exceeding the $_{60}$ canonical stellar mass upper limit of 150 M $_{\odot}$ (Crowther 61 et al. 2010). Bestenlehner et al. (2020) find that R136 $_{62}$ alone contributes $\sim 27\%$ of the ionizing flux and $\sim 19\%$ 63 of the overall mechanical feedback in 30 Dor (as mea-⁶⁴ sured within a 150 pc radius by Doran et al. 2013). On ⁶⁵ larger scales, the cumulative impact of stellar winds and ₆₆ supernova explosions is apparent in the $\sim 3-9 \times 10^6$ K ⁶⁷ plasma responsible for diffuse X-ray emission (Townsley 68 et al. 2006). The rich observational data for 30 Dor have ⁶⁹ been complemented by extensive theoretical modeling of ⁷⁰ the associated H II and photon dominated regions (e.g., ⁷¹ Lopez et al. 2011; Pellegrini et al. 2011; Chevance et al. ⁷² 2016, 2020; Rahner et al. 2018). As a result, 30 Dor is a 73 promising local analogue for the extreme conditions that 74 were common during the peak epoch of star formation 75 in the Universe.

R136 and its immediate surroundings have tradition-76 77 ally received the most attention, however it has become 78 clear that star formation is on-going in the giant molecu-⁷⁹ lar cloud beyond the central cluster (e.g., Walborn et al. ⁸⁰ 2013). A spatially extended distribution of upper main ⁸¹ sequence stars was found by the *Hubble* Tarantula Treasurvey, which imaged a $14' \times 12'$ $_{83}$ (200 \times 175 pc) region of 30 Dor to characterize the ⁸⁴ stellar populations and to derive a dust extinction map ⁸⁵ using stellar photometry (Sabbi et al. 2013, 2016; De ⁸⁶ Marchi et al. 2016). The distribution and ages of O and 87 B stars, as determined by the VLT-FLAMES Taran-⁸⁸ tula Survey, also indicate that massive star formation ⁸⁹ has been widely distributed throughout 30 Dor (Schnei- $_{90}$ der et al. 2018). The discovery of ~20000 pre-main ⁹¹ sequence (PMS) stars using HTTP photometry (Ksoll $_{92}$ et al. 2018), together with the ~ 40 embedded massive

⁹³ young stellar objects (YSOs) previously discovered by
⁹⁴ the *Spitzer* SAGE (Whitney et al. 2008; Gruendl & Chu
⁹⁵ 2009) and *Herschel* HERITAGE (Seale et al. 2014) pro⁹⁶ grams, have made 30 Dor one of the best studied regions
⁹⁷ of current star formation activity in any galaxy.

In contrast to the stellar population and PMS/YSO ⁹⁹ studies, available molecular gas maps of the 30 Dor re-100 gion have much poorer angular resolution (≥ 10 pc; Jo-¹⁰¹ hansson et al. 1998; Minamidani et al. 2008; Wong et al. 102 2011; Kalari et al. 2018; Okada et al. 2019), aside from ¹⁰³ previously published data from the Atacama Large Mil-¹⁰⁴ limeter/submillimeter Array (ALMA) covering a rela-105 tively small $(12 \times 12 \text{ pc})$ area (Indebetouw et al. 2013, ¹⁰⁶ 2020). To address these limitations, we have conducted ¹⁰⁷ new observations with ALMA, exploiting the array's ¹⁰⁸ unique capability to obtain a sensitive, high-resolution $_{109}$ (1"75 beam) map of the giant molecular cloud complex 110 across an extent of ~ 100 pc using the CO J=2-1 and ¹¹¹ ¹³CO J=2-1 transitions. These low-J CO transitions ¹¹² can be used to probe the molecular gas column density ¹¹³ and turbulent properties down to sub-parsec scales at a ¹¹⁴ spectral resolution of ~ 0.1 km s⁻¹, with the important ¹¹⁵ caveat that the ability of CO to trace H₂ may be affected ¹¹⁶ by the low metallicity and strong radiation field in this ¹¹⁷ region (Israel 1997; Bolatto et al. 2013; Jameson et al. ¹¹⁸ 2016; Chevance et al. 2020).

In this paper we present the basic ALMA data prod-119 $_{120}$ ucts (§2, §3.1) and characterize the CO and 13 CO emis- $_{121}$ sion structures using dendrogram (§3.2) and filament $_{122}$ finding (§3.3) approaches. Our immediate goal is to re-¹²³ visit, over a much larger region, results from previous 124 ALMA studies (Indebetouw et al. 2013; Nayak et al. 125 2016; Wong et al. 2017, 2019) which have found that the ¹²⁶ CO line width is enhanced in the 30 Dor region relative 127 to molecular clouds in the Milky Way or elsewhere in 128 the LMC. In §4 we examine whether this enhancement ¹²⁹ is found throughout the 30 Dor region and how it relates ¹³⁰ to the gravitational boundedness of molecular gas struc-¹³¹ tures. We briefly summarize and discuss our results in 132 §5. In related works, we will present a greatly expanded 133 catalog of YSOs across the ALMA field and examine the ¹³⁴ relationship between CO emission and YSOs (O. Nayak 135 et al., in preparation), and we will conduct a compar-136 ative study to examine the effect of local star forma-¹³⁷ tion activity (as probed by mid-infrared brightness) on

¹³⁸ molecular cloud properties across the LMC (A. Green et ¹³⁹ al., in preparation). We adopt an LMC distance of 50 ¹⁴⁰ kpc (Pietrzyński et al. 2019) throughout this paper, for ¹⁴¹ which 1' is equivalent to 14.5 pc and 1" is equivalent to ¹⁴² 0.24 pc.

143 2. OBSERVATIONS AND DATA REDUCTION

The data presented in this paper were collected for 144 145 ALMA Cycle 7 project 2019.1.00843.S in 2019 October ¹⁴⁶ to December. Since the field is larger than can be ob-¹⁴⁷ served in a single ALMA scheduling block, it was split ¹⁴⁸ into five rectangular subfields that were observed and ¹⁴⁹ imaged separately. To recover flux across the widest ¹⁵⁰ possible range of spatial scales, each subfield was ob-¹⁵¹ served in the ALMA ACA (hereafter 7m) and Total ¹⁵² Power (hereafter TP) arrays in addition to the com-¹⁵³ pact (C43-1) configuration of the 12m array. Four of ¹⁵⁴ the subfields spanned $150'' \times 150''$ and consisted of 149 ¹⁵⁵ individual pointings of the 12m array, observed for about ¹⁵⁶ 20 sec per pointing, and 52 pointings of the 7m array, ¹⁵⁷ observed for about 7 min per pointing. The fifth sub-¹⁵⁸ field in the northeast was half the size of the others (150'') $_{159} \times 75''$). Nearly all data used J0601-7036 as the phase 160 calibrator, which varied between 220 and 300 mJy dur-¹⁶¹ ing the span of observations. Absolute flux calibration ¹⁶² was set using the observatory-monitored quasar grid, ¹⁶³ specifically one of the sources J0519-4546, J0538-4405, ¹⁶⁴ or J1107-5509 for each execution of the project. The ¹⁶⁵ correlator was set to cover the CO (J=2-1) and ¹³CO $_{166}$ (J=2-1) lines at high (~0.1 km s⁻¹) spectral resolution, ¹⁶⁷ the C¹⁸O (J=2-1) and H₂CO ($3_{2,1}-2_{2,0}$, $3_{2,2}-2_{2,1}$, and $_{168}$ 3_{0.3}-2_{0.2}) lines at moderate (~0.4 km s⁻¹) spectral res- $_{169}$ olution, and the H30 α and continuum across a 1.9 GHz ¹⁷⁰ window at low ($\sim 1.5 \text{ km s}^{-1}$) spectral resolution. For 171 the 12m data the time-varying gains were transferred ¹⁷² from the wide to narrow spectral windows, and for the 173 7m data, all spectral windows were combined to solve 174 for time-varying gain. In this paper we focus on the re-¹⁷⁵ sults of the CO and ¹³CO observations; a study of the ¹⁷⁶ H₂CO emission will appear separately (Indebetouw et 177 al., in preparation).

Visibilities were calibrated by the observatory staff ¹⁷⁹ using Pipeline-CASA56-P1-B and CASA 5.6.1-8, with ¹⁸⁰ imaging then performed in CASA 5.6.1. For the TP ¹⁸¹ data, the **sdimaging** task was used to generate image ¹⁸² cubes from the spectra. A residual sinusoidal baseline ¹⁸³ in the ¹³CO TP cube was removed from the gridded ¹⁸⁴ image cube: at each position, the line-free frequency ¹⁸⁵ ranges of a spectrum averaged over a 60" square region ¹⁸⁶ were fitted with two sinusoids of different period and ¹⁸⁷ amplitude, and the resulting baseline subtracted. The ¹⁸⁸ dominant effect on the image cube is to remove modest

189 off-source negative bowls. For the 7m and 12m data, the 190 uvcontsub task was first used to subtract the continuum ¹⁹¹ using a 0-order fit to line-free channels (conservatively ¹⁹² chosen based on previous imaging). The tclean task ¹⁹³ was then used to generate image cubes with a Briggs ¹⁹⁴ robustness parameter of 0.5, a threshold of 0.18 mJy, ¹⁹⁵ and a restoring beam of 1".75 FWHM for the 12m data ¹⁹⁶ (7" FWHM for the 7m data). After cleaning, the 7m 197 and TP cubes were combined using the feather task, ¹⁹⁸ and the 12m and 7m+TP cubes were combined using a ¹⁹⁹ second run of feather. Since the sensitivity pattern for ²⁰⁰ each subfield has a decreasing extent in going from TP ²⁰¹ to 7m to 12m, each feathering step was performed on ²⁰² images tapered by the narrower sensitivity pattern (7m ²⁰³ in the first step, 12m in the second) and the final results ²⁰⁴ are assumed to have the sensitivity pattern of the 12m 205 images.

Figure 1 compares the integrated spectra derived from 206 207 the 12m and 7m data alone with those derived from the ²⁰⁸ TP data and from the feathering process. The velocity ²⁰⁹ axis uses the radio definition of velocity, $c(\nu_0 - \nu)/\nu_0$, and 210 is referenced to the kinematic Local Standard of Rest 211 (LSR). As expected, the TP flux (shown as the thick ²¹² pink line) is recovered in the feathered cube (shown as ²¹³ the dashed black line). Flux recovery for the 7-meter $_{214}$ (12-meter) array alone is 60% (33%) for 12 CO and 55% $_{215}$ (38%) for 13 CO. The threshold mask used to construct $_{216}$ the moment images (shown as the green line; see §3.1) $_{217}$ recovers $\sim 80\%$ of the feathered ^{12}CO flux and $\sim 70\%$ of ²¹⁸ the feathered ¹³CO flux; the remaining flux lies outside ²¹⁹ the mask boundary. The integrated ¹²CO TP flux is $_{220}$ 22900 Jy km s⁻¹, which corresponds to a molecular gas $_{221}$ mass (including helium) of $2.4 \times 10^5 M_{\odot}$ for our adopted $_{222}$ distance and CO-to-H₂ conversion factor (§3.1).

To generate the final maps, gain-corrected image 223 224 cubes for each subfield were mosaiced by co-addition us-²²⁵ ing inverse variance weighting based on the sensitivity 226 pattern of each subfield. The mosaicing was performed ²²⁷ using the Python REPROJECT package¹ using bilinear 228 interpolation. After mosaicing, the images were down-²²⁹ sampled by a factor of two in RA and DEC to yield $_{230}$ final images of 1000×800 pixels using 0".5 pixels; this $_{231}$ is still more than adequate to oversample the 1.75 syn-²³² thesized beam (corresponding to 0.4 pc at our adopted $_{233}$ distance). In addition to cubes with 0.1 km s⁻¹ chan- $_{234}$ nels (spanning 200 to 289.9 km s⁻¹), we also generated $_{235}$ cubes with 0.25 km s⁻¹ channels (spanning 208 to 282 $_{236}$ km s⁻¹) to improve the brightness sensitivity per chan- $_{237}$ nel. The resulting rms noise per 0.25 km s⁻¹ channel is

¹ https://reproject.readthedocs.io/

Figure 1. Integrated flux spectra for the CO(2–1) (top) and 13 CO(2–1) (bottom) cubes at 0.25 km s⁻¹ resolution. The cubes compared are the feathered cube (*black dashed line*), the TP array data only (*thick pink line*), the 7m array data only (*red dotted line*), and the 12m array data only (*blue dot-dashed line*). A solid green line shows the flux in the feathered cubes after applying the dilated mask described in §3.1.

 $_{238} \approx 0.26 \text{ K} (35 \text{ mJy beam}^{-1})$, with somewhat lower noise $_{239} (\approx 0.16 \text{ K or } 21 \text{ mJy beam}^{-1})$ in the smallest subfield. $_{240}$ Most of the results in this paper are based on analysis $_{241}$ of the 0.25 km s⁻¹ cubes, though comparisons with the $_{242} 0.1 \text{ km s}^{-1}$ cubes are made as well.

243 3. DATA ANALYSIS METHODS

244 3.1. Intensities and Column Densities

Figure 2 shows images of peak signal-to-noise ratio 245 (SNR) for the ${}^{12}CO$ and ${}^{13}CO$ data with 0.25 km s⁻¹ 246 channels. Although insensitive to complex line profiles, 247 such images effectively reveal the full dynamic range of detected emission without requiring subjective deci-249 ²⁵⁰ sions about how to mask out noise. For this reason the ²⁵¹ peak SNR image for ¹²CO is used for filament identifi-252 cation in §3.3. The dashed circle is at a projected dis-253 tance of $\theta_{\text{off}}=200''$ from the center of the R136 cluster ₂₅₄ at $\alpha_{2000} = 5^{h}38^{m}42^{s}3$, $\delta_{2000} = -69^{\circ}06'03''.3$ (Sabbi et al. ²⁵⁵ 2016). The central position of the older Hodge 301 clus-256 ter ($\alpha_{2000} = 5^{h}38^{m}17^{s}$, $\delta_{2000} = -69^{\circ}04'00''$; Sabbi et al. $_{257}$ 2016) is indicated as well.

We have also generated intensity moment images from ²⁵⁹ the cubes, using a signal masking procedure imple²⁶⁰ mented in the Python maskmoment package.² In brief, 261 starting from a gain-corrected cube and an rms noise ²⁶² cube, a strict mask composed of pixels with brightness $_{263}$ of 4σ or greater in two consecutive channels is created ²⁶⁴ and expanded to a looser mask defined by the surround- $_{265}$ ing 2σ contour. Mask regions with projected sky area ²⁶⁶ less than two synthesized beams are then eliminated. ²⁶⁷ The resulting integrated flux spectrum within the mask ²⁶⁸ is shown as the green line in Figure 1. The 0th, 1st, and ²⁶⁹ 2nd intensity moments along the velocity axis are then ²⁷⁰ computed with pixels outside the signal mask blanked. ²⁷¹ Images of the 0th and 1st moments of the ¹²CO cube 272 are shown in Figure 3. A notable feature of the 1st ²⁷³ moment map is the roughly orthogonal blueshifted and 274 redshifted emission structures that are found crossing 275 the center of the map. We provide an overview of the 276 CO distribution and velocity structure in §4.1.

²⁷⁷ Derivation of molecular gas mass from the cubes fol-²⁷⁸ lows the basic procedures presented in Wong et al. ²⁷⁹ (2017) and Wong et al. (2019). Where ¹³CO emission ²⁸⁰ is detected, we can determine the ¹³CO column density

² https://github.com/tonywong94/maskmoment

Figure 2. Peak SNR images for the CO (left) and ¹³CO (right) cubes. The dashed circle represents a projected distance of 200" (48 pc) from the center of the R136 cluster, for ease of comparison with Fig. 11. The dashed rectangle has a linear dimension of \sim 12 pc and denotes the region mapped in ALMA Cycle 0 (Indebetouw et al. 2013). The central position of the more evolved Hodge 301 cluster is also indicated.

(1)

310

313

320

²⁸¹ in the LTE approximation, $N(^{13}\text{CO})$. The excitation ²⁸² temperature T_{ex} is assumed constant along each line of ²⁸³ sight and is derived from the ¹²CO peak brightness tem-²⁸⁴ perature ($T_{12,\text{pk}}$) by assuming the ¹²CO line is optically ²⁸⁵ thick at the peak of the spectrum and is not subject to ²⁸⁶ beam dilution:

 $T_{12,\mathrm{pk}} = J(T_{\mathrm{ex}}) - J(T_{\mathrm{cmb}}) ,$

288 where

287

280

$$J(T) \equiv \frac{h\nu/k}{\exp(h\nu/kT) - 1} .$$
 (2)

²⁹⁰ For pixels with ¹³CO peak SNR >5, the median and ²⁹¹ maximum values of $T_{\rm ex}$ are found to be 20 K and 60 ²⁹² K respectively. The beam-averaged ¹³CO optical depth, ²⁹³ τ_{13} , is then calculated from the brightness temperature, ²⁹⁴ T_{13} , at each position and velocity in the cube by solving

²⁹⁵
$$T_{13} = [J(T_{\text{ex}}) - J(T_{\text{cmb}})][1 - \exp(-\tau_{13})].$$
 (3)

²⁹⁶ As noted in Wong et al. (2017) and Wong et al. (2019), ²⁹⁷ T_{13} cannot exceed $J(T_{\rm ex}) - J(T_{\rm cmb}) \approx T_{\rm ex} - 4.5$ (approx-²⁹⁸ imation good to 0.8 K for $5 < T_{\rm ex} < 60$). Adopting a ²⁹⁹ minimum value for the excitation temperature serves to ³⁰⁰ reduce the number of undefined values of τ_{13} and pre-³⁰¹ vents noise in the ¹³CO map from being assigned very ³⁰² large opacities. We adopt a minimum $T_{\rm ex} = 8$ K under ³⁰³ the assumption that lower inferred values of $T_{\rm ex}$ result ³⁰⁴ from beam dilution of ¹²CO. Since only 1.1% of highly ³⁰⁵ significant (¹³CO peak SNR > 5) pixels fall below this ³⁰⁶ limit, our results are not sensitive to this choice. The in-³⁰⁷ ferred column density $N(^{13}CO)$ in cm⁻², summed over ³⁰⁸ all rotational levels, is determined from $T_{\rm ex}$ and τ_{13} us-³⁰⁹ ing the equation (e.g., Garden et al. 1991, Appendix A):

$$N(^{13}\text{CO}) = 1.2 \times 10^{14} \left[\frac{(T_{\text{ex}} + 0.88)e^{5.3/T_{\text{ex}}}}{1 - e^{-10.6/T_{\text{ex}}}} \right] \int \tau_{13} \, dv \,.$$
(4)

³¹¹ A corresponding H₂ column density is derived using an ³¹² abundance ratio of

$$\Upsilon_{13CO} \equiv \frac{N(H_2)}{N(^{13}CO)} = 3 \times 10^6 ,$$
 (5)

³¹⁴ for consistency with the values inferred or adopted by
³¹⁵ previous analyses (Heikkilä et al. 1999; Mizuno et al.
³¹⁶ 2010; Fujii et al. 2014).

We also compute a luminosity-based H_2 mass directly ³¹⁸ from the ¹²CO integrated intensity **by** assuming a con-³¹⁹ stant CO-to-H₂ conversion factor:

$$X_{\rm CO} \equiv \frac{N({\rm H}_2)}{I({\rm CO})} = 2 \times 10^{20} X_2 \frac{{\rm cm}^{-2}}{{\rm K\,km\,s}^{-1}} \,.$$
(6)

³²¹ Here $X_2 = 1$ for a standard (Galactic) CO to H₂ con-³²² version factor (Bolatto et al. 2013). In our analysis we ³²³ assume $X_2 = 2.4$ for the CO(1–0) line (based on the

Declination (J2000)

Figure 3. 0th moment (integrated intensity in K km s⁻¹, middle) and 1st moment (intensity-weighted mean velocity in km s⁻¹, right) images for the CO cube, after applying the dilated mask. The outline of the ALMA footprint is indicated by a dotted contour. In the left panel, the 0th moment contours are overlaid on a *Hubble Space Telescope* RGB image from the HTTP survey (Sabbi et al. 2013) with 1.6 μ m in red, 775 nm in green, and 555 nm in blue.

³²⁴ virial analysis of the MAGMA GMC catalog by Hughes $_{325}$ et al. 2010) which translates to $X_2 = 1.6$ for the CO(2- $_{326}$ 1) line, adopting a CO(2–1)/CO(1–0) brightness tem- $_{227}$ perature ratio of $R_{21} = 1.5$. We adopt this value of $_{328} R_{21}$ based on a comparison of the ALMA TP spec- $_{329}$ tra with resolution-matched MAGMA CO(1-0) spectra ³³⁰ from Wong et al. (2011). Previous work has shown the $_{331}$ line ratio to vary with cloud conditions, with values ~ 0.6 ³³² for molecular clouds in the outskirts of the LMC (Wong $_{333}$ et al. 2017) and rising to ~ 1 near 30 Dor (at 9' resolu-³³⁴ tion, Sorai et al. 2001), so a fixed value is only roughly $_{335}$ appropriate. While values of $R_{21} \gtrsim 1$ are not expected ³³⁶ for optically thick, thermalized emission, they have been ³³⁷ reported in other actively star-forming regions, in both 338 Galactic (Orion KL, Nishimura et al. 2015) and Mag-339 ellanic (e.g. N83 in SMC, Bolatto et al. 2003; N11 in ³⁴⁰ LMC, Israel et al. 2003) environments. As discussed by ³⁴¹ Bolatto et al. (2003), high R_{21} can arise from a molecu-³⁴² lar medium that is both warm and clumpy (as is clearly ³⁴³ the case for 30 Dor), since the larger photosphere ($\tau \sim 1$ $_{344}$ surface) for the 2 \rightarrow 1 line fills more of the telescope beam. ³⁴⁵ Given the many uncertain assumptions in our analysis, $_{346}$ and the likelihood that $X_{\rm CO}$ varies on scales compara-347 ble to or smaller than our map (see further discussion $_{348}$ in §5), our luminosity-based masses should be consid-³⁴⁹ ered uncertain by a factor of 2, and possibly more if 350 substantial CO-dark gas is present.

351

3.2. Structural Decomposition

We use the Python program $astrodendro^3$ to iden-352 ³⁵³ tify and segment the line emission regions in the cubes ³⁵⁴ (Rosolowsky et al. 2008). Parameters for the algorithm ³⁵⁵ are chosen to identify local maxima in the cube above $_{356}$ the $3\sigma_{\rm rms}$ level that are also at least $2.5\sigma_{\rm rms}$ above the ³⁵⁷ merge level with adjacent structures. Each local maxi-³⁵⁸ mum is required to span at least two synthesized beams ³⁵⁹ in area and is bounded by an isosurface at either the 360 minimum $(3\sigma_{\rm rms})$ level or at the merge level with an ³⁶¹ adjoining structure. Bounding isosurfaces surrounding ³⁶² the local maxima are categorized as *trunks*, *branches*, or ³⁶³ leaves according to whether they are the largest con-³⁶⁴ tiguous structures (trunks), are intermediate in scale ³⁶⁵ (branches), or have no resolved substructure (leaves). ³⁶⁶ Although the dendrogram structures are not all indepen-³⁶⁷ dent, trunks do not overlap other trunks in the cube 368 and leaves do not overlap other leaves in the cube. ³⁶⁹ Since an object with no detected substructure is classi-³⁷⁰ fied as a leaf, every trunk will contain leaf (and usually

³⁷¹ branch) substructures, which are collectively termed its ³⁷² descendants.

373 The basic properties of the identified structures are 374 also determined by astrodendro, including their spa-³⁷⁵ tial and velocity centroids $(\bar{x}, \bar{y}, \bar{v})$, the integrated flux S, σ_v rms line width σ_v (defined as the intensity-weighted sec-³⁷⁷ ond moment of the structure along the velocity axis), the ³⁷⁸ position angle of the major axis (as determined by prin-³⁷⁹ cipal component analysis) ϕ , and the rms sizes along the ₃₈₀ major and minor axes, σ_{maj} and σ_{min} . All properties are ³⁸¹ determined using the "bijection" approach discussed by ₃₈₂ Rosolowsky et al. (2008), which associates all emission ³⁸³ bounded by an isosurface with the identified structure. ³⁸⁴ We then calculate deconvolved values for the ma-385 jor and minor axes, $\sigma'_{
m maj}$ and $\sigma'_{
m min}$, approximat-³⁸⁶ ing each structure as a 2-D Gaussian with major 387 and minor axes of $\sigma_{\rm maj}$ and $\sigma_{\rm min}$ before decon-³⁸⁸ volving the telescope beam. Structures which 389 cannot be deconvolved are excluded from fur-390 ther analysis. From these basic properties we have ³⁹¹ calculated additional properties, including the effec- $_{_{392}}$ tive rms spatial size, $\sigma_r = \sqrt{\sigma'_{\mathrm{maj}}\sigma'_{\mathrm{min}}};$ the effective ³⁹³ radius $R = 1.91\sigma_r$, following Solomon et al. (1987); the ³⁹⁴ luminosity $L = Sd^2$, adopting d = 50 kpc (Pietrzyński ³⁹⁵ et al. 2019); the virial mass $M_{\rm vir} = 5\sigma_v^2 R/G$, derived ³⁹⁶ from solving the equilibrium condition (for kinetic en-³⁹⁷ ergy \mathcal{T} and potential energy \mathcal{W}):

$$2\mathcal{T} + \mathcal{W} = 2\left(\frac{3}{2}M_{\rm vir}\sigma_v^2\right) - \frac{3}{5}\frac{GM_{\rm vir}^2}{R} = 0; \qquad (7)$$

³⁹⁹ the LTE-based mass (from ^{13}CO):

398

405

410

400
$$M_{\text{LTE}} = (2m_p)(1.36)\Upsilon_{13\text{CO}} \int N(^{13}\text{CO}) \, dA \,, \qquad (8)$$

⁴⁰¹ where the integration is over the projected area of the ⁴⁰² structure A, 1.36 is a correction factor for associated he-⁴⁰³ lium, and the abundance ratio Υ_{13CO} is given by Equa-⁴⁰⁴ tion 5; and the luminosity-based mass (from ¹²CO):

$$\frac{M_{\rm lum}}{M_{\odot}} = 4.3 X_2 \, \frac{L_{\rm CO}}{\rm K \, \rm km \, s^{-1} \, pc^2} \,, \tag{9}$$

⁴⁰⁶ where X_2 is defined in Equation 6 and the factor of ⁴⁰⁷ 4.3 includes associated helium (Bolatto et al. 2013). By ⁴⁰⁸ taking ratios of these mass estimates we then cal-⁴⁰⁹ culate the so-called virial parameter,

$$\alpha_{\rm vir} = \begin{cases} M_{\rm vir}/M_{\rm lum} & \text{for } {}^{12}\text{CO}, \\ M_{\rm vir}/M_{\rm LTE} & \text{for } {}^{13}\text{CO}. \end{cases}$$
(10)

⁴¹¹ Tables 1 and 2 present the measured and derived ⁴¹² properties of the resolved CO and ¹³CO dendro-⁴¹³ gram structures, including their classification as ⁴¹⁴ trunks, branches, or leaves.

³ http://www.dendrograms.org

Figure 4. Projected maps of the ¹²CO (top left) and ¹³CO (top right) clumps identified by the SCIMES segmentation algorithm. Each clump is shaded with a different color. The filament skeleton identified by fil_finder is shown in black against the ¹²CO clumps, but note that the filaments are identified in the CO peak SNR image whereas the clumps are identified in the cubes. The bottom panel shows a zoomed view of part of the dendrogram tree diagram for ¹²CO emission, with clumps identified using the same colors as in the top left panel. Dotted lines indicate dendrogram structures that are not identified as clumps by SCIMES.

492

493

We also post-process the dendrogram output using 415 416 the SCIMES algorithm (Colombo et al. 2015), which 417 utilizes spectral clustering (an unsupervised classifi-418 cation approach based on graph theory) to iden-⁴¹⁹ tify discrete structures with similar emission properties. 420 The resulting clusters (hereafter referred to as *clumps* 421 to avoid confusion with star clusters) form a set of in-422 dependent objects, avoiding the problem that the 423 complete set of dendrogram structures consti-424 tute a nested rather than independent set. At 425 the same time, the SCIMES clumps span a wider 426 range of size, line width, and luminosity in comparison 427 to the leaves, and because they are required to contain ⁴²⁸ substructure, they are less likely to be influenced by fluc-429 tuations in the map noise. In particular, we run the algo-430 rithm with the save_branches setting active, which re-⁴³¹ tains isolated branches as clumps but not isolated leaves. 432 We use the "volume" criterion for defining similarity, which calculates volume as $V = \pi R^2 \sigma_v$ for each struc-433 434 ture. Comparison runs using both "volume" and "lumi-435 nosity" criteria, and without the save_branches setting, ⁴³⁶ produce almost identical results for our data. Note that ⁴³⁷ because the clumps are a subset of the cataloged den-438 drogram structures, their properties have already been 439 calculated as described above. Tables 3 and 4 present $_{440}$ the properties of the CO and 13 CO clumps re-⁴⁴¹ spectively, ordered by right ascension. Images of $_{442}$ the individual 12 CO and 13 CO clumps are shown in the ⁴⁴³ upper panels of Figure 4; since the clumps are iden-444 tified in the cube, they are sometimes found projected 445 against one another. The number of clumps found ⁴⁴⁶ in 12 CO (13 CO) are 198 (71), of which 142 (61) 447 have sizes which can be deconvolved. The lower 448 panel of Figure 4 shows a zoomed view of part $_{449}$ of the 12 CO dendrogram tree, with the SCIMES 450 clumps identified as distinctly colored sub-trees ⁴⁵¹ (the colors are chosen to match the upper left $_{452}$ panel). We stress that the analyses of the ^{12}CO and 13 CO data are conducted independently; we examine 453 ⁴⁵⁴ positional matches between the two sets of catalogs in 455 §4.3.

456

3.3. Filament Identification

⁴⁵⁷ We also employed an alternative structure-finding ⁴⁵⁸ package, FilFinder, to highlight the filamentary nature ⁴⁵⁹ of the emission. We apply the FilFinder2D algorithm, ⁴⁶⁰ described in Koch & Rosolowsky (2015), to the peak ⁴⁶¹ SNR image of ¹²CO(2–1) emission. To suppress bright ⁴⁶² regions, the image is first flattened with an arctan trans-⁴⁶³ form, $I' = I_0 \arctan(I/I_0)$, where I_0 is chosen as the ⁴⁶⁴ 80th percentile of the image brightness distribution (for ⁴⁶⁵ this image $I_0 = 5.3\sigma_{\rm rms}$). A mask is then created 466 from the flattened image using adaptive thresholding 467 with the following parameters: smooth_size of 5 pix-468 els (corresponding to 2"5), adapt_thresh of 10 pixels $_{469}$ (corresponding to 5"), size_thresh of 80 pixels (cor-⁴⁷⁰ responding to 20 arcsec^2), and glob_thresh of 4σ . We ⁴⁷¹ experimented with a variety of parameter sets but found 472 that these parameters produced a signal mask that was ⁴⁷³ most consistent with the emission regions identified with 474 SCIMES. Each mask region is reduced to a one-pixel 475 wide "skeleton" using the Medial Axis Transform, and 476 small structures are removed by imposing a minimum 477 length (pixel count) of 4 beam widths for the skeleton 478 as a whole and 2 beam widths for branches that de-⁴⁷⁹ part from the longest path through the skeleton. The 480 resulting skeletonization of the emission, after pruning ⁴⁸¹ of small structures, is visualized in black in the upper ⁴⁸² left panel of Figure 4. The skeletonization is effective 483 at identifying and connecting large, coherent emission 484 structures, but "breaks" in the filamentary structure 485 may still arise from sensitivity limitations that prevent 486 the algorithm from connecting neighboring skeletons. ⁴⁸⁷ While it is possible that velocity discontinuities ⁴⁸⁸ across filaments could be missed by identifying 489 filaments only in 2-D, we generally observe that ⁴⁹⁰ spatially coherent filaments are also coherent in 491 velocity.

4. RESULTS

4.1. Overall cloud structure

Figures 2 and 3 show that the overall morphology of the cloud is primarily oriented along a direction rotated $\sim 30^{\circ}$ counterclockwise from north. The left panel of Figure 3 shows an overlay of the integrated CO intensity as magenta contours over a 3-color image (using the F555W, F775W, and F160W filters) from HTTP (Sabbi et al. 2013), revealing that in some instances the CO is associated with extincted regions situated in the foreground of the Tarantula Nebula. As apparent from earlier single-dish mapping (Johansson et al. 1998; Mi-

No.	R. A.	Decl.	$v_{ m LSR}$	CO Flux	$\sigma_{ m maj}$	$\sigma_{ m min}$	ϕ^{a}	Ab	$\log R$	$\log \sigma_v$	$\logM_{ m lum}$	$\log M_{ m vir}$	$\log \alpha_{\rm vir}$	$ heta_{ m off}$	T_{ype}^{c}
	(J2000)	(J2000)	$(\mathrm{km}~\mathrm{s}^{-1})$	$(\mathrm{Jy\ km\ s^{-1}})$	(,,,)	(,,)	(_)	(pc^2)	(pc)	$(\mathrm{km}~\mathrm{s}^{-1})$	(M_{\odot})	(M_{\odot})		(")	
-	05:38:17.24	-69:03:23.0	250.31	15.73	3.22	0.98	48	2.48	-0.18 ± 0.05	-0.07 ± 0.04	2.22 ± 0.04	2.75 ± 0.08	0.53 ± 0.09	209	в
7	05:38:17.36	-69:03:24.1	249.98	29.62	4.78	1.33	58	6.26	0.02 ± 0.04	0.11 ± 0.04	$2.49{\pm}0.04$	$3.31{\pm}0.08$	$0.82 {\pm} 0.09$	208	В
°	05:38:17.37	-69:03:24.1	250.03	30.07	4.77	1.39	58	6.54	0.04 ± 0.04	$0.13 {\pm} 0.04$	$2.50{\pm}0.04$	$3.37{\pm}0.08$	$0.87 {\pm} 0.09$	208	H
4	05:38:17.45	-69:03:24.3	250.40	8.56	1.37	1.01	64	1.25	-0.38 ± 0.06	-0.15 ± 0.05	1.95 ± 0.04	$2.38{\pm}0.09$	$0.43 {\pm} 0.10$	207	L L
5	05:38:17.92	-69:02:32.8	260.89	3.94	1.89	1.10	92	2.35	-0.26 ± 0.06	0.03 ± 0.05	1.62 ± 0.04	$2.87{\pm}0.09$	1.25 ± 0.10	248	В
9	05:38:17.93	-69:02:32.3	260.80	3.06	1.36	1.00	86	1.45	-0.39 ± 0.07	$0.03 {\pm} 0.05$	1.51 ± 0.04	$2.73 {\pm} 0.11$	1.22 ± 0.12	248	ц
2	05:38:18.24	-69:00:58.0	260.20	5.55	2.03	0.95	46	1.87	-0.31 ± 0.08	-0.32 ± 0.06	$1.77{\pm}0.04$	2.11 ± 0.12	$0.34{\pm}0.12$	331	H
x	05:38:18.32	-69:00:58.4	260.15	4.05	1.11	0.94	53	1.20	-0.49 ± 0.10	-0.38 ± 0.07	1.63 ± 0.04	1.82 ± 0.14	$0.19{\pm}0.15$	331	Ц
6	05:38:18.48	-69:02:47.7	253.97	5.14	1.92	1.01	144	1.95	-0.29 ± 0.05	-0.19 ± 0.05	1.73 ± 0.04	$2.39{\pm}0.09$	$0.65 {\pm} 0.10$	234	В
10	05:38:18.49	-69:02:48.1	253.94	6.80	2.20	1.36	127	3.29	-0.15 ± 0.04	-0.12 ± 0.04	1.86 ± 0.04	$2.68{\pm}0.08$	$0.83 {\pm} 0.09$	233	H
3 D 2 2 :			. [-]-												

Table 1. All Resolved Structures in the Default $^{12}\mathrm{CO}$ ALMA 30 Dor Cube

^aPosition angle is measured counterclockwise from +x direction (west).

b Projected area of clump.

 $^c\,\mathrm{Type}$ of structure: (T)runk, (B)ranch, or (L)eaf.

NOTE—Table 1 is published in its entirety in machine-readable format. A portion is shown here for guidance regarding its form and content.

J	30	D	ORA	4DU	JS	Мс	DLE	CUI	LAF	۲C	LO	UD	
Type		Г	Η	Γ	Η	В	Γ	Η	Γ	В	Γ		
θ_{off}	(,,)	126	169	113	113	168	189	187	205	201	93		
$\log\alpha_{\rm vir}$		-0.37 ± 0.13	$0.37 {\pm} 0.09$	$-0.80 {\pm} 0.17$	$-0.62 {\pm} 0.09$	$0.13{\pm}0.24$	$0.39{\pm}0.15$	$0.98 {\pm} 0.09$	-0.00 ± 0.10	$0.04{\pm}0.09$	$-0.05{\pm}0.18$		
$\logM_{\rm vir}$	(M_{\odot})	2.38 ± 0.12	$3.23{\pm}0.08$	$1.72 {\pm} 0.17$	$2.06{\pm}0.08$	$2.80{\pm}0.24$	$2.40{\pm}0.14$	$3.39{\pm}0.08$	$2.69{\pm}0.09$	$3.63{\pm}0.08$	$2.02 {\pm} 0.17$		
$\log M_{ m LTE}$	(M_{\odot})	2.74 ± 0.04	$2.85{\pm}0.04$	$2.52{\pm}0.04$	$2.69{\pm}0.04$	$2.67{\pm}0.04$	$2.01{\pm}0.04$	$2.41 {\pm} 0.04$	$2.69{\pm}0.04$	$3.59{\pm}0.04$	$2.07{\pm}0.04$		
$\log \sigma_v$	$(\mathrm{km~s}^{-1})$	-0.14 ± 0.06	$0.14{\pm}0.04$	$-0.51 {\pm} 0.07$	-0.44 ± 0.04	$0.11 {\pm} 0.04$	-0.09 ± 0.06	$0.26 {\pm} 0.04$	-0.03 ± 0.04	$0.18 {\pm} 0.04$	-0.35 ± 0.09		
$\log R$	(pc)	-0.41 ± 0.08	-0.12 ± 0.05	-0.32 ± 0.14	-0.12 ± 0.04	-0.49 ± 0.23	-0.48 ± 0.12	-0.18 ± 0.04	$-0.31{\pm}0.06$	$0.20{\pm}0.04$	-0.34 ± 0.11		
A^b	(pc^2)	1.97	5.04	2.14	4.07	2.00	1.32	2.57	1.88	13.94	1.94		
ϕ^{q}	(₀)	94	-153	-157	-161	-160	68	-171	-140	-157	157		
$\sigma_{ m min}$	(,,)	0.96	1.04	0.88	1.09	0.78	0.95	1.36	0.94	2.61	0.95	west).	
$\sigma_{ m maj}$	(,,)	1.35	3.78	2.42	3.47	2.12	1.14	1.91	2.08	4.81	1.80	ection (
¹³ CO Flux	$(\rm Jy~km~s^{-1})$	7.58	10.88	4.56	6.98	7.07	1.60	4.04	7.08	55.22	1.74	se from $+x$ dir	
$v_{\rm LSR}$	$(\mathrm{km~s}^{-1})$	255.44	253.36	254.62	254.62	253.26	252.46	250.56	251.14	252.03	249.77	nterclockwis	
Decl.	(J2000)	-69:06:41.5	-69:03:51.5	-69:06:43.6	-69:06:43.6	-69:03:52.1	-69:03:26.4	-69:03:26.8	-69:03:01.4	-69:03:02.5	-69:06:33.9	neasured cou	շիստո
R. A.	(J2000)	05:38:19.81	05:38:22.44	05:38:22.49	05:38:22.60	05:38:22.68	05:38:22.80	05:38:23.16	05:38:24.56	05:38:25.81	05:38:25.83	ion angle is n	sted area of
No.		1	2	c,	4	5	9	2	×	6	10	a_{Posit}	b_{Droid}

Table 2. All Resolved Structures in the Default ¹³CO ALMA 30 Dor Cube

 b Projected area of clump.

 $^c\mathrm{Type}$ of structure: (T)runk, (B)ranch, or (L)eaf.

NOTE—Table 2 is published in its entirety in machine-readable format. A portion is shown here for guidance regarding its form and content.

				4	-						
cl. $v_{\rm LSR}$	CO Flux	$\sigma_{ m maj}$	$\sigma_{ m min}$	ϕ^{a}	A^{b}	$\log R$	$\log\sigma_v$	$\log M_{ m lum}$	$\logM_{\rm vir}$	$\log\alpha_{\rm vir}$	$\theta_{ m off}$
$(km s^{-1})$	$(Jy \ \mathrm{km} \ \mathrm{s}^{-1})$	(,,)	(,,)	(_)	(pc^2)	(pc)	$(\mathrm{km~s}^{-1})$	(M_{\odot})	(M_{\odot})		(,,)
3:24.1 250.03	30.07	4.77	1.39	58	6.54	0.04 ± 0.04	$0.13 {\pm} 0.04$	$2.50 {\pm} 0.04$	$3.37{\pm}0.08$	0.87 ± 0.09	208
):58.0 260.20	5.55	2.03	0.95	46	1.87	$-0.31{\pm}0.08$	$-0.32 {\pm} 0.06$	$1.77{\pm}0.04$	2.11 ± 0.12	$0.34{\pm}0.12$	331
2:48.1 253.94	6.80	2.20	1.36	127	3.29	-0.15 ± 0.04	-0.12 ± 0.04	1.86 ± 0.04	$2.68{\pm}0.08$	0.83 ± 0.09	233
2:39.6 260.03	18.58	6.60	1.85	-140	10.36	$0.19 {\pm} 0.04$	$0.19 {\pm} 0.04$	$2.29{\pm}0.04$	$3.64{\pm}0.08$	1.35 ± 0.09	238
3:05.4 258.60	3.83	1.47	0.89	45	1.67	-0.44 ± 0.08	$0.19 {\pm} 0.05$	1.61 ± 0.04	$3.00{\pm}0.11$	1.39 ± 0.12	214
3:42.4 254.71	160.67	8.18	2.36	-170	22.34	$0.30 {\pm} 0.04$	-0.03 ± 0.04	$3.23{\pm}0.04$	$3.30{\pm}0.08$	0.07 ± 0.09	118
3:51.4 252.69	245.96	6.85	2.65	-139	22.99	$0.28 {\pm} 0.04$	$0.39{\pm}0.04$	$3.41 {\pm} 0.04$	$4.12 {\pm} 0.08$	$0.71{\pm}0.09$	171
3:24.6 247.02	2.49	3.11	0.77	-179	1.53	-0.45 ± 0.46	-0.10 ± 0.08	1.42 ± 0.04	$2.43{\pm}0.48$	$1.01{\pm}0.48$	177
3:10.0 252.45	0.54	1.24	0.77	62	0.90	-0.70 ± 0.47	-0.06 ± 0.09	$0.75{\pm}0.04$	$2.24{\pm}0.49$	$1.49{\pm}0.49$	203
3:25.2 251.12	116.85	6.80	2.46	127	11.68	$0.27 {\pm} 0.04$	$0.30 {\pm} 0.04$	$3.09{\pm}0.04$	$3.93{\pm}0.08$	$0.84{\pm}0.09$	188
ed counterclockw	ise from $+x$ dire	ction (v	west).								
	 8:24.1 250.03 5:58.0 260.20 2:48.1 253.94 2:39.6 260.03 2:39.6 250.03 2:42.4 258.60 2:42.4 254.71 2:51.4 255.69 2:42.6 24.71 2:51.4 252.45 2:10.0 252.45 2:11.2 2:25.2 251.12 d counterclockw 	24.1 250.03 30.07 558.0 260.20 5.55 248.1 253.94 6.80 $2:48.1$ 253.94 6.80 $2:48.1$ 253.94 6.80 $2:39.6$ 260.03 18.58 $2:39.4$ 258.60 3.83 $2:42.4$ 254.71 160.67 $2:42.4$ 254.71 160.67 $2:42.4$ 254.71 160.67 $2:42.4$ 254.71 160.67 $2:42.6$ 247.02 2.49 $2:10.0$ 252.45 0.54 $2:10.0$ 252.45 0.54 $2:10.0$ 252.45 0.54 $2:10.0$ 252.45 0.54 $2:25.2$ 251.12 116.85 d counterclockwise from $+x$ dire x	::::::::::::::::::::::::::::::::::::	::::::::::::::::::::::::::::::::::::	224.1 250.03 30.07 4.77 1.39 58 558.0 260.20 5.55 2.03 0.95 46 $2:48.1$ 253.94 6.80 2.20 1.36 127 $2:39.6$ 260.03 18.58 6.60 1.85 -140 $2:39.4$ 258.60 3.83 1.47 0.89 45 $2:42.4$ 254.71 160.67 8.18 2.36 -170 $5:42.4$ 254.71 160.67 8.18 2.36 -170 $5:42.6$ 247.02 2.49 3.11 0.77 -179 $5:1.4$ 252.45 0.54 1.24 0.77 -179 $5:1.0$ 252.45 0.54 1.24 0.77 -179 $5:10.0$ 252.45 0.54 1.24 0.77 -179 $5:10.0$ 252.45 0.54 1.24 0.77 -179 $5:10.0$ 252.45 0.54 1.24 0.77 -179 $5:10.0$ 252.45 0.54 1.24 0.77 -179 $5:10.0$ 252.45 0.54 1.24 0.77 -179 $5:25.2$ 251.12 116.85 6.80 2.46 127 4 counterclockwise from $+x$ direction (west). $(west).$ $(west).$	224.1 250.03 30.07 4.77 1.39 58 6.54 558.0 260.20 5.55 2.03 0.95 46 1.87 $2.48.1$ 253.94 6.80 2.20 1.36 127 3.29 $2.48.1$ 253.94 6.80 2.20 1.36 127 3.29 $2.39.6$ 260.03 18.58 6.60 1.85 -140 10.36 $2.51.4$ 254.71 160.67 8.18 2.36 -170 22.34 551.4 254.71 160.67 8.18 2.36 -170 22.34 551.4 254.71 160.67 8.18 2.36 -170 22.34 51.4 254.71 160.67 8.18 2.36 -170 22.34 51.42 254.71 160.67 8.18 2.36 -170 22.34 51.14 252.45 0.54 0.77 -179 1.53 $52.4.6$ 247.02 2.49 3.11 0.77 -179 1.53 510.0 252.45 0.54 1.24 0.77 -179 1.53 510.0 252.45 0.54 1.24 0.77 -179 1.53 525.2 251.12 116.85 6.80 2.46 1.27 11.68 525.2 251.12 116.85 6.80 2.46 1.27 11.68 525.2 251.12 116.85 6.80 2.46 1.27 11.68 525.2 251.12 <	224.1 250.03 30.07 4.77 1.39 58 6.54 0.04 ± 0.04 $5.58.0$ 260.20 5.55 2.03 0.95 46 1.87 -0.31 ± 0.08 $2.48.1$ 253.94 6.80 2.20 1.36 127 3.29 -0.15 ± 0.04 $2.48.1$ 253.94 6.80 2.20 1.85 -140 10.36 0.19 ± 0.04 $2.39.6$ 260.03 18.58 6.60 1.85 -140 10.36 0.19 ± 0.04 $2.30.4$ 258.60 3.83 1.47 0.89 45 1.67 -0.44 ± 0.08 $2.42.4$ 254.71 160.67 8.18 2.36 -170 22.34 0.30 ± 0.04 $2.51.4$ 254.71 160.67 8.18 2.36 -170 22.34 0.30 ± 0.04 $2.51.4$ 254.71 160.67 8.18 2.36 -170 22.34 0.30 ± 0.04 $2.51.4$ 252.45 0.549 2.47 0.89 45 1.67 -0.45 ± 0.04 $2.10.0$ 252.45 0.544 1.24 0.77 -179 1.53 -0.45 ± 0.04 $2.10.0$ 252.45 0.544 1.24 0.77 -179 1.53 -0.45 ± 0.04 $2.51.12$ 116.85 6.80 2.46 1.27 11.68 0.27 ± 0.04 $2.52.2$ 251.12 116.85 6.80 2.46 127 11.68 0.27 ± 0.04 $2.52.2$ 251.12 116.85 6.80 2.46 127	$8:24.1$ 250.03 30.07 4.77 1.39 58 6.54 0.04 ± 0.04 0.13 ± 0.04 $5:58.0$ 260.20 5.55 2.03 0.95 46 1.87 -0.31 ± 0.08 -0.32 ± 0.06 $2:48.1$ 253.94 6.80 2.20 1.36 127 3.29 -0.15 ± 0.04 -0.12 ± 0.04 $2:48.1$ 253.94 6.80 2.20 1.85 -140 10.36 -0.19 ± 0.04 -0.19 ± 0.04 $2:39.6$ 260.03 18.58 6.60 1.85 -170 22.34 0.19 ± 0.04 -0.19 ± 0.04 $2:51.4$ 254.71 160.67 8.18 2.36 -170 22.34 0.30 ± 0.04 -0.03 ± 0.04 $8:51.4$ 254.71 160.67 8.18 2.36 -170 22.34 0.30 ± 0.04 -0.03 ± 0.04 $8:51.4$ 252.69 245.96 6.85 2.65 -139 22.99 0.28 ± 0.04 -0.03 ± 0.04 $8:10.0$ $2.51.4$ 252.45 0.54 0.77 -179 1.53 -0.45 ± 0.46 -0.10 ± 0.08 $8:10.0$ $2.52.45$ 0.54 0.77 -179 1.53 -0.45 ± 0.46 -0.10 ± 0.08 $8:10.0$ 252.45 0.54 0.77 -179 1.53 -0.45 ± 0.46 -0.10 ± 0.08 $8:10.0$ 252.45 0.54 1.27 1.58 0.27 ± 0.44 -0.06 ± 0.09 $8:10.0$ 252.45 0.58 2.46 1.27 1.58 0.27 ± 0.44 -0.06 ± 0.09 $8:10.0$ 252	224.1 250.03 30.07 4.77 1.39 58 6.54 0.04 ± 0.04 0.13 ± 0.04 2.50 ± 0.04 $5.8.0$ 260.20 5.55 2.03 0.95 46 1.87 -0.31 ± 0.08 -0.32 ± 0.06 1.77 ± 0.04 $2.48.1$ 253.94 6.80 2.20 1.36 127 3.29 -0.15 ± 0.04 -0.12 ± 0.04 1.86 ± 0.04 $2.48.1$ 253.94 6.80 2.20 1.36 1.27 3.29 -0.15 ± 0.04 -0.12 ± 0.04 1.86 ± 0.04 $2.39.6$ 260.03 18.58 6.60 1.85 -140 10.36 0.19 ± 0.04 0.19 ± 0.04 1.86 ± 0.04 $2.39.6$ $2.60.03$ $1.8.7$ 0.89 2.30 0.19 ± 0.06 1.77 ± 0.04 $2.42.4$ 254.71 160.67 8.18 2.36 -170 22.34 0.30 ± 0.04 0.19 ± 0.05 1.61 ± 0.04 $2.42.4$ 254.71 160.67 8.18 2.36 -170 22.34 0.30 ± 0.04 0.19 ± 0.04 1.61 ± 0.04 1.61 ± 0.04 $1.$	224.1 250.03 30.07 4.77 1.39 58 6.54 0.04 ± 0.04 0.13 ± 0.04 2.50 ± 0.04 3.37 ± 0.08 $5.58.0$ 5.55 2.03 0.95 46 1.87 -0.31 ± 0.08 -0.32 ± 0.06 1.77 ± 0.04 2.11 ± 0.12 $2.48.1$ 253.94 6.80 2.20 1.36 127 3.29 -0.15 ± 0.04 0.19 ± 0.06 2.68 ± 0.08 $2.48.1$ 253.94 6.80 2.20 1.36 127 3.29 -0.15 ± 0.04 0.19 ± 0.06 2.68 ± 0.08 $2.39.6$ 260.03 18.58 6.60 1.85 -140 10.36 0.19 ± 0.04 0.19 ± 0.04 2.68 ± 0.08 $2.54.71$ 160.67 8.18 2.36 -170 22.34 0.30 ± 0.04 3.03 ± 0.04 3.00 ± 0.01 $2.42.4$ 254.71 160.67 8.18 2.36 -170 22.34 0.30 ± 0.04 3.23 ± 0.04 3.00 ± 0.01 $2.42.7$ 252.69 245.96 6.85 2.165 -139 22.39 0.28 ± 0.04 0.39 ± 0.04 3.11 ± 0.04 $2.47.02$ 2.49 3.11 0.77 -179 1.53 -0.45 ± 0.04 2.43 ± 0.08 $2.10.0$ 252.45 0.54 1.24 0.77 -179 0.28 ± 0.04 0.75 ± 0.04 2.24 ± 0.04 $2.11.0$ 252.45 0.54 0.77 -179 1.53 -0.45 ± 0.04 2.43 ± 0.04 $2.11.0$ 252.45 0.79 0.79 0.76 ± 0.04 0.75 ± 0.04 2.24 ± 0.04 2.11	::::::::::::::::::::::::::::::::::::

Cube
30 Dor
ALMA 3
$^{12}\mathrm{CO}$
Default
the
in
Clumps
SCIMES
ы. 1
Table .

 b Projected area of clump.

NOTE—Table 3 is published in its entirety in machine-readable format. A portion is shown here for guidance regarding its form and content.

No.	R. A.	Decl.	$v_{\rm LSR}$	¹³ CO Flux	$\sigma_{ m maj}$	$\sigma_{ m min}$	ϕ^{a}	A^b	$\log R$	$\log\sigma_v$	$\log M_{\rm LTE}$	$\logM_{\rm vir}$	$\log \alpha_{\rm vir}$	$\theta_{\rm off}$
	(J2000)	(J2000)	$(\mathrm{km}~\mathrm{s}^{-1})$	$(Jy \ km \ s^{-1})$	(")	(,,)	(_)	(pc^2)	(pc)	$(\mathrm{km}~\mathrm{s}^{-1})$	(M_{\odot})	(M_{\odot})		(")
1	05:38:22.44	-69:03:51.5	253.36	10.88	3.78	1.04	-153	5.04	-0.12 ± 0.05	0.14 ± 0.04	$2.85{\pm}0.04$	$3.23 {\pm} 0.08$	0.37 ± 0.09	169
2	05:38:22.60	-69:06:43.6	254.62	6.98	3.47	1.09	-161	4.07	-0.12 ± 0.04	-0.44 ± 0.04	$2.69{\pm}0.04$	$2.06{\pm}0.08$	-0.62 ± 0.09	113
33	05:38:23.16	-69:03:26.8	250.56	4.04	1.91	1.36	-171	2.57	-0.18 ± 0.04	0.26 ± 0.04	2.41 ± 0.04	$3.39{\pm}0.08$	$0.98 {\pm} 0.09$	187
4	05:38:25.81	-69:03:02.5	252.03	55.22	4.81	2.61	-157	13.94	0.20 ± 0.04	0.18 ± 0.04	$3.59{\pm}0.04$	$3.63{\pm}0.08$	$0.04 {\pm} 0.09$	201
5	05:38:26.30	-69:01:45.6	247.89	3.65	3.16	1.57	-154	3.13	-0.02 ± 0.04	-0.10 ± 0.04	2.37 ± 0.04	$2.84{\pm}0.08$	0.47 ± 0.09	272
9	05:38:26.90	-69:01:36.3	246.08	2.51	1.94	1.11	55	2.12	-0.25 ± 0.06	-0.32 ± 0.05	$2.23{\pm}0.04$	$2.18{\pm}0.10$	-0.04 ± 0.10	279
2	05:38:27.11	-69:02:38.5	250.61	31.76	7.85	3.31	-164	14.23	$0.37 {\pm} 0.04$	0.08 ± 0.04	3.33 ± 0.04	$3.59{\pm}0.08$	$0.26 {\pm} 0.09$	220
×	05:38:27.18	-69:02:53.8	253.33	12.55	3.89	1.74	-137	4.79	0.06 ± 0.04	0.02 ± 0.04	$2.93{\pm}0.04$	$3.16{\pm}0.08$	$0.23 {\pm} 0.09$	206
6	05:38:27.27	-69:03:34.9	253.35	3.02	2.32	1.80	155	2.95	-0.06 ± 0.04	-0.08 ± 0.04	$2.29{\pm}0.04$	$2.85{\pm}0.08$	$0.56 {\pm} 0.09$	169
10	05:38:28.25	-69:06:52.5	249.67	3.11	1.57	1.17	166	2.23	-0.29 ± 0.06	-0.11 ± 0.05	$2.31{\pm}0.04$	$2.56{\pm}0.09$	$0.25 {\pm} 0.10$	00
$^{a}\mathrm{Posi}$	ition angle is r	measured cour	ıterclockwis	e from $+x$ dire	ction (west).								

Cube
0 Dor
ALMA 3
$^{13}\mathrm{CO}$
Default
the
Clumps in
SCIMES
4.
Table

 $b\,{\rm Projected}$ area of clump.

NOTE—Table 4 is published in its entirety in machine-readable format. A portion is shown here for guidance regarding its form and content.

Y	X	Data Set	Number	a_1	a_0	$\chi^2_{ u}$	ε^a
σ_v	R	12 CO dendros	1434	$0.47~\pm~0.01$	$0.08~\pm~0.01$	14.3	0.21
σ_v	R	$^{12}\mathrm{CO}\ \mathrm{clumps}$	142	$0.47~\pm~0.06$	$0.13~\pm~0.02$	14.3	0.21
σ_v	R	13 CO dendros	254	0.73 ± 0.06	$0.06~\pm~0.01$	10.5	0.22
σ_v	R	$^{13}\mathrm{CO}\ \mathrm{clumps}$	61	$1.42~\pm~0.37$	$0.06~\pm~0.04$	14.3	0.35
$\Sigma_{\rm vir}$	$\Sigma_{\rm lum}$	12 CO dendros	1434	$0.51~\pm~0.02$	$1.58~\pm~0.04$	13.7	0.35
$\Sigma_{\rm vir}$	$\Sigma_{\rm lum}$	12 CO clumps	142	$0.41~\pm~0.07$	$1.93~\pm~0.12$	15.6	0.35
$\Sigma_{\rm vir}$	$\Sigma_{\rm LTE}$	13 CO dendros	254	$0.66~\pm~0.06$	$0.90~\pm~0.14$	11.0	0.36
$\Sigma_{\rm vir}$	$\Sigma_{\rm LTE}$	$^{13}\mathrm{CO}\ \mathrm{clumps}$	61	$0.85~\pm~0.14$	$0.55~\pm~0.31$	11.0	0.30

Table 5. Default Cubes — Power Law Fit Parameters: $\log Y = a_1 \log X + a_0$

 a r.m.s. scatter in log Y relative to the best-fit line. Units are dex.

Table 6. 0.1 km s⁻¹ Cubes — Power Law Fit Parameters: $\log Y = a_1 \log X + a_0$

Y	X	Data Set	Number	a_1	a_0	χ^2_{ν}	ε^a
σ_v	R	12 CO dendros	2053	0.51 ± 0.01	$0.04~\pm~0.01$	15.1	0.24
σ_v	R	$^{12}\mathrm{CO}\ \mathrm{clumps}$	221	$0.76~\pm~0.06$	$0.09~\pm~0.02$	13.6	0.28
σ_v	R	13 CO dendros	310	$0.74~\pm~0.05$	$0.06~\pm~0.01$	13.2	0.24
σ_v	R	$^{13}\mathrm{CO}\ \mathrm{clumps}$	72	$0.91~\pm~0.17$	$0.09~\pm~0.03$	13.5	0.28
$\Sigma_{\rm vir}$	$\Sigma_{\rm lum}$	$^{12}\mathrm{CO}$ dendros	2053	$0.57~\pm~0.01$	$1.43~\pm~0.03$	12.9	0.34
$\Sigma_{\rm vir}$	$\Sigma_{\rm lum}$	$^{12}\mathrm{CO}\ \mathrm{clumps}$	221	$0.55~\pm~0.04$	$1.64~\pm~0.07$	11.8	0.33
$\Sigma_{\rm vir}$	$\Sigma_{\rm LTE}$	13 CO dendros	310	$0.79~\pm~0.05$	$0.56~\pm~0.12$	11.8	0.34
$\Sigma_{\rm vir}$	$\Sigma_{\rm LTE}$	$^{13}\mathrm{CO}\ \mathrm{clumps}$	72	$0.83 \pm \ 0.12$	$0.58~{\pm}~0.25$	11.1	0.32

536

 a r.m.s. scatter in log Y relative to the best-fit line. Units are dex.

⁵⁰⁵ namidani et al. 2008; Pineda et al. 2009), the brightest ⁵⁰⁶ CO emission is distributed in two triangular lobes that ⁵⁰⁷ fan out from the approximate position of R136, giving ⁵⁰⁸ the cloud its characteristic "bowtie-shaped" appearance. ⁵⁰⁹ ALMA resolves these triangular lobes into radially ori-⁵¹⁰ ented filaments (Figure 4), providing another example of ⁵¹¹ the "hub-filament" structure previously reported in the ⁵¹² N159 H II region that lies just south of 30 Dor (Fukui ⁵¹³ et al. 2019; Tokuda et al. 2019). A third large CO-⁵¹⁴ emitting region to the northwest, closer to Hodge 301, ⁵¹⁵ is also highly filamentary but with more randomly ori-⁵¹⁶ ented filaments.

In terms of velocity structure, the 30 Dor cloud spans a relatively large extent in velocity (approximately 40 s¹⁹ km s⁻¹), compared to the typical velocity extent of ~10 s²⁰ km s⁻¹ seen in other LMC molecular clouds (Saigo et al. ²¹ 2017; Wong et al. 2019). Figure 3 shows that the bowties²² shaped structure is primarily blueshifted with respect s²³ to the mean cloud velocity ($\bar{v} \approx 255$ km s⁻¹ in the s²⁴ LSRK frame or $\bar{v}_{\odot} = 270$ km s⁻¹), with a relatively ⁵²⁵ faint redshifted structure seen crossing perpendicular to ⁵²⁶ it from the northwest to southeast. The clouds projected ⁵²⁷ closest to R136 and studied by Kalari et al. (2018) are ⁵²⁸ among the most highly blueshifted in the region and are ⁵²⁹ observed in extinction against the H II region, indicating ⁵³⁰ that they are situated in the foreground. The mean ⁵³¹ stellar velocity of the R136 cluster ($v_{\odot} = 271.6 \text{ km s}^{-1}$; ⁵³² Evans et al. 2015) is consistent with the mean cloud ⁵³³ velocity, while the ionized gas has a somewhat lower ⁵³⁴ mean velocity ($v_{\odot} = 267.4 \text{ km s}^{-1}$; Torres-Flores et al. ⁵³⁵ 2013).

4.2. Size-linewidth relations

⁵³⁷ A correlation between size and line width, of the form ⁵³⁸ $\sigma_v \propto R^{\gamma}$ with $\gamma \approx 0.5$, has long been observed among ⁵³⁹ molecular clouds as well as their substructures (Larson ⁵⁴⁰ 1981; Solomon et al. 1987, hereafter S87). It is usually ⁵⁴¹ interpreted in the context of a supersonic turbulent cas-⁵⁴² cade spanning a wide range of spatial scales (Mac Low ⁵⁴³ & Klessen 2004; Falgarone et al. 2009). The line width

Figure 5. Size-linewidth relations for dendrogram structures identified in the feathered data: (a) 12 CO structures; (b) 13 CO structures; (c) 13 CO structures at 0.1 km s⁻¹ velocity resolution. Different plot symbols distinguish the trunks, branches, and leaves of the dendrogram. The power law fit and 3σ uncertainty are shown in blue; the gray shaded region indicates the limiting spectral resolution. Fit parameters are tabulated in Tables 5 and 6. Yellow circles are binned averages of all points.

Figure 6. Size-linewidth relations for SCIMES clumps identified in the feathered data: (a) ¹²CO clumps; (b) ¹³CO clumps; (c) ¹³CO clumps at 0.1 km s⁻¹ velocity resolution. The power law fit and 3σ uncertainty are shown in blue; the gray shaded region indicates the limiting spectral resolution. Fit parameters are tabulated in Tables 5 and 6.

⁵⁴⁴ vs. size relations for the dendrogram structures in 30 545 Dor are summarized in Figures 5 and 6 for all struc-⁵⁴⁶ tures and for the SCIMES clumps respectively. Gray 547 shading indicates line widths which would be unresolved at the spectral resolution of the corre-548 ⁵⁴⁹ sponding cube; nearly all of the significant struc-⁵⁵⁰ tures are well-resolved in velocity. The standard relation of S87 (with a slope and intercept of $a_1 = 0.5$ 551 ₅₅₂ and $a_0 = -0.14$ respectively) is shown as a thick red line 553 for reference. The best-fitting slopes and intercepts, derived using the kmpfit module of the Python package 554 555 Kapteyn, are tabulated in Table 5, along with the re-556 duced χ^2 of the fit and the residual scatter along ⁵⁵⁷ the *y*-axis. Consistent with previous studies (see $\S1$), ⁵⁵⁸ the relation in the 30 Dor cloud is offset to larger line ⁵⁵⁹ widths compared to S87, by a factor of 1.5-1.8. The ⁵⁶⁰ enhancement in line width we find is somewhat smaller ⁵⁶¹ than the factor of ~2.3 previously derived for the ALMA ⁵⁶² Cycle 0 data (Nayak et al. 2016; Wong et al. 2017), indi-⁵⁶³ cating that the **central** region observed in Cycle 0 has ⁵⁶⁴ a larger enhancement in line width than the cloud as a ⁵⁶⁵ whole. We revisit the positional dependence of the line ⁵⁶⁶ width vs. size relation in §4.4.

To evaluate the robustness of the fitted relations to the data handling procedures, we fit the relations separately for cubes derived from the 12m-only data and the from the tam-only data, and for cubes with 0.1 km s⁻¹ velocity channels and 0.25 km s⁻¹ velocity channels. The resignal structure size probed by signal structure structure size probed by signal structure size structure s

4.3. Virial relations

If the line width vs. size relation has a power-law slope 581 of ≈ 0.5 , then variations in the normalization coefficient 582 k are expected if structures lie close to virial equilibrium 583 but span a range in mass surface density (Heyer et al. 584 2009):

$$\sigma_v = kR^{1/2} = \left(\frac{\pi G}{5}\right)^{1/2} \Sigma_{\rm vir}^{1/2} R^{1/2} \quad \Rightarrow \ k = \sqrt{\frac{\pi G \Sigma_{\rm vir}}{5}} \tag{11}$$

586 This motivates an examination of whether variations in 587 the line width vs. size coefficient are consistent with ⁵⁸⁸ virial equilibrium. For each structure whose deconvolved size and linewidth are measured, we normalize 589 ⁵⁹⁰ the virial and luminous mass by the projected area of ⁵⁹¹ the structure (determined by the pixel count) to calcu-⁵⁹² late a mass surface density Σ . For the ¹³CO structures, $_{593}$ we use the LTE-based mass in preference to a ^{13}CO ⁵⁹⁴ luminosity-based mass, though the results tend to be 595 similar. The virial surface density, $\Sigma_{\rm vir}$, is directly re-⁵⁹⁶ lated to the normalization of the size-linewidth relation, ⁵⁹⁷ since $\Sigma_{\rm vir} = 5k^2/(\pi G)$ from Equation 11. We show the ⁵⁹⁸ relations between $\Sigma_{\rm vir}$ and the luminous or LTE surface ⁵⁹⁹ density in Figure 7. In these "boundedness" plots, the = x line represents simple virial equilibrium (SVE), 600 Y ⁶⁰¹ with points above the line having excess kinetic energy 602 (often interpreted as requiring confinement by external ⁶⁰³ pressure to be stable) and points below the line having 604 excess gravitational energy (often interpreted as requiring support from magnetic fields to be stable). 605

Overall, we find that ¹³CO structures are close to state of SVE, with higher surface density structures 607 a tending to be more bound ($\alpha_{\rm vir} = \Sigma_{\rm vir} / \Sigma_{\rm lum} \lesssim 1$). On 608 the other hand, ¹²CO structures exhibit a shallower re-610 lation, with lower Σ_{lum} structures found to lie system-611 atically above the SVE line. The "unbound" CO struc-⁶¹² tures exist across the dendrogram hierarchy (**spanning** 613 leaves, branches, and trunks) and are found to domi-614 nate even the population of (typically larger) SCIMES 615 clumps, as shown in Figure 8 (left panel). The mean 616 value of $\log \alpha_{\rm vir}$ for clumps without ¹³CO counterparts, 617 as determined by checking for direct spatial overlap, is 618 1.26, compared to 0.80 for clumps with ¹³CO counter-619 parts (thus, the clumps detected in both lines have a 620 factor of **3 lower** $\alpha_{\rm vir}$).

To better understand why the ¹²CO structures appear 621 622 less likely than ¹³CO structures to be bound, we need 623 to bear in mind the sensitivity limitations imposed by 624 the data. Most (53%) CO clumps do not appear as-⁶²⁵ sociated with ¹³CO, whereas all ¹³CO clumps overlap ₆₂₆ with a ¹²CO clump. This reflects the fact that struc-627 tures with lower CO surface brightness are less likely $_{\rm 628}$ to be detected in $^{13}{\rm CO:}~\langle \log \Sigma_{\rm lum} \rangle~=~1.8$ for struc-₆₂₉ tures with ¹³CO counterparts while $\langle \log \Sigma_{lum} \rangle = 1.2$ 630 for those without ¹³CO counterparts. A typical clump $_{631}$ with a 1 km s⁻¹ line width requires an integrated inten- $_{632}$ sity of 0.55 K km s⁻¹ to be detected at the 4 σ level. As 633 indicated by vertical dashed lines in Figure 8, this in-₆₃₄ tensity limit translates to minimum $\log \Sigma_{\rm lum} = 0.55$ for ₆₃₅ detection in ¹²CO but a minimum $\log \Sigma_{\rm LTE} = 1.5$ for 636 detection in ¹³CO (for $T_{\text{ex}} = 8$ K). Thus, the majority ⁶³⁷ of ¹²CO structures would not be expected to have ¹³CO ⁶³⁸ counterparts because the weaker ¹³CO line was observed $_{639}$ to the same brightness sensitivity as the stronger ^{12}CO 640 line. If lower surface density structures are preferen-641 tially unbound, then such structures will also tend to be $_{642}$ detected only in 12 CO.

We note that several caveats apply to the interpreta-643 ⁶⁴⁴ tion of the "boundedness" plots. As other authors have 645 pointed out (e.g., Dib et al. 2007; Ballesteros-Paredes 646 et al. 2011), objects that are far from equilibrium can 647 still appear close to SVE as a result of approximate en-648 ergy equipartition between kinetic and gravitational en-⁶⁴⁹ ergies. Furthermore, there are systematic uncertainties ⁶⁵⁰ in estimating the values in both axes that are not in- $_{651}$ cluded in the formal uncertainties. For $\Sigma_{\rm vir}$ these in-652 clude the spherical approximation and the definitions 653 employed for measuring size and line width. For Σ_{lum} , $_{654}$ uncertainties arising from the adoption of a single $X_{\rm CO}$ ⁶⁵⁵ factor are ignored. In particular, in regions with strong ⁶⁵⁶ photodissociating flux it is possible for low column den-⁶⁵⁷ sity ¹²CO structures to be gravitationally bound by sur-⁶⁵⁸ rounding CO-dark gas (see §5 for further discussion). $_{659}$ For Σ_{LTE} , deviations from LTE conditions or errors in 660 our assumed $T_{\rm ex}$ may affect the reliability of $\Sigma_{\rm LTE}$, al-⁶⁶¹ though from Equation 3 a shift in $T_{\rm ex}$ tends to be partially compensated by the resulting shift in τ_{13} and thus ₆₆₃ yield a similar value for Σ_{LTE} . An error in the assumed ⁶⁶⁴ ¹³CO abundance would produce a more systematic shift. ⁶⁶⁵ but would likely affect the cloud as a whole.

4.4. Position dependent properties

666

To assess position-dependent variations in the sizelinewidth and boundedness relations, we examine these relations color-coded by projected angular distance from the R136 cluster (θ_{off} in Tables 1–4) in Figures 9 and 10. We also plot the binned correlations for the top and

579

585

Figure 7. Boundedness diagram for dendrogram structures identified in the feathered data. Left: ¹²CO structures, with surface density based on a constant $X_{\rm CO}$ factor. Right: ¹³CO structures, with surface density based on the LTE approximation. Plot symbols indicate the type of dendrogram structure (trunks, branches, or leaves), with binned averages shown in yellow. The diagonal 1:1 line represents simple virial equilibrium, while the falling and rising solid green (dot-dashed red) curve represents pressure-bounded equilibrium with an external pressure of 10^4 (10^6) cm⁻³ K.

Figure 8. Boundedness diagrams for SCIMES clumps identified in the feathered data. Virial and pressure-bounded equilibrium curves are the same as in Figure 7. Left: ¹²CO clumps, with surface density based on a constant $X_{\rm CO}$ factor. Points are distinguished according to spatial overlap with any ¹³CO dendrogram structure (triangles) or ¹³CO clumps (circles). Right: ¹³CO clumps, with surface density based on the LTE approximation. Vertical lines denote approximate 4σ sensitivity limits for a 1 km s⁻¹ line width; the ¹³CO sensitivity assumes $T_{\rm ex}$ =8 K.

Figure 9. Correlations between size and linewidth (*left*), and Σ_{vir} and Σ_{lum} (*right*), for the same ¹²CO dendrogram structures plotted in Figures 5 and 7. Distance from R136 is indicated by point colors and binned values (bins shown are averages of the top and bottom quartiles). Since $\Sigma_{\text{vir}} \propto \sigma_v^2/R$, higher line width at a given size results in higher Σ_{vir} for structures closer to R136.

Figure 10. Same as Figure 9, but for 13 CO dendrogram structures and with mass surface density based on the LTE approximation.

Figure 11. Virial surface density Σ_{vir} (top row) and virial parameter α_{vir} (bottom row) as a function of distance from R136 for ¹²CO structures (left) and ¹³CO structures (right). The colors of the plotted points represent mass surface density estimates, namely CO surface brightness for ¹²CO and LTE column density for ¹³CO. Binned values represent the highest and lowest 25% of the overall mass surface density and are plotted when two or more such points fall within a bin. Gray steps indicate the median value in each bin. There is a decreasing trend in Σ_{vir} with distance, especially for the highest surface density structures, but no clear trend in α_{vir} .

⁶⁷² bottom quartiles of angular distance from R136. We note that projected angular distance is only a crude in-673 674 dication of environment as it neglects the full 3-D struc-⁶⁷⁵ ture of the region. We find that regions at large angular 676 distances are quite consistent with the Solomon et al. 1987) size-linewidth relation (except for the small-677 678 est structures, which have large uncertainties in the deconvolved size), whereas regions at smaller dis-679 tances lie offset above it, consistent with previous studies 680 (Indebetouw et al. 2013; Nayak et al. 2016; Wong et al. 681 2019). The approximate offset between the lowest and 682 highest quartile of distances, at a fiducial size of 1 pc, is 683 0.16 dex (factor of 1.4) for 12 CO and **0.22** dex (factor of 684 .7) for 13 CO. As noted in §4.2, an even larger (factor 1 685 ~ 2) offset is found if one restricts the analysis to the of 686 Cycle 0 field. 687

When it comes to gravitational boundedness, the picture is more complex. Structures close to R136 show ⁶⁹⁰ higher $\Sigma_{\rm vir}$ in Figures 9 and 10, as expected given that 691 $\Sigma_{\rm vir}$ scales with the size-linewidth coefficient k. How-⁶⁹² ever, they exhibit no tendency to be more or less bound: ₆₉₃ ¹²CO structures with low Σ_{lum} show excess kinetic en-⁶⁹⁴ ergy relative to SVE at *all* distances from R136. Fig-⁶⁹⁵ ure 11 provides a closer look at trends in $\Sigma_{\rm vir}$ and $\alpha_{\rm vir}$ ⁶⁹⁶ with distance from R136. High surface density struc-⁶⁹⁷ tures, represented by cyan circles, are close to virial 698 equilibrium ($|\log \alpha_{\rm vir}| \lesssim 0.5$) at all distances but tend ⁶⁹⁹ to be concentrated towards R136, largely accounting for $_{700}$ the higher $\Sigma_{\rm vir}$ observed in the central regions. Be-⁷⁰¹ yond 200" from R136 (to the right of the vertical 702 dashed line), high surface density structures are ⁷⁰³ largely absent. Meanwhile, the low surface density ⁷⁰⁴ ¹²CO structures, represented by red circles, are unbound $_{705}$ (log $\alpha_{\rm vir} \gtrsim 1$) at all distances from R136. The median ⁷⁰⁶ value of $\log \alpha_{\rm vir}$ (represented by the gray steps) is 707 largely unchanged with distance.

Figure 12. Properties of leaf dendrogram structures distinguished by positional coincidence with ¹²CO-identified filaments. Note that histogram bars are superposed (rather than stacked) and unresolved structures have been excluded. The top row shows the virial parameter α_{vir} and its constituent quantities Σ_{vir} and Σ_{lum} for the ¹²CO leaves, whereas the bottom row shows the same for the ¹³CO leaves. The ¹²CO structures on filaments tend to have lower α_{vir} driven by higher surface density, whereas ¹³CO structures are exclusively found on filaments.

4.5. Association with filaments

Galactic studies that have surveyed dense 709 710 prestellar cores at far-infrared or submillimeter wavelengths (e.g., Fiorellino et al. 2021) have 711 demonstrated a strong positional association of 712 713 dense cores with filaments. Here we conduct a preliminary assessment of this association in 30 714 715 Dor by comparing the dendrogram leaf struc-716 tures to the filament skeleton derived by Fil-⁷¹⁷ **Finder.** We present histograms of $\alpha_{\rm vir}$, $\Sigma_{\rm vir}$, and $\Sigma_{\rm lum}$ (and their analogues in ^{13}CO) for the leaf structures in 718 ⁷¹⁹ Figure 12, distinguishing leaves by whether or not their actual structure boundaries (not their fit-720 721 ted Gaussians) overlap with the FilFinder skele-722 ton. Such overlaps must be viewed cautiously as both the structures and the filaments are 723 identified using the same data set. Indeed, the 725 SCIMES clumps are largely coincident with the 726 FilFinder skeleton (Figure 4). In contrast, the ¹²CO leaves constitute a large set of indepen-727 728 dent structures, and given their small typical $_{729}$ sizes, a substantial fraction ($\sim 1/3$) are not coin-730 cident with the skeleton, allowing us to compare 731 the properties of leaves located on and off of fil-732 aments. Not surprisingly, the filament-associated

⁷³³ leaves tend to have higher Σ_{lum} ; in total they represent ⁷³⁴ **93%** of the total mass in leaves. However, their values ⁷³⁵ of Σ_{vir} are very similar to those of leaves which are not ⁷³⁶ on filaments, and as a result the leaves on filaments tend ⁷³⁷ to have lower α_{vir} (stronger gravitational binding). The ⁷³⁸ formation of filaments is therefore plausibly related to ⁷³⁹ gravity, a hypothesis supported by the **fact that** ¹³**CO** ⁷⁴⁰ **leaves**—which trace higher density material—**are ex-**⁷⁴¹ **clusively associated** with the ¹²CO filaments.

Further analysis of the FilFinder outputs will
be deferred to a future paper where we will collectively examine the properties and positional
associations of YSOs, dense clumps, and filaments.

747 5. DISCUSSION AND CONCLUSIONS

⁷⁴⁸ We have presented initial results from an ALMA mo-⁷⁴⁹ saic of CO(2–1) and ¹³CO(2–1) emission from the molec-⁷⁵⁰ ular cloud associated with the 30 Dor H II region in the ⁷⁵¹ LMC, expanding upon the Cycle 0 map areal coverage ⁷⁵² by a factor of ~40. The emission exhibits a highly fil-⁷⁵³ amentary structure (Figures 2 and 4) with many of the ⁷⁵⁴ longest filaments oriented radially with respect to "hub" ⁷⁵⁵ regions nearer the cloud center. The cloud's relatively ⁷⁵⁶ large velocity width is resolved into several distinct com-⁷⁵⁷ ponents, with the bulk of the emission at lower radial

708

⁷⁵⁸ velocity (Figures 1 and 3). We find that structures at ⁷⁵⁹ a given size show decreasing line width with increasing ⁷⁶⁰ distance from the central R136 cluster (Figures 5 and ⁷⁶¹ 6), such that at the largest distances the normalization 762 of the line width vs. size relation is consistent with the 763 Galactic clouds studied by S87. However, we do not ⁷⁶⁴ find that distance from R136 correlates with the gravi-⁷⁶⁵ tational boundedness of structures (Figure 11). Rather, ⁷⁶⁶ low surface density ¹²CO structures tend to be unbound, 767 whereas high surface density structures (which more ⁷⁶⁸ closely follow the filamentary network, Figure 12, and $_{769}$ comprise most of the structures observed in 13 CO) tend 770 to be bound. The higher line widths of clumps near 771 R136 then largely reflects the higher surface density of clumps in this region. 772

While the unbound (high α_{vir}) clumps are found 773 774 throughout the cloud and are not limited to the smallest "leaves" in the dendrogram hierarchy, they tend not to 775 776 overlap the filament skeletons, suggesting a more diffuse ⁷⁷⁷ structure or distribution. In total, 12% of the total CO-778 based mass in SCIMES clumps is located in clumps with $_{779} \log \alpha_{\rm vir} > 1$, whereas 44% of the mass is in clumps with $_{780} \log \alpha_{\rm vir} < 0.5$. Here we briefly discuss three possible interpretations of the high $\alpha_{\rm vir}$ structures. 781

Pressure-bounded structures-In super star cluster-782 783 forming environments such as the Antennae galaxy 784 merger (Johnson et al. 2015; Finn et al. 2019), massive 785 molecular clouds are observed with virial masses well ⁷⁸⁶ above the SVE line, implying large external pressures $_{787}$ $(P/k_B \sim 10^8 - 10^9 \text{ cm}^{-3} \text{ K})$ in order to be in equilibrium. ⁷⁸⁸ Although the estimated H II region pressure of $\sim 10^{-9}$ $_{789}$ dyn cm⁻² or $P/k_B \sim 7 \times 10^6$ cm⁻³ K in the 30 Dor ⁷⁹⁰ region (Lopez et al. 2011) would be sufficient to confine ⁷⁹¹ the observed $\alpha_{\rm vir} > 1$ clumps (Figure 8), the distribu-⁷⁹² tion of points in the Figures 7 and 8 is not consistent 793 with a constant external pressure, but rather suggest ⁷⁹⁴ a smoothly increasing virial parameter with decreasing ⁷⁹⁵ surface density. If instead there were large variations in ⁷⁹⁶ external pressure, these would be expected to correlate ⁷⁹⁷ with distance from R136 (Lopez et al. 2011), but we 798 do not find that the offset distance significantly affects ⁷⁹⁹ boundedness (Figure 9). We therefore view a pressure-⁸⁰⁰ bound equilibrium state to be a less likely scenario.

Dispersing molecular structures—The unbound, low-801 ⁸⁰² column density ¹²CO structures may represent molec-⁸⁰³ ular cloud material that exhibits excess kinetic energy ⁸⁰⁴ as a result of being dispersed by energetic feedback. ⁸⁰⁵ The unusual concentration of massive stars in 30 Dor ⁸⁰⁶ would then could account for the high frequency of such ⁸⁰⁷ clumps, as similar column density $(1 < \log \Sigma_{\text{lum}} < 2)$ 808 structures in other LMC clouds tend to lie closer to ⁸⁰⁹ simple virial equilibrium (Wong et al. 2019). A crude sine estimate of the total kinetic energy $(\mathcal{T} = 3M_{\text{lum}}\sigma_v^2)$ in 11 ¹²CO clumps with log $\alpha > 1$ is 7×10^{48} erg. Using the ⁸¹² estimate of mechanical stellar wind feedback from R136 $_{813}$ of 1.2×10^{39} erg s⁻¹ from Bestenlehner et al. (2020), it $_{\rm s14}$ would take only ~ 200 yr for R136 to inject this amount ⁸¹⁵ of energy. (For comparison, the total kinetic energy in $_{116}$ all clumps is 7×10^{49} erg, with a corresponding time $_{\rm s17}$ scale of ~ 2000 yr.) This suggests that stellar feedback ^{\$18} could easily account for the excess line widths seen in the ^{\$19} unbound structures, even if the coupling of the feedback ⁸²⁰ energy into the molecular cloud motions is relatively in-⁸²¹ efficient. The energetic feedback should preferentially ⁸²² and effectively disrupt low column density structures, ⁸²³ as few such structures lie near the SVE line.

Massive CO-dark envelopes—If there is a substantial 825 amount of hidden molecular mass which is not traced ⁸²⁶ by ¹²CO or ¹³CO emission; i.e. "CO-dark" gas, low 827 CO intensities may disguise considerably larger column 828 densities, and overall virial equilibrium may still hold ⁸²⁹ once the additional mass is accounted for. The basis ⁸³⁰ of this scenario (see Chevance et al. 2020, and refer-⁸³¹ ences therein) is efficient CO photodissociation relative $_{832}$ to H_2 , since the latter is able to self-shield whereas CO ⁸³³ is mainly shielded by dust. Since 30 Dor is both a metal ⁸³⁴ poor and highly irradiated environment, the amount of ⁸³⁵ CO-dark gas may be substantial, especially for clouds or ⁸³⁶ clumps where the total gas column density is low. This ⁸³⁷ effect is clearly illustrated in Jameson et al. (2018, Fig-⁸³⁸ ure 20), where at low A_V the $X_{\rm CO}$ factor is increased ⁸³⁹ by approximately an order of magnitude compared to ⁸⁴⁰ the Galactic value. In the 30 Dor region, based on PDR ⁸⁴¹ modeling of far-infrared emission lines, Chevance et al. $_{842}$ (2020) conclude that the $X_{\rm CO}$ factor is enhanced by fac-⁸⁴³ tors of 4–20 compared to the Galactic value. Correcting ⁸⁴⁴ for this enhancement would increase log Σ_{lum} by 0.4– ⁸⁴⁵ 1.1 (given our adopted $X_{\rm CO}$) and bring the low column 846 density structures shown in Figures 11 and 12 closer to ⁸⁴⁷ virial equilibrium. We caution, however, that the virial ⁸⁴⁸ surface density $\Sigma_{\rm vir}$ is also affected by the underestimate ⁸⁴⁹ of R and σ_v resulting from CO-dark gas; the net effect ⁸⁵⁰ on $\alpha_{\rm vir}$ depends sensitively on the adopted den-⁸⁵¹ sity and velocity dispersion profiles within the ⁸⁵² clumps (O'Neill et al. 2022). In addition, the CO-853 dark gas would need to be preferentially distributed in ⁸⁵⁴ low column density clouds, since the high column den-⁸⁵⁵ sity clouds do not show an excess of apparent kinetic 856 energy.

Future studies are still needed to test these interpre-857 stations and to place 30 Dor in the context of its larger ⁸⁵⁹ environment and the LMC as a whole. Wider-field imag-⁸⁶⁰ ing with ALMA should be able to incorporate regions which are outside the reach of massive star feedback and examine the consequences for clump properties. In addition, detailing the extent and contribution of the CO-dark gas (e.g., using [C I] and [C II] mapping) over a sample of molecular clouds with matched CO mapping will clarify the effects that this component may have on the observed properties of CO clumps.

⁸⁶⁸ We thank the anonymous referee for helpful ⁸⁶⁹ suggestions that substantially improved the pa-⁸⁷⁰ per. This paper makes use of the following ALMA data: ADS/JAO.ALMA #2019.1.00843.S. ALMA is a 871 ⁸⁷² partnership of ESO (representing its member states), ⁸⁷³ NSF (USA) and NINS (Japan), together with NRC (Canada), NSC and ASIAA (Taiwan), and KASI (Re-874 ⁸⁷⁵ public of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by 876 877 ESO, AUI/NRAO and NAOJ. The National Radio As-878 tronomy Observatory is a facility of the National Science ⁸⁷⁹ Foundation operated under cooperative agreement by Associated Universities, Inc. T.W., M.M., and R.I. ac-880 knowledge support from collaborative NSF AAG awards 881 882 2009849, 2009544, and 2009624. A.D.B. acknowledges ⁸⁸³ support from NSF AAG award 2108140. M.R. wishes ⁸⁸⁴ to acknowledge support from ANID (Chile) through FONDECYT grant No. 1190684. K.T. acknowledges 885 ⁸⁸⁶ support from NAOJ ALMA Scientific Research ⁸⁸⁷ grant Nos. 2022-22B, and Grants-in-Aid for Scientific Research (KAKENHI) of Japan Society 888 ⁸⁸⁹ for the Promotion of Science (JSPS; grant Nos., ⁸⁹⁰ JP21H00049, and JP21K13962). This project has ⁸⁹¹ received funding from the European Research Council ⁸⁹² (ERC) under the European Union's Horizon 2020 re-⁸⁹³ search and innovation programme (Grant agreement No. ⁸⁹⁴ 851435). The authors acknowledge assistance from Al-⁸⁹⁵ legro, the European ALMA Regional Center node in the 896 Netherlands.

⁸⁹⁷ Facilities: ALMA, HST

Software: CASA (McMullin et al. 2007),
astrodendro (http://www.dendrograms.org), Kapteyn
(https://kapteyn.readthedocs.io), FilFinder (Koch &
Rosolowsky 2015), SCIMES (Colombo et al. 2015), Astropy (Astropy Collaboration et al. 2013, 2018), APLpy
(Robitaille & Bressert 2012).

REFERENCES

- ⁹⁰⁴ Astropy Collaboration, Robitaille, T. P., Tollerud, E. J.,
- 905 et al. 2013, A&A, 558, A33,
- 906 doi: 10.1051/0004-6361/201322068
- 907 Astropy Collaboration, Price-Whelan, A. M., Sipőcz, B. M.,
- et al. 2018, AJ, 156, 123, doi: 10.3847/1538-3881/aabc4f Ballesteros-Paredes, J., Hartmann, L. W.,
- 910 Vázquez-Semadeni, E., Heitsch, F., & Zamora-Avilés,
- 911 M. A. 2011, MNRAS, 411, 65,
- 912 doi: 10.1111/j.1365-2966.2010.17657.x
- 913 Bestenlehner, J. M., Crowther, P. A., Caballero-Nieves,
- 914 S. M., et al. 2020, MNRAS, 499, 1918,
- 915 doi: 10.1093/mnras/staa2801

- 916 Bolatto, A. D., Leroy, A., Israel, F. P., & Jackson, J. M.
- 917 2003, ApJ, 595, 167, doi: 10.1086/377230
- 918 Bolatto, A. D., Wolfire, M., & Leroy, A. K. 2013, ARA&A,
- 919 51, 207, doi: 10.1146/annurev-astro-082812-140944
- 920 Chevance, M., Madden, S. C., Lebouteiller, V., et al. 2016,
- 921 A&A, 590, A36, doi: 10.1051/0004-6361/201527735
- 922 Chevance, M., Madden, S. C., Fischer, C., et al. 2020,
- ⁹²³ MNRAS, 494, 5279, doi: 10.1093/mnras/staa1106
- 924 Colombo, D., Rosolowsky, E., Ginsburg, A., Duarte-Cabral,
- ⁹²⁵ A., & Hughes, A. 2015, MNRAS, 454, 2067
- 926 Crowther, P. A., Schnurr, O., Hirschi, R., et al. 2010,
- 927 MNRAS, 408, 731, doi: 10.1111/j.1365-2966.2010.17167.x

- 928 Crowther, P. A., Caballero-Nieves, S. M., Bostroem, K. A.,
- et al. 2016, MNRAS, 458, 624, 929
- doi: 10.1093/mnras/stw273 930
- 931 De Marchi, G., Panagia, N., Sabbi, E., et al. 2016,
- MNRAS, 455, 4373, doi: 10.1093/mnras/stv2528 932
- 933 Dib, S., Kim, J., Vázquez-Semadeni, E., Burkert, A., &
- Shadmehri, M. 2007, ApJ, 661, 262, doi: 10.1086/513708 934
- 935 Doran, E. I., Crowther, P. A., de Koter, A., et al. 2013,
- A&A, 558, A134, doi: 10.1051/0004-6361/201321824 936
- 937 Evans, C. J., Kennedy, M. B., Dufton, P. L., et al. 2015,
- A&A, 574, A13, doi: 10.1051/0004-6361/201424414 938
- 939 Falgarone, E., Pety, J., & Hily-Blant, P. 2009, A&A, 507, 355, doi: 10.1051/0004-6361/200810963 940
- 941 Finn, M. K., Johnson, K. E., Brogan, C. L., et al. 2019, ApJ, 874, 120, doi: 10.3847/1538-4357/ab0d1e 942
- 943 Fiorellino, E., Elia, D., André, P., et al. 2021, MNRAS,
- 500, 4257, doi: 10.1093/mnras/staa3420 944
- 945 Fujii, K., Minamidani, T., Mizuno, N., et al. 2014, ApJ,
- 796, 123, doi: 10.1088/0004-637X/796/2/123 946
- 947 Fukui, Y., Tokuda, K., Saigo, K., et al. 2019, ApJ, 886, 14, doi: 10.3847/1538-4357/ab4900 948
- 949 Garden, R. P., Hayashi, M., Gatley, I., Hasegawa, T., &
- Kaifu, N. 1991, ApJ, 374, 540, doi: 10.1086/170143 950
- Gruendl, R. A., & Chu, Y.-H. 2009, ApJS, 184, 172, 951 doi: 10.1088/0067-0049/184/1/172 952
- 953 Heikkilä, A., Johansson, L. E. B., & Olofsson, H. 1999, A&A, 344, 817 954
- 955 Heyer, M., Krawczyk, C., Duval, J., & Jackson, J. M. 2009, ApJ, 699, 1092, doi: 10.1088/0004-637X/699/2/1092 956
- 957 Hughes, A., Wong, T., Ott, J., et al. 2010, MNRAS, 406,
- 2065958
- 959 Indebetouw, R., Wong, T., Chen, C. H. R., et al. 2020,
- ApJ, 888, 56, doi: 10.3847/1538-4357/ab5db7 960
- 961 Indebetouw, R., Brogan, C., Chen, C.-H. R., et al. 2013, ApJ, 774, 73 962
- 963 Israel, F. P. 1997, A&A, 328, 471.
- https://arxiv.org/abs/astro-ph/9709194 964
- 965 Israel, F. P., de Graauw, T., Johansson, L. E. B., et al.
- 2003, A&A, 401, 99, doi: 10.1051/0004-6361:20021582 966
- Jameson, K. E., Bolatto, A. D., Leroy, A. K., et al. 2016, 967 ApJ, 825, 12, doi: 10.3847/0004-637X/825/1/12 968
- 969 Jameson, K. E., Bolatto, A. D., Wolfire, M., et al. 2018,
- ApJ, 853, 111, doi: 10.3847/1538-4357/aaa4bb 970
- 971 Johansson, L. E. B., Greve, A., Booth, R. S., et al. 1998, A&A, 331, 857 972
- 973 Johnson, K. E., Leroy, A. K., Indebetouw, R., et al. 2015,
- ApJ, 806, 35, doi: 10.1088/0004-637X/806/1/35 974
- 975 Kalari, V. M., Rubio, M., Elmegreen, B. G., et al. 2018,
- ApJ, 852, 71, doi: 10.3847/1538-4357/aa99dc 976

- 977 Koch, E. W., & Rosolowsky, E. W. 2015, MNRAS, 452, 3435, doi: 10.1093/mnras/stv1521 978
- 979 Ksoll, V. F., Gouliermis, D. A., Klessen, R. S., et al. 2018,
- MNRAS, 479, 2389, doi: 10.1093/mnras/sty1317 980
- Larson, R. B. 1981, MNRAS, 194, 809, 981
- doi: 10.1093/mnras/194.4.809 982
- 983 Lopez, L. A., Krumholz, M. R., Bolatto, A. D., Prochaska,
- J. X., & Ramirez-Ruiz, E. 2011, ApJ, 731, 91, 984
- doi: 10.1088/0004-637X/731/2/91 985
- 986 Mac Low, M.-M., & Klessen, R. S. 2004, Reviews of Modern Physics, 76, 125, doi: 10.1103/RevModPhys.76.125 987
- 988 McMullin, J. P., Waters, B., Schiebel, D., Young, W., &
- Golap, K. 2007, in Astronomical Society of the Pacific 989
- Conference Series, Vol. 376, Astronomical Data Analysis 990
- Software and Systems XVI, ed. R. A. Shaw, F. Hill, & 991 D. J. Bell, 127 992
- 993 Minamidani, T., Mizuno, N., Mizuno, Y., et al. 2008, ApJS, 175, 485, doi: 10.1086/524038 994
- 995 Mizuno, Y., Kawamura, A., Onishi, T., et al. 2010, PASJ, 62, 51, doi: 10.1093/pasj/62.1.51 996
- 997 Nayak, O., Meixner, M., Indebetouw, R., et al. 2016, ApJ, 831, 32, doi: 10.3847/0004-637X/831/1/32 998
- Nishimura, A., Tokuda, K., Kimura, K., et al. 2015, ApJS, 999 216, 18 1000
- Okada, Y., Güsten, R., Requena-Torres, M. A., et al. 2019, 1001 A&A, 621, A62, doi: 10.1051/0004-6361/201833398 1002
- 1003 O'Neill, T. J., Indebetouw, R., Bolatto, A. D., Madden, S. C., & Wong, T. 2022, ApJ, submitted 1004
- Pellegrini, E. W., Baldwin, J. A., & Ferland, G. J. 2011, 1005
- ApJ, 738, 34, doi: 10.1088/0004-637X/738/1/34 1006
- 1007 Pietrzyński, G., Graczyk, D., Gallenne, A., et al. 2019, Nature, 567, 200, doi: 10.1038/s41586-019-0999-4 1008
- Pineda, J. L., Ott, J., Klein, U., et al. 2009, ApJ, 703, 736, 1009 doi: 10.1088/0004-637X/703/1/736 1010
- 1011 Rahner, D., Pellegrini, E. W., Glover, S. C. O., & Klessen,
- R. S. 2018, MNRAS, 473, L11, 1012
- doi: 10.1093/mnrasl/slx149 1013
- Robitaille, T., & Bressert, E. 2012, APLpy: Astronomical 1014
- Plotting Library in Python, Astrophysics Source Code 1015
- Library, record ascl:1208.017. http://ascl.net/1208.017 1016
- 1017 Rosolowsky, E. W., Pineda, J. E., Kauffmann, J., &
- Goodman, A. A. 2008, ApJ, 679, 1338 1018
- Sabbi, E., Anderson, J., Lennon, D. J., et al. 2013, AJ, 146, 1019 53, doi: 10.1088/0004-6256/146/3/53 1020
- 1021 Sabbi, E., Lennon, D. J., Anderson, J., et al. 2016, ApJS, 222, 11, doi: 10.3847/0067-0049/222/1/11
- 1022
- 1023 Saigo, K., Onishi, T., Nayak, O., et al. 2017, ApJ, 835, 108, doi: 10.3847/1538-4357/835/1/108 1024

- 1025 Schneider, F. R. N., Ramírez-Agudelo, O. H., Tramper, F.,
- 1026 et al. 2018, A&A, 618, A73,
- 1027 doi: 10.1051/0004-6361/201833433
- ¹⁰²⁸ Seale, J. P., Meixner, M., Sewiło, M., et al. 2014, AJ, 148,
- 1029 124, doi: 10.1088/0004-6256/148/6/124
- ¹⁰³⁰ Selman, F. J., & Melnick, J. 2013, A&A, 552, A94,
- 1031 doi: 10.1051/0004-6361/201220396
- 1032 Solomon, P. M., Rivolo, A. R., Barrett, J., & Yahil, A.
- 1033 1987, ApJ, 319, 730, doi: 10.1086/165493
- $_{1034}$ Sorai, K., Hasegawa, T., Booth, R. S., et al. 2001, ApJ,
- 1035 551, 794, doi: 10.1086/320212
- Tokuda, K., Fukui, Y., Harada, R., et al. 2019, ApJ, 886,
 15, doi: 10.3847/1538-4357/ab48ff
- 1038 Torres-Flores, S., Barbá, R., Maíz Apellániz, J., et al. 2013,
- 1039 A&A, 555, A60, doi: 10.1051/0004-6361/201220474

- ¹⁰⁴⁰ Townsley, L. K., Broos, P. S., Feigelson, E. D., et al. 2006,
 ¹⁰⁴¹ AJ, 131, 2140, doi: 10.1086/500532
- ¹⁰⁴² Walborn, N. R., Barbá, R. H., & Sewiło, M. M. 2013, AJ,
 ¹⁰⁴³ 145, 98, doi: 10.1088/0004-6256/145/4/98
- 1044 Whitney, B. A., Sewilo, M., Indebetouw, R., et al. 2008,
- 1045 AJ, 136, 18, doi: 10.1088/0004-6256/136/1/18
- ¹⁰⁴⁶ Wong, T., Hughes, A., Ott, J., et al. 2011, ApJS, 197, 16,
 ¹⁰⁴⁷ doi: 10.1088/0067-0049/197/2/16
- ¹⁰⁴⁸ Wong, T., Hughes, A., Tokuda, K., et al. 2017, ApJ, 850,
 ¹⁰⁴⁹ 139, doi: 10.3847/1538-4357/aa9333
- 1050 —. 2019, ApJ, 885, 50, doi: 10.3847/1538-4357/ab46ba