

Quasar radiation transforms the gas in a merging companion galaxy

Sergei Balashev^{1*†}, Pasquier Noterdaeme^{2,3*†}, Neeraj Gupta⁴,
 Jens-Kristian Krogager^{3,5}, Francoise Combes⁶, Sebastián López⁷,
 Patrick Petitjean², Alain Omont², Raghunathan Srianand⁴,
 Rodrigo Cuellar⁷

¹Department of Theoretical Astrophysics, Ioffe Institute, Politehnicheskaya ul., 26, Saint-Peterburg, 194021, Russia.

²Institut d'Astrophysique de Paris, CNRS-SU, UMR 7095, 98bis bd Arago, 75014 Paris, France.

³French-Chilean Laboratory for Astronomy, IRL 3386, CNRS and Universidad de Chile, Casilla 36-D, Santiago, Chile.

⁴Inter-University Centre for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, 411 007, Pune, India.

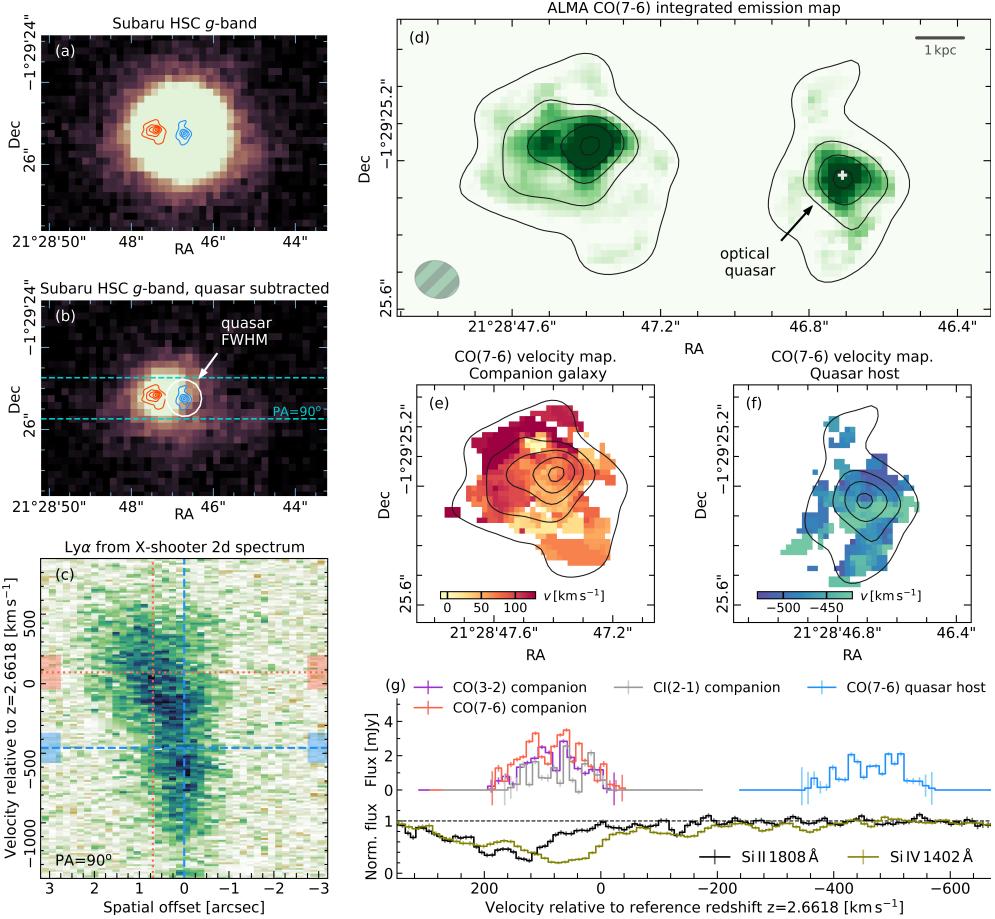
⁵Centre de Recherche Astrophysique de Lyon, UMR 5574, Université Lyon I, ENS de Lyon, CNRS, F-69230 Saint-Genis-Laval, Lyon, France.

⁶Collège de France, PSL University, Sorbonne University, CNRS, LERMA, Observatoire de Paris, 61 avenue de l'Observatoire, 75014, Paris, France.

⁷Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago, Chile.

*Corresponding author(s). E-mail(s): s.balashev@gmail.com; noterdaeme@iap.fr;

[†]These authors contributed equally to this work.

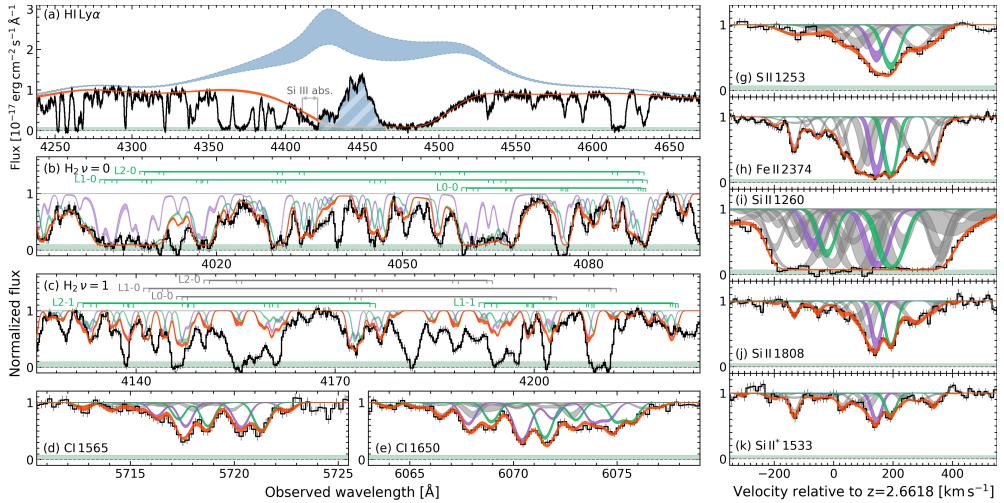

Quasars, powered by gas accretion onto supermassive black holes,^{1,2} rank among the most energetic objects of the Universe.^{3,4} While they are thought to be ignited by galaxy mergers^{5,6,7,8,9,10,11} and affect the surrounding gas,^{18,12,13,14} observational constraints on both processes remain scarce.^{15,16,17} Here we unveil a major merging system at redshift $z \approx 2.7$, and demonstrate that radiation from the quasar in one galaxy directly alters the gas properties in the other galaxy. Our findings reveal that the galaxies, with

30 centroids separated by only a few kiloparsecs and approaching each other at speed
31 $\approx 550 \text{ km s}^{-1}$, are massive, form stars, and contain a substantial molecular mass. Yet,
32 dusty molecular gas seen in absorption against the quasar nucleus is highly excited and
33 confined within cloudlets with densities $\sim 10^5 - 10^6 \text{ cm}^{-3}$ and sizes $<0.02 \text{ pc}$, several
34 orders of magnitude more compact than those observed in intervening (non-quasar)
35 environments. This is also approximately 10^5 times smaller than currently resolvable
36 through molecular-line emission at high redshifts. We infer that, wherever exposed to
37 the quasar radiation, molecular gas is disrupted, leaving behind surviving dense clouds
38 too small to give birth to new stars. Our results not only underscore the role of major
39 galaxy mergers in triggering quasar activity, but also reveal localized negative feedback
40 as a profound alteration of internal gas structure which likely hampers star formation.

41 We combine unique millimeter and optical observations of the quasar
42 J012555.11–012925.00 to investigate its galactic environment and directly assess the impact
43 of its intense radiation on the physical state and small-scale structure of the molecular gas
44 observed in absorption.¹⁹ In Fig. 1, we show that even though the optical image (a) is dom-
45 inated by the overwhelming quasar light, a careful subtraction of the quasar’s point spread
46 function reveals the presence of a companion galaxy and a structure extending around over
47 more than 20 kpc in visible light (b). Our high spatial resolution ALMA observations of the
48 dense molecular component (d) reveal that the centroids of the two galaxies –quasar host and
49 companion– are separated by only $\sim 0.7 \text{ arcsec}$ on the plane of the sky, that is, a physical pro-
50 jected distance of about 5 kpc at redshift $z_{\text{syst}} = 2.6618$. The companion galaxy has a slightly
51 higher apparent redshift than the quasar host-galaxy, with a line-of-sight velocity relative to
52 the quasar, obtained from the CO(7-6) emission lines, of about 550 km s^{-1} (e, f and g).

53 The use of different slit orientations during X-shooter observations allowed us to extract
54 both the quasar (PA=0° and PA=90°) and the companion galaxy (PA=90°) optical spectra.
55 A key observation is the presence of strong absorptions by ionised, neutral and molecular
56 gas in the quasar spectrum, at the redshift of the companion galaxy (as shown in panel g in
57 Fig. 1 and in Fig. 2). The companion galaxy must therefore be situated in the foreground,
58 showing that the objects are also approaching each other, indicating a merging scenario. In
59 addition, the absorption lines conveniently remove the otherwise outshining light from the
60 quasar central engine, acting like a coronagraph which reveals emission from the host galaxy
61 at various wavelengths. This is seen as a spatially resolved residual in the trough of saturated
62 metal and molecular hydrogen absorption lines (see Methods). Remarkably, the damped Ly-
63 α absorption due to neutral gas from the companion galaxy enables the detection of Ly- α
64 emission extending from the location of the quasar host to that of the companion galaxy (in
65 both spatial and velocity spaces, panel c in Fig. 1). This implies the presence of gas spread
66 over several tens of kpc, an expected characteristic of merging systems, where material is
67 stretched by tidal forces generated by strong gravitational interactions between the galaxies.

68 In order to infer the main properties of both galaxies we modelled their spectral energy
69 distribution using constraints on the ultraviolet (UV), optical and mm emission, see Fig. 3.
70 We found that the companion and quasar host galaxies are both massive, with stellar masses
71 close to $10^{11} M_{\odot}$, indicative of a major event (as opposed to minor merger when one galaxy is
72 much more massive than the other one). This might have enhanced the star-formation activity
73 in the companion galaxy, located above the main-sequence of galaxies at this redshift.²⁰ The
74 molecular masses derived from the CO emission lines are of the order of $10^{10} M_{\odot}$ for both


Fig. 1

75 the companion galaxy and that hosting the quasar. We also constrained the mass of the super
 76 massive black hole (SMBH) that powers the quasar to be about $10^8 M_\odot$ from the emission line
 77 width and continuum measurements. Given the $(5 - 10) \times 10^{46}$ erg s $^{-1}$ luminosity, the quasar
 78 must be actively accreting matter and radiating at the Eddington limit. The main properties of
 79 the galaxies and the quasar are summarized in Table 1.

80 Towards the quasar, we measure a total column density of atomic hydrogen $N(\text{H}\text{I}) \approx$
 81 $10^{21.8}$ cm $^{-2}$ ($50 M_\odot$ pc $^{-2}$). This high value, which falls in the upper range expected for most
 82 high-redshift galaxies (such as those probed by intervening systems) even given the small
 83 impact parameter,^{21,22,23,24} may arise from material stretched by tidal forces during galaxy
 84 interactions. Moreover, low-ionisation metal absorption lines (see Fig. 2) indicate that the
 85 neutral gas is kinematically distributed over ~ 400 km s $^{-1}$ (roughly coinciding with the velocity
 86 dispersion of the CO profile, see panel g of Fig. 1) and has a metallicity which is about one
 87 tenth of the Solar value, i.e. consistent with modest chemical enrichment in the companion
 88 - as opposed to high enrichment expected in the quasar's host.²⁵ The high velocity spread,

Table 1: Main properties of the merging galaxies.

Quantity	Companion galaxy	Quasar host galaxy
redshift	2.663 ± 0.001	2.656 ± 0.001
approaching velocity		$\sim 550 \text{ km s}^{-1}$
projected distance		$\sim 5 \text{ kpc}$
$\log M_{\text{SMBH}}/M_{\odot}$	—	8.3 ± 0.4
$\log M_{*}/M_{\odot}$	$10.84^{+0.12}_{-0.12}$	$10.7^{+0.3}_{-0.3}$
$\log M_{\text{H}_2}/M_{\odot}$	$10.00^{+0.05}_{-0.05}$	$9.74^{+0.07}_{-0.09}$
$\log M_{\text{dust}}/M_{\odot}$	$8.2^{+0.5}_{-0.3}$	< 8.5
SFR [$M_{\odot} \text{ yr}^{-1}$]	250^{+60}_{-50}	$\gtrsim 24^{+17}_{-11}$

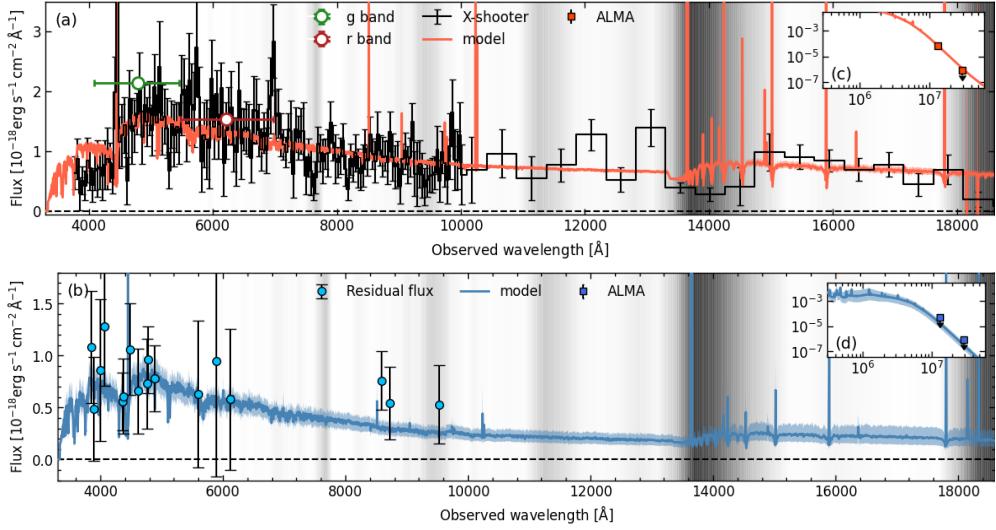
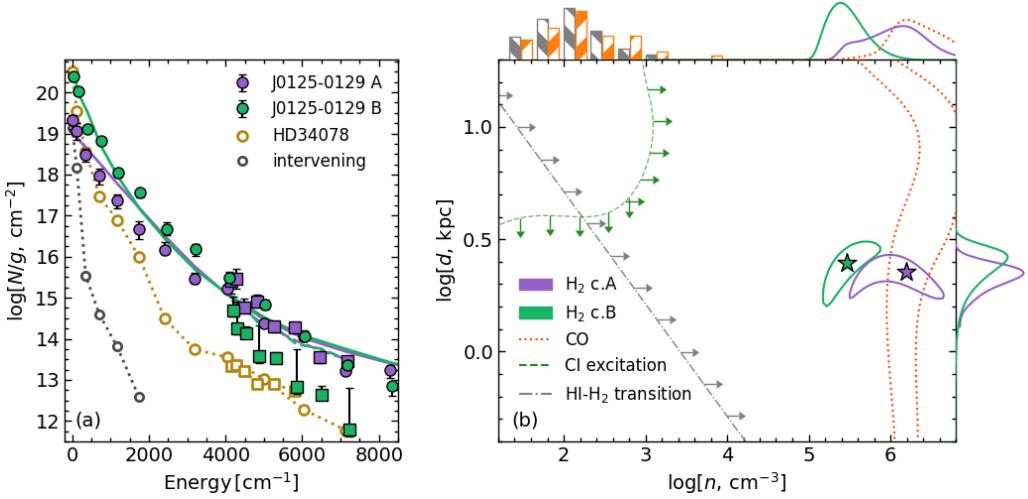


Fig. 2


especially given the metallicity,²⁶ indicates disturbed kinematics, as expected if arising from a merging system.

The absorbing gas also presents one of the highest H_2 column densities ($N(\text{H}_2) \approx 10^{21.2} \text{ cm}^{-2}$) ever directly detected in quasar spectra,^{27,28} distributed across two main velocity components. But the true exceptional nature of the H_2 gas is to be appreciated in its excitation diagram, shown in Fig. 4: the molecular gas presents unusual population of H_2 vibrational-rotational levels, with excitation temperatures far exceeding those typically observed in our Galaxy or intervening systems.^{29,30} Notably, we detect, for the first time in absorption at high redshift, lines from the first excited vibrational state, with energy levels at $E \gtrsim 4000 \text{ cm}^{-3}$. The excitation observed here is even stronger than what is seen in photo-dissociation regions very close to bright, recently formed stars.³¹

Modelling the excitation of H_2 with the Meudon PDR code, we infer the UV field to be about a thousand times stronger than the average Milky-Way field. Comparing the quasar luminosity with the derived incident UV flux constrains the absorbing gas to be within at most

Fig. 3

Fig. 4

103 a few kpc from the quasar (right panel of Fig. 4), similar to the transverse distance between
104 the host and companion galaxy, in line with the merging scenario.

105 In addition, the presence and the excitation of H_2 constrains the gas density to be $n_{\text{H}} \sim$
106 $10^5 - 10^6 \text{ cm}^{-3}$. This very high number density is supported by the high excitation of neutral
107 carbon in three fine-structure levels and is further confirmed by the tentative detection of CO
108 absorption, which also requires high density to remain detectable under a strong UV field.
109 The high density and measured column density imply that the molecular clouds are very

110 compact, with sizes, $L \approx N/n_{\text{H}}$ (assuming constant density) of less than 0.02 pc. Remarkably,
111 the molecular clouds are then smaller than the expected light beam from the quasar emission
112 line regions, covering only the even much smaller accretion disc. This is independently
113 confirmed by differential dust-reddening between the quasar continuum emission and the
114 emission line regions. The presence of dust around a luminous quasar is also consistent with
115 galaxy interactions.^{34,35}

116 The inferred cloud densities are several orders of magnitude higher than those in intervening
117 H₂-bearing systems (i.e. far from the quasar), where values $n_{\text{H}} \sim 10^2 \text{ cm}^{-3}$ are usually
118 seen. Under normal conditions, cloud densities follow a continuous log-normal distribution,³⁶
119 implying that low-density molecular clouds $\sim 10^2 \text{ cm}^{-3}$ should outnumber those with
120 $n > 10^5 \text{ cm}^{-3}$ by several orders of magnitude. While we detect high-density molecular clouds,
121 we find no evidence of lower-density ones. This, combined with the high incident UV flux,
122 indicates that the bulk of the diffuse molecular gas exposed to the quasar radiation has been
123 photo-dissociated (within timescales of several years for the constrained UV flux), and only
124 the high density regions survived the intense radiation field.

125 We further note that while the interception of one molecular cloud by the quasar line of
126 sight is enforced by our selection on the presence of molecular hydrogen absorption lines,¹⁹
127 the detection of a second cloud (we detect H₂ in two distinct velocity components separated
128 by $\sim 60 \text{ km s}^{-1}$) suggests that the total surface covering factor cannot be extremely small. On
129 the other hand, the low average reddening of the background quasar's emission line regions
130 disfavors a high covering fraction of dusty gas over this area. Overall, the volume filling factor
131 of the molecular gas in the region exposed to the quasar radiation should hence be at most of
132 the order of r/L , where r is the size of a molecular cloud and L is the kpc-scale path-length
133 across the absorbing galaxy. We infer that the region exposed to the UV radiation from the
134 accretion disk, i.e. a few kpc across at this distance from the quasar, is very clumpy with dense
135 molecular gas surviving in no more than 10^{-5} of the volume. This in line with the growing
136 observational and theoretical evidence that different gas phases in different environments may
137 actually follow a fog-like structure,³⁷ being confined within cloudlets much smaller than the
138 overall extent of the medium.³⁸ In our case, the surviving clumps have masses $< 0.1 M_{\odot}$ so that
139 they cannot form stars, when the remaining of the companion galaxy, outside the anisotropic
140 quasar radiation field, forms stars at a high pace.

141 Our findings reveal that we are not only observing an ongoing major merger event, sup-
142 porting such mechanism as important feeding mechanism for quasars, but also, for the first
143 time, documenting dramatic feedback effects on the internal structure of the gas at unprece-
144 dented scales – 10^5 times smaller than directly resolvable through emission studies at high
145 redshifts. Specifically, we have shown that the gas within this system is being transformed
146 into a highly clumpy medium wherever exposed to the intense UV radiation powered by the
147 actively accreting supermassive black hole. This quasar disrupts the molecular gas in a manner
148 analogous to the impact of newborn stars on their parent molecular clouds.

149 References

150 ¹ Antonucci, R. Unified models for active galactic nuclei and quasars. *Annu. Rev. Astron.*
151 *Astrophys.* **31**, 473–521 (1993).

152 ² Netzer, H. Revisiting the Unified Model of Active Galactic Nuclei. *Annu. Rev. Astron.*

153 *Astrophys.* **53**, 365–408 (2015).

154 ³ Wu, X.-B. *et al.* An ultraluminous quasar with a twelve-billion-solar-mass black hole at
155 redshift 6.30. *Nature* **518**, 512–515 (2015).

156 ⁴ Wolf, C. *et al.* The accretion of a solar mass per day by a 17-billion solar mass black hole.
157 *Nature Astronomy* **8**, 520–529 (2024).

158 ⁵ Volonteri, M., Haardt, F. & Madau, P. The Assembly and Merging History of Supermassive
159 Black Holes in Hierarchical Models of Galaxy Formation. *Astrophys. J.* **582**, 559–573
160 (2003).

161 ⁶ Hopkins, P. F., Hernquist, L., Cox, T. J. & Kereš, D. A Cosmological Framework for the
162 Co-Evolution of Quasars, Supermassive Black Holes, and Elliptical Galaxies. I. Galaxy
163 Mergers and Quasar Activity. *Astrophys. J. Suppl. Ser.* **175**, 356–389 (2008).

164 ⁷ Ellison, S. L., Patton, D. R., Mendel, J. T. & Scudder, J. M. Galaxy pairs in the Sloan
165 Digital Sky Survey - IV. Interactions trigger active galactic nuclei. *Mon. Not. R. Astron.*
166 *Soc.* **418**, 2043–2053 (2011).

167 ⁸ Trakhtenbrot, B. *et al.* ALMA Observations Show Major Mergers Among the Host Galaxies
168 of Fast-growing, High-redshift Supermassive Black Holes. *Astrophys. J.* **836**, 8 (2017).

169 ⁹ Decarli, R. *et al.* Rapidly star-forming galaxies adjacent to quasars at redshifts exceeding
170 6. *Nature* **545**, 457–461 (2017).

171 ¹⁰ Goulding, A. D. *et al.* Galaxy interactions trigger rapid black hole growth: An unprece-
172 dented view from the Hyper Suprime-Cam survey. *Publ. Astron. Soc. Jpn* **70**, S37
173 (2018).

174 ¹¹ Fogasy, J., Knudsen, K. K., Drouart, G., Lagos, C. D. P. & Fan, L. SMM J04135+10277: a
175 distant QSO-starburst system caught by ALMA. *Mon. Not. R. Astron. Soc.* **493**, 3744–3756
176 (2020).

177 ¹² Dubois, Y. *et al.* The HORIZON-AGN simulation: morphological diversity of galaxies
178 promoted by AGN feedback. *Mon. Not. R. Astron. Soc.* **463**, 3948–3964 (2016).

179 ¹³ Pontzen, A. *et al.* How to quench a galaxy. *Mon. Not. R. Astron. Soc.* **465**, 547–558 (2017).

180 ¹⁴ Moiseev, A. V. & Smirnova, A. A. Ionizing Spotlight of Active Galactic Nucleus. *Galaxies*
181 **11**, 118 (2023).

182 ¹⁵ Fabian, A. C. Observational Evidence of Active Galactic Nuclei Feedback. *Annu. Rev.*
183 *Astron. Astrophys.* **50**, 455–489 (2012).

184 ¹⁶ Hirschmann, M., Somerville, R. S., Naab, T. & Burkert, A. Origin of the antihierarchical
185 growth of black holes. *Mon. Not. R. Astron. Soc.* **426**, 237–257 (2012).

186 ¹⁷ Tang, S. *et al.* Morphological asymmetries of quasar host galaxies with Subaru Hyper
187 Suprime-Cam. *Mon. Not. R. Astron. Soc.* **521**, 5272–5297 (2023).

188 ¹⁸ Hopkins, P. F. & Elvis, M. Quasar feedback: more bang for your buck. *Mon. Not. R. Astron.*
189 *Soc.* **401**, 7–14 (2010).

190 ¹⁹ Noterdaeme, P. *et al.* Proximate molecular quasar absorbers. Excess of damped H₂ systems
191 at $z_{abs} \approx z_{QSO}$ in SDSS DR14. *Astron. Astrophys.* **627**, A32 (2019).

192 ²⁰ Popesso, P. *et al.* The main sequence of star-forming galaxies across cosmic times. *Mon.*
193 *Not. R. Astron. Soc.* **519**, 1526–1544 (2023).

194 ²¹ Rahmati, A. & Schaye, J. Predictions for the relation between strong HI absorbers and
195 galaxies at redshift 3. *Mon. Not. R. Astron. Soc.* **438**, 529–547 (2014).

196 ²² Noterdaeme, P. *et al.* A connection between extremely strong damped Lyman- α systems
197 and Lyman- α emitting galaxies at small impact parameters. *Astron. Astrophys.* **566**, A24
198 (2014).

199 ²³ Krogager, J. K., Møller, P., Fynbo, J. P. U. & Noterdaeme, P. Consensus report on 25 yr
200 of searches for damped Ly α galaxies in emission: confirming their metallicity-luminosity
201 relation at $z \gtrsim 2$. *Mon. Not. R. Astron. Soc.* **469**, 2959–2981 (2017).

202 ²⁴ Krogager, J.-K. *et al.* High-redshift damped Ly α absorbing galaxy model reproducing the
203 N_{H I} - Z distribution. *Mon. Not. R. Astron. Soc.* **495**, 3014–3021 (2020).

204 ²⁵ Di Matteo, T., Croft, R. A. C., Springel, V. & Hernquist, L. The Cosmological Evolution
205 of Metal Enrichment in Quasar Host Galaxies. *Astrophys. J.* **610**, 80–92 (2004).

206 ²⁶ Ledoux, C., Petitjean, P., Fynbo, J. P. U., Møller, P. & Srianand, R. Velocity-metallicity
207 correlation for high-z DLA galaxies: evidence of a mass-metallicity relation? *Astron.*
208 *Astrophys.* **457**, 71–78 (2006).

209 ²⁷ Balashev, S. A. *et al.* CO-dark molecular gas at high redshift: very large H₂ content and
210 high pressure in a low-metallicity damped Lyman alpha system. *Mon. Not. R. Astron. Soc.*
211 **470**, 2890–2910 (2017).

212 ²⁸ Ranjan, A. *et al.* Molecular gas and star formation in an absorption-selected galaxy: Hitting
213 the bull's eye at $z \simeq 2.46$. *Astron. Astrophys.* **618**, A184 (2018).

214 ²⁹ Balashev, S. A. *et al.* X-shooter observations of strong H₂-bearing DLAs at high redshift.
215 *Mon. Not. R. Astron. Soc.* **490**, 2668–2678 (2019).

216 ³⁰ Shull, J. M., Danforth, C. W. & Anderson, K. L. A Far Ultraviolet Spectroscopic Explorer
217 Survey of Interstellar Molecular Hydrogen in the Galactic Disk. *Astrophys. J.* **911**, 55
218 (2021).

219 ³¹ Boissé, P. *et al.* A far UV study of interstellar gas towards HD 34078: High excitation H₂

220 and small scale structure. *Astron. Astrophys.* **429**, 509–523 (2005).

221 ³² Balashev, S. A. & Noterdaeme, P. Molecular hydrogen in absorption at high redshifts.
222 *Experimental Astronomy* **55**, 223–239 (2023).

223 ³³ Kosenko, D. N., Balashev, S. A. & Klimenko, V. V. Cold diffuse interstellar medium of
224 Magellanic Clouds: II. Physical conditions from excitation of C I and H₂. *Mon. Not. R.*
225 *Astron. Soc.* **528**, 5065–5079 (2024).

226 ³⁴ Urrutia, T., Lacy, M. & Becker, R. H. Evidence for Quasar Activity Triggered by Galaxy
227 Mergers in HST Observations of Dust-reddened Quasars. *Astrophys. J.* **674**, 80–96 (2008).

228 ³⁵ Glikman, E. *et al.* Major Mergers Host the Most-luminous Red Quasars at $z \sim 2$: A Hubble
229 Space Telescope WFC3/IR Study. *Astrophys. J.* **806**, 218 (2015).

230 ³⁶ Hennebelle, P. & Falgarone, E. Turbulent molecular clouds. *Astron. Astrophys. Rev.* **20**,
231 55 (2012).

232 ³⁷ McCourt, M., Oh, S. P., O’Leary, R. & Madigan, A.-M. A characteristic scale for cold
233 gas. *Mon. Not. R. Astron. Soc.* **473**, 5407–5431 (2018).

234 ³⁸ Arav, N., Barlow, T. A., Laor, A. & Blandford, R. D. Keck high-resolution spectroscopy
235 of MRK 335: constraints on the number of emitting clouds in the broad-line region. *Mon.*
236 *Not. R. Astron. Soc.* **288**, 1015–1021 (1997).

237 Figure legends:

238 **Figure 1. Optical and millimeter observations of the quasar-host companion-galaxy**
239 **system.**

240 **a**, The Subaru HSC *g*-band image is dominated by the emission from the quasar but the
241 companion galaxy is clearly seen ~ 1 arcsec to the East, after subtraction of the quasar point
242 spread function (**b**). Contours from the ALMA CO(7-6) emission map (blue and red) are
243 superimposed as well as the layout of the X-shooter slits. **d**, The integrated CO(7-6) emission
244 with ALMA, with contours from 5 with $20 \text{ mJy beam}^{-1} \text{ km s}^{-1}$ step. The hatch ellipse depicts
245 the beam size, the white cross the centroid of *g*-band emission from HSC. Velocity maps at the
246 location of the companion and the quasar host are shown in **e** and **f**, respectively. **c**, The 2D X-
247 shooter spectrum with slit position angle=90°, where the quasar light is naturally suppressed
248 by strong absorption by H I gas, providing direct access to the extended Ly- α emission from
249 the merging galaxies. The red dotted and blue dashed lines denote the centroids of the ALMA
250 CO emission of the companion and quasar host galaxies, respectively in both spatial and
251 velocity space, with the stripes indicating their velocity spread. **g** The CO and CI integrated
252 velocity profiles with the absorption profiles of metal lines in the 1D X-shooter spectrum of
253 the quasar. Error bars represent the 1σ standard deviation of the flux measurements.

254 **Figure 2. Absorption lines in the spectrum of the quasar J012555.11–012925.00.**
255 Selected portions of the 1D VLT/X-shooter spectrum of the quasar around absorption lines
256 (marked by text labels) from gas within the galaxy system are shown in black, with error bars

257 representing the 1σ standard deviation of the flux measurements. The absorption models and
 258 their associated uncertainties are depicted in red, violet, green, and gray (representing total
 259 absorption, H₂-bearing components, and other components, respectively). The blue shaded
 260 region in **(a)** indicate reconstructed quasar continuum. The horizontal lines with vertical ticks
 261 in **b** and **c** indicate the position of the individual H₂ absorption lines from different vibrational
 262 bands marked by text labels from the left. The host galaxy emission is seen as faint residual
 263 emission (green) that is not fully absorbed in lines from the merging galaxy system but
 264 remains affected by intervening Lyman- α forest lines from the intergalactic medium, which is
 265 structured on much larger scales.

266 **Figure 3. Spectral energy distribution of the companion and quasar-host galaxies.**
 267 **a**, companion. **b**, quasar-host. The data (black line and colored points) are shown together with
 268 the model fit (red and blue shaded regions). The error bars represent 0.683 credible intervals
 269 and standard error of mean in panels **a** and **b**, respectively. The top panel also indicates the
 270 HSC photometric data in g and r bands obtained after PSF subtraction of quasar. The vertical
 271 gray stripes indicate the telluric absorptions. **c**, **d** The mm-range constrained by ALMA data.

272 **Figure 4. H₂ excitation diagram and physical conditions in H₂-bearing medium.**
 273 **a**, The population of H₂ ro-vibrational levels (circles for the zero vibrational level and squares
 274 for the first vibrational level) as a function of the energy of these levels. The values observed
 275 towards J012555.11–012925.00 (purple and green for two velocity components) are compared
 276 to the excitation seen in intervening systems (grey)²⁹ and to an extreme excitation case in a
 277 Galactic system towards a runaway O star (orange).³¹ The error bars represent 0.683 credible
 278 intervals. The purple and green solid lines represent the best fit models of H₂ excitation with
 279 Meudon PDR code. **b**, The constraints on the number density, n, of the absorbing molecular
 280 gas and its distance, d, from the quasar, derived from modelling the observed H₂ excitation
 281 using the Meudon PDR code (green and violet solid lines). The solid contours represent 0.683
 282 credible interval of the 2d posterior distribution. The panel also includes constraints from C₁
 283 levels (green dashed line), CO abundance (dotted red line), and the HI/H₂ transition (dashed-
 284 dotted gray line). The 1D marginalized constraints are shown along the top and right axes
 285 of **b**. For comparison, distributions in intervening quasar absorption systems³² and in the
 286 Magellanic Clouds³³ are shown as gray and orange histograms, respectively.

287 **Methods**

288 Throughout this work, we use AB magnitudes²⁹ and a standard Λ CDM cosmology with
289 $H_0 = 70 \text{ km s}^{-1} \text{ Mpc}^{-1}$, $\Omega_\Lambda = 0.7$, and $\Omega_m = 0.3$.

290 **Observations**

291 We performed UV-to-NIR spectroscopy of J012555.11–012925.00 with X-shooter on the
292 Very Large Telescope at Paranal, obtaining five (three and two) ≈ 1 hours exposures with two
293 different position angle orientations PA=90° and 0°, respectively. The observations and data
294 reduction down to the 2D spectrum are described in the survey paper.³⁰ Here, we constructed
295 the skyline solution with a two-degree polynomial fit along the spatial axis, avoiding the quasar
296 and companion galaxy traces (~ 0.7 arcsec above the quasar) as well as the edges of the 2D
297 spectrum. For each exposure, we then extracted the one-dimensional quasar spectrum using
298 a Moffat profile, whose parameters (central position and width) were obtained over a large
299 wavelength range while masking cosmic rays and regions containing light from the companion
300 galaxy. Finally, we rescaled and combined all exposures from the different X-shooter arms
301 into a single quasar spectrum.

302 We obtained ALMA band 3 and band 6 data through project 2022.1.01792.S ,see Supple-
303 mentary Table 1. Typically, 42 - 44 antennas participated in the observations and both the
304 parallel hand correlations were recorded. For band 3, the correlator setup allowed four spec-
305 tral windows (SPWs) labelled as 23, 25, 27 and 29, centered at 108.794, 94.812, 96.806 and
306 106.868 GHz, respectively. The SPW 23 with a bandwidth of 2 GHz split into 128 frequency
307 channels was used to map the radio continuum. The other three SPWs covering 1.875 GHz with
308 480 channels were tuned to search for redshifted CO(3-2), HCO⁺ and CS spectral lines. For
309 band 6, four spectral windows i.e., SPW 21, 23, 25 and 27 were centered at 232.652, 234.569,
310 218.401 and 220.506 GHz, respectively. The SPWs 21 - 23 and 25 - 27 covered 2 GHz and
311 1.875 GHz split into 128 and 240 frequency channels, respectively. The main objective was
312 to detect redshifted CO(7-6) and C I(2-1) associated with the quasar in SPW 27. ALMA data
313 were processed using the ALMA pipeline following standard procedures and **robust** = 0.5
314 weighting of visibilities.³¹ Spectral line cubes properties are summarized in Extended Data
315 Table 1.

316 **Global properties of the galaxies**

317 We derived the main global properties of the quasar host and companion galaxies using
318 emission constraints from our X-shooter and ALMA data, supplemented with Subaru Hyper
319 Suprime Cam (HSC) deep imaging.

320 **Broad-band photometry**

321 We retrieved deep *r* and *g* band images of the field from the Hyper Suprime-Cam Legacy
322 Archive 2016³² (Extended Data Fig. 1). We fitted them with the Galfit package³³ using a
323 model consisting of a Point Spread Function (PSF) source (representing the quasar), a sky
324 background and two additional Sérsic profiles with index = 1.0, with free position, effective
325 radius, axis ratio and orientation. We obtain $g = 23.41 \pm 0.05$ and $r = 23.16 \pm 0.04$ for the

326 main Sérsic source, East of the quasar emission. The second, fainter Sérsic component has
327 $g = 24.74 \pm 0.07$ and $r = 26.2 \pm 0.9$ and extends southwest.

328 **X-shooter spectrum of the companion galaxy**

329 The companion galaxy's emission is located above the quasar trace in the 2D spectra taken
330 with position angle PA=90°. To disentangle this faint emission from that of the quasar, we
331 rebinned each exposure onto a coarser grid corresponding to 200 pixels (40 Å) for UVB and
332 VIS arms, and 800 pixels (480 Å) for the NIR arm due to sky contamination and weaker fluxes
333 in this region. This was done by subtracting the sky model, summing the 2D spectrum along
334 the spectral axis in each bin while removing pixels impacted by cosmic rays and strong sky
335 lines. We then fitted the observed collapsed profiles using two Moffat functions (determined
336 by peak position, width and normalization), representing the quasar and companion galaxy
337 (Extended Data Fig. 2). We followed Bayesian inference by sampling of the model parameters
338 using a Python implementation of an affine invariant Monte-Carlo Markov Chain (MCMC)
339 sampler³⁴ within the emcee package.³⁵ For normalization parameters, we used flat priors. For
340 the position and width along the spatial axis, we used Gaussian priors centered at 0" and the
341 seeing value for the quasar component. For the companion galaxy component, our priors are
342 based on the results from the broad-band image fitting: the position is taken to be 0.55" from
343 the quasar and the width is taken as the quadratic sum of the unresolved quasar component
344 (i.e. the seeing measured at each wavelength) plus the 0.9"-width derived from Galfit. The
345 derived Moffat profiles were used to compute and correct for slit losses at each wavelength,
346 considering the slit widths of 1.0, 0.9 and 1.2" for UVB, VIS and NIR arms, respectively.

347 The companion spectrum shown in the top panel of Fig. 3 was then obtained by combining
348 the three individual exposures using inverse-variance weighted mean. Photometric points
349 obtained using PSF extraction from HSC Subaru imaging are consistent with this spectrum.

350 **The quasar host galaxy as residual emission in saturated absorption lines**

351 We constrained the quasar host galaxy emission from the residual light in the dark troughs of
352 heavily saturated absorption lines (Ly α , Si II 1260 Å, O I 1302 Å, C II 1334 Å, Al II 1260 Å and
353 series of H₂ and Fe II lines) in the quasar spectrum. The 2D spectrum (Extended Data Fig. 3)
354 shows this residual emission is aligned with the unresolved quasar trace and remains similar
355 regardless of the position angle, indicating it mainly comes from the quasar host galaxy,
356 covered by both slit positions, not from the companion galaxy (covered by the slit at PA=90°
357 but not at PA=0°). Residual emission is also seen in the blue part of the spectrum, as a non-
358 zero level in saturated H₂ absorption lines. However, this emission is absent in the troughs
359 of strong Ly α forest lines, which fully absorb light from the background objects (quasar,
360 host and companion galaxies) due to their origin in large-scale intergalactic structures. This
361 confirms that the residual flux in the $z = 2.66$ lines is real and not a data reduction artifact.
362 The constraints on the quasar host galaxy spectrum (bottom panel of Fig. 3) were derived by
363 combining all five exposures, each extracted using a Moffat profile along the quasar trace to
364 minimize any contribution from the companion galaxy.

365 **Millimetre line and continuum emission**

366 The ALMA cubes were blindly searched for line emission using the H₁ Source Finding
367 Application SOFIA v2.0.^{36,37} We set SOFIA to subtract the residual continuum and use the
368 smooth+clip (S+C) algorithm with combination of spatial and spectral kernels matched to
369 the expected size of signal in a given band. We set the threshold to 3.5σ for detection. . For
370 the moment 1 and 2 maps, we used only those pixels where the signal was detected at 1.5
371 times the local rms value. We detect CO(3-2), CO(7-6) and even C₁(2-1) line emission from
372 the companion galaxy (see Fig. 1 and Extended Data Fig. 4). The quasar is detected only
373 in CO(7-6) line emission (shown in Fig. 1). The integrated line fluxes estimates (including
374 3σ upper limits for non-detections) from the moment-0 maps are provided in Extended Data
375 Table 1. For CO line ratio map of the companion galaxy (shown in Extended Data Fig. 4), we
376 smoothed the CO(7-6) map to the lower resolution of CO(3-2) map.

377 We also examined continuum images for radio emission associated with the galaxy and
378 the quasar. In band 3, no continuum emission is detected in the multi-band radio continuum
379 image at 101.9 GHz made using all four SPWs with `robust = 0.5` weighting (see panel
380 (e) in Extended Data Fig. 4). The synthesized beam and the rms noise are $0.177'' \times 0.141''$
381 and $8.3 \mu\text{Jy beam}^{-1}$, respectively. We adopt a 3σ upper limit of $25 \mu\text{Jy}$ for the quasar and the
382 companion galaxy. The band 6 multi-band image at 226.5 GHz with an rms of $14.8 \mu\text{Jy beam}^{-1}$
383 exhibits radio emission (panel (d) in Extended Data Fig. 4) with flux densities of $420 \mu\text{Jy}$ and
384 $220 \mu\text{Jy}$ at the positions of the galaxy and the quasar, respectively. However, the corresponding
385 emission is not consistently detected in images from individual SPWs with rms noise of
386 $\sim 25 \mu\text{Jy beam}^{-1}$. Based on measurements in SPWs 21, 23 and 25 of band 6, we adopt
387 continuum flux densities at ≈ 226 GHz to be $330 \pm 30 \mu\text{Jy}$ and $< 180 \mu\text{Jy}$ for companion and
388 host galaxies, respectively.

389 **Spectrophotometric modelling of the galaxies**

390 We used the `bagpipes` code³⁸ to fit the photometry data from Subaru, the ALMA constraints
391 on the mm-emission continuum, and the spectral energy distribution (SED) obtained from
392 X-shooter for both the companion and host galaxies. We assumed a double power law star for-
393 mation history (SFH) model³⁹ and standard dust extinction law.⁴⁰ We treated the metallicity as
394 a free parameter, recognizing that it could differ between the central regions of the companion
395 galaxy and that along the quasar line of sight where we had a prior from absorption lines. We
396 assumed a stellar birth cloud lifetime of 10 Myr and a velocity dispersion of 500 km s^{-1} . While
397 we considered nebular emission to fit emission lines (Ly α and C III] lines are prominent in the
398 companion galaxy spectrum), we acknowledge that these could be impacted by the large char-
399 acteristic bin size and potential quasar contribution. For dust emission from the companion
400 galaxy, given the likely sub-solar metallicity, we allowed variations in U_{\min} (the lower cutoff of
401 the starlight intensity distribution) and γ (the fraction of dust heated by starlight)⁴¹. We used
402 Gaussian priors on the redshift and metallicity, from the CO(7-6) emission and the absorp-
403 tion line analysis, respectively. Uniform priors were applied to the star-formation law slope
404 (in decimal scale) and in log-scale for other parameters. The parameters and their constraints,
405 derived from the posterior probability function using nested sampling within the `BAGPIPES`
406 code, are presented in Table 2. While some parameters are not well constrained, due to
407 limited observational data, others, like stellar mass and extinction, are precisely determined.

408 **Mass estimates**

409 **Molecular gas.** The observed CO line fluxes correspond to luminosities⁴² $L'_{\text{CO}} = (2.5 \pm 0.3)$,
410 (9.7 ± 1.2) , and $(1.4 \pm 0.3) \times 10^9 \text{ K km s}^{-1} \text{ pc}^2$ for CO(7-6) and CO(3-2) lines in the companion
411 galaxy, and CO(7-6) line in the quasar host galaxy, respectively. These are converted into
412 molecular masses using $M_{\text{H}_2} = \alpha L'_{\text{CO}} (J - (J - 1)) / r_{J1}$, where α is the CO(1-0) to H₂ conver-
413 sion factor and r_{J1} is the (J-(J-1)) to (1-0) CO line ratio. Assuming⁴³ $r_{31} = 0.8$ and $r_{71} = 0.2$
414 we obtain $M_{\text{H}_2} = (1.0 \pm 0.1) \times 10^{10} M_{\odot}$ (companion) and $M_{\text{H}_2} = (5.5 \pm 0.1) \times 10^9 M_{\odot}$ (host),
415 adopting $\alpha = 0.8 M_{\odot} (\text{K km s}^{-1} \text{ pc}^2)^{-1}$ as suggested by measurements in AGN, mergers and
416 starburst environments.^{44,45,46,47}

417

418 **Dust.** The dust masses are estimated from the observed ALMA band 6 fluxes, assuming a
419 gray body spectrum with dust opacity $\propto \nu^{\beta}$ and $\beta = 0.7$ (consistent with the relative fluxes of
420 ALMA bands 3 and 6), and a dust temperature range of 20 to 60 K, yielding $(1 - 5) \times 10^8 M_{\odot}$
421 for the companion and $< 3 \times 10^8 M_{\odot}$ for the host galaxy, respectively.

422

423 **SMBH.** The mass of the SMBH powering J012555.11–012925.00 is estimated from the
424 widths of the C IV (FWHM = $3830 \pm 30 \text{ km s}^{-1}$) and H β (FWHM = $2730 \pm 30 \text{ km s}^{-1}$) emission
425 lines together with continuum measurements. Correcting for dust reddening, we measure
426 fluxes of 2.5 and $0.3 \times 10^{-17} \text{ erg cm}^{-2} \text{ s}^{-1} \text{ \AA}^{-1}$ at 1350 and 5100 \AA , respectively, translating to
427 $\log \lambda L_{\lambda} / (\text{erg s}^{-1}) = 45.9$ and 45.5 . This yields $\log M_{\text{SMBH}} / M_{\odot} = 8.3 \pm 0.4$ (from C IV) and
428 8.0 ± 0.4 (from H β) using standard scaling relations.⁴⁸ These values align with the $M_{\text{SMBH}} -$
429 σ_{*} relation,⁴⁹ where the bulge velocity dispersion $\sigma_{*} \simeq 200 \text{ km s}^{-1}$, is estimated from the
430 stellar mass $M_{*} \simeq 5 \times 10^{10} M_{\odot}$ obtained above.⁵⁰ The estimated SMBH mass corresponds to
431 an Eddington luminosity L_{edd} of a few times $10^{46} \text{ erg s}^{-1}$, close to the bolometric luminosity
432 of the quasar, obtained from the flux at 1450 \AA and scaling relations,⁵¹ indicating that the
433 SMBH is accreting close to its Eddington limit.

434 **Absorbing gas analysis**

435 **Differential dust extinction**

436 The spectrum of J012555.11–012925.00 appears clearly reddened compared to the X-
437 shooter composite quasar spectrum,⁵² as shown in Fig. 5. Following the quasar pair
438 method,^{29,53,54,55,56} the best matching is obtained by reddening the composite with an Small
439 Magellanic Cloud (SMC) like extinction curve⁵⁷ and visual extinction $A_V \approx 0.20 \pm 0.10$.
440 However, this significantly underpredicts the emission lines, Si IV, C III] and C IV, suggesting
441 a differential reddening between the continuum and the emission lines. Combining the red-
442 dened continuum with unreddened emission lines from the composite provides a much better
443 match, indicating dust is mostly confined in small clouds that cover the accretion disc but not
444 the larger emission line regions. We further note that while the heights of the emission lines
445 are now well reproduced, the observed lines are narrower than in the composite (see inlay
446 panels in Extended Data Fig. 5). This is again consistent with the differential reddening, as
447 the wings of the emission lines (i.e. the broad emission component) are produced in a small
448 region with high kinematics closer to the accretion disc while the core of the lines (the narrow
449 emission) are produced over larger areas further from the central engine. Similar patchy dust

450 obscuration has also been invoked to explain the unusual line shapes observed in extremely
451 red quasars⁵⁸ and in some AGNs in the local Universe.⁵⁹

452 **Line profile fitting method**

453 We modelled the absorption lines using multi-component Voigt profile fitting using **spectro**
454 package. The model parameters were constrained following a Bayesian approach to derive
455 the posterior distribution function using the affine invariant MCMC sampler.³⁴ We report
456 constraints on the model parameters using maximum a posteriori probability and 0.683 highest
457 posterior density estimates of the 1D marginalized probability distribution function. Priors
458 were set using uniform distributions for parameters like redshifts (z), Doppler parameters (b),
459 and logarithm of the column densities ($\log N$), unless otherwise specified. The model was
460 compared to data via the likelihood function, focusing on visually selected spectral regions
461 that are free from blends, cosmic ray or sky-line residuals. We assumed Gaussian-distributed
462 uncertainties around central pixel values, with dispersion given by the flux uncertainty.

463 Remarkably, most saturated absorption lines at $z = 2.66$ do not reach the zero level,
464 indicating partial coverage of the emission source by the absorbing medium. A partial coverage
465 factor, C_f , was then included in the model.⁶⁰ To reduce the number of free parameters, a
466 single C_f value was assumed for all components at all wavelengths, as supported by the nearly
467 constant residual emission across wavelengths.

468 **Neutral hydrogen**

469 The total H₁ column density is determined by fitting the Ly- α absorption profile together
470 with the unabsorbed continuum, initially estimated using the reddened quasar composite and
471 adjusted with an 11th-order Chebyshev polynomial. Pixels corresponding to residual Ly α
472 emission (mainly within 4430–4460 Å) were excluded from the fit. We obtained $\log N(\text{HI}) =$
473 $21.911^{+0.016}_{-0.014}$ at $z = 2.66347^{+0.00024}_{-0.00027}$ and a zero level flux level $7.8^{+0.5}_{-0.2} \times 10^{19} \text{ erg cm}^{-2} \text{ s}^{-1} \text{ Å}^{-1}$,
474 seen as residual emission at $\sim 4460 - 4490$ Å in Extended Data Fig. 3.

475 **Molecular hydrogen**

476 The unabsorbed continuum over H₂ lines was re-constructed by eye using B-spline inter-
477 polation and guided by the reddened composite quasar spectrum. A two-component model
478 (components A and B) was necessary to fit the absorption lines (see lines around 4084 Å and
479 3930 Å). We tied Doppler parameters (b) for $J = 0$ and 1 rotational levels, assuming they
480 trace the bulk of the cloud and are co-spatial. Higher rotational levels were allowed different
481 b -values, constrained to increase with rotational level^{61,62,63} using a penalty function added
482 to the likelihood.^{64,65} We also penalized non-physical models where $T_{j,j+2} > T_{j+2,j+4}$, con-
483 sidering the ortho- and para- H₂ independently. The fit to H₂ is shown in Extended Data Fig. 6
484 and constraints on the model parameters are summarized in Supplementary Table 2. We found
485 the total column density to be $\log N(\text{H}_2) = 21.19^{+0.02}_{-0.01}$. The $J = 0$ and 1 levels provide esti-
486 mates of the kinetic temperatures $T_k \approx T_{01} = 320^{+40}_{-20}$ K and 300^{+20}_{-20} K for component A and
487 B , respectively.

488 **Metal lines**

489 The absorption profile of metal lines extends over $\sim 400 \text{ km s}^{-1}$ (see Fig. 2) We fitted the data
490 using an 18-component model, with Doppler parameters tied between different low-ionization
491 metals for each component, i.e. implicitly assuming turbulence-dominated broadening. The
492 unabsorbed continuum was locally reconstructed over each absorption line through B-spline
493 interpolation using the surrounding unabsorbed spectral regions. We use Gaussian prior on
494 the Doppler parameter with mean 6 km s^{-1} and dispersion 2 km s^{-1} , in agreement with typical
495 values measured in high resolution studies. The fit results are reported in Supplementary
496 Table 3. We obtain the average metallicity from the ratio of total column density of the volatile
497 element zinc to that of total hydrogen column density $N_{\text{tot}}(\text{H}) = N(\text{H I}) + 2N(\text{H}_2)$, giving
498 $\log Z/Z_{\odot} = -0.92 \pm 0.03$ (respective to Solar⁶⁶).

499 **Neutral carbon**

500 We fitted the C I absorption lines from the fine structure levels of the ground electronic state
501 using a six-component model, identifying two prominent major components aligning with
502 the H₂-bearing components. This association is consistent with findings in typical H₂-bearing
503 DLAs.⁶⁷ The detection of C I in components without H₂ also indicate the presence of the
504 relative dense neutral gas.⁶⁸ We tied the Doppler parameters of the three fine-structure levels
505 for each component as these are typically co-spatial within the cloud. Consequently, we also
506 tied the column densities of the C I levels using one-zone model, assuming radiative pumping²⁷
507 and collisional excitation by H₂ or H I, and Helium.^{69,70,71} We used temperature priors from
508 H₂ whenever detected and a flat prior otherwise. We accounted for excitation by the Cosmic
509 Microwave Background, using the expected temperature $T_{\text{CMB}}(z) = (1+z) \times 2.725 \approx 10 \text{ K}$
510 at $z = 2.662$. We used Gaussian priors with mean of 6 km s^{-1} and dispersion of 2 km s^{-1} on
511 Doppler parameters. The fit to C I fine-structure levels is shown in Extended Data Fig. 7 with
512 interval estimates on the model parameters in Supplementary Table 5.

513 **CO absorption**

514 We tentatively detect CO absorption in A – X bands (1-0), (3-0), (4-0), (6-0) and (7-0) at
515 $z = 2.66$. Since lines from individual rotational levels within each band are not resolved, we
516 fitted the band profiles assuming the rotational population follows a Boltzman distribution,
517 setting the prior on the kinetic temperature to be $\log T[\text{K}] = 2 \pm 0.3$, in between the temperature
518 obtained from ortho-para ratio of H₂ and the typical values in CO-bearing medium. We used
519 a two-component model with priors on the Doppler parameters $b = 3 \pm 1 \text{ km s}^{-1}$ and redshifts
520 fixed to those from H₂ absorption lines, obtaining $\log N(\text{CO}) < 13.6$ and $13.99^{+0.15}_{-0.09}$ in
521 component A and B, respectively. In Extended Data Fig. 8 we compare the stack of observed
522 CO bands to that of the synthetic profiles.⁶⁷

523 **Physical conditions in the absorbing gas**

524 **Constraints from H₂ excitation.** We used the Meudon PDR code (version 1.5.4)⁷² to model
525 the column densities of H₂ in various rotational-vibrational levels. We considered a constant-
526 density medium with 0.1 Solar metallicity, exposed to UV radiation from the quasar on one
527 side.⁶⁴ Other parameters were: cosmic ray ionization rate 10^{-16} s^{-1} per H₂ molecule, LMC

extinction curve with $R_V = 2.6$, standard MRN dust size distribution with dust-to-gas mass ratio of 0.01 and turbulent velocity of 2 km s^{-1} . We note that these additional parameters have little effect on the H_2 excitation and thermal balance in the UV-dominated regime. The default Mathis field was scaled to mimic the quasar UV radiation at a given distance d . The choice of the overall shape of the radiation field does not affect the results since photoexcitation and photodissociation of H_2 involve the wavelength region $\sim 1100\text{--}910 \text{ \AA}$, where both Mathis and typical AGN fields are approximately flat. We constructed a two-dimensional grid of models in the number density–distance ($n - d$) plane, trimming each model to match the observed total H_2 column density.^{73,33} We computed each model’s likelihood using the observed column densities in the various excitation levels. The resulting parameter estimates are shown in Fig. 4. These were obtained using Bayesian approach assuming derived likelihood and flat priors on d and n in log space to emulate a wide distribution.

Constraints from CO/ H_2 . We obtained constraints on the physical conditions from the total observed CO and H_2 column densities in component B using the same grid of models. Taken as face value, the presence of CO suggests slightly larger number densities than derived from the excitation of H_2 in component B . This could result from the cloud having higher densities in the central regions, where CO is more easily formed.

Constraints from C I fine structure. The C I line profile fit directly constrains the physical conditions, as we used an excitation model to link the population of the fine-structure levels. Because the excitation of the fine-structure levels are close to the ratio of statistical weights, C I provides lower and upper limits on the number density and distance to the AGN, respectively, as highlighted in Fig. 4.

Constraints from H I/ H_2 . Based on the analytical theory of the H I/ H_2 transition,^{74,75} we can only obtain a limit in the $n - \text{UV}$,¹⁹ as it is not feasible to determine the fraction of the total H I column density associated with the H_2 components. Nonetheless, this limit agrees with the other constraints.

References

²⁹ Oke, J. B. & Gunn, J. E. Secondary standard stars for absolute spectrophotometry. *Astrophys. J.* **266**, 713–717 (1983).

³⁰ Noterdaeme, P. *et al.* Proximate molecular quasar absorbers. Chemical enrichment and kinematics of the neutral gas. *Astron. Astrophys.* **673**, A89 (2023).

³¹ Hunter, T. R. *et al.* The ALMA Interferometric Pipeline Heuristics. *Publ. Astron. Soc. Pac.* **135**, 074501 (2023).

³² Tanaka, M. *et al.* Hyper Suprime-Cam Legacy Archive. *Publ. Astron. Soc. Jpn* **73**, 735–746 (2021).

³³ Peng, C. Y., Ho, L. C., Impey, C. D. & Rix, H.-W. Detailed Decomposition of Galaxy Images. II. Beyond Axisymmetric Models. *Astron. J.* **139**, 2097–2129 (2010).

565 ³⁴ Goodman, J. & Weare, J. Ensemble samplers with affine invariance. *Communications in*
 566 *Applied Mathematics and Computational Science* **5**, 65–80 (2010).

567 ³⁵ Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The mcmc hammer.
 568 *PASP* **125**, 306–312 (2013).

569 ³⁶ Serra, P. *et al.* SOFIA: a flexible source finder for 3D spectral line data. *Mon. Not. R.*
 570 *Astron. Soc.* **448**, 1922–1929 (2015).

571 ³⁷ Westmeier, T. *et al.* SOFIA 2 - an automated, parallel H I source finding pipeline for the
 572 WALLABY survey. *Mon. Not. R. Astron. Soc.* **506**, 3962–3976 (2021).

573 ³⁸ Carnall, A. C., McLure, R. J., Dunlop, J. S. & Davé, R. Inferring the star formation
 574 histories of massive quiescent galaxies with BAGPIPES: evidence for multiple quenching
 575 mechanisms. *Mon. Not. R. Astron. Soc.* **480**, 4379–4401 (2018).

576 ³⁹ Carnall, A. C. *et al.* How to Measure Galaxy Star Formation Histories. I. Parametric Models.
 577 *Astrophys. J.* **873**, 44 (2019).

578 ⁴⁰ Calzetti, D. *et al.* The Dust Content and Opacity of Actively Star-forming Galaxies.
 579 *Astrophys. J.* **533**, 682–695 (2000).

580 ⁴¹ Draine, B. T. & Li, A. Infrared Emission from Interstellar Dust. IV. The Silicate-Graphite-
 581 PAH Model in the Post-Spitzer Era. *Astrophys. J.* **657**, 810–837 (2007).

582 ⁴² Solomon, P. M. & Vanden Bout, P. A. Molecular Gas at High Redshift. *Annu. Rev. Astron.*
 583 *Astrophys.* **43**, 677–725 (2005).

584 ⁴³ Boogaard, L. A. *et al.* The ALMA Spectroscopic Survey in the Hubble Ultra Deep Field:
 585 CO Excitation and Atomic Carbon in Star-forming Galaxies at $z = 1\text{--}3$. *Astrophys. J.* **902**,
 586 109 (2020).

587 ⁴⁴ Carilli, C. L. & Walter, F. Cool Gas in High-Redshift Galaxies. *Annu. Rev. Astron.*
 588 *Astrophys.* **51**, 105–161 (2013).

589 ⁴⁵ Bolatto, A. D., Wolfire, M. & Leroy, A. K. The CO-to-H₂ Conversion Factor. *Annu. Rev.*
 590 *Astron. Astrophys.* **51**, 207–268 (2013).

591 ⁴⁶ Sargent, M. T. *et al.* Regularity Underlying Complexity: A Redshift-independent Description
 592 of the Continuous Variation of Galaxy-scale Molecular Gas Properties in the Mass-star
 593 Formation Rate Plane. *Astrophys. J.* **793**, 19 (2014).

594 ⁴⁷ Calistro Rivera, G. *et al.* Resolving the ISM at the Peak of Cosmic Star Formation with
 595 ALMA: The Distribution of CO and Dust Continuum in $z \sim 2.5$ Submillimeter Galaxies.
 596 *Astrophys. J.* **863**, 56 (2018).

597 ⁴⁸ Vestergaard, M. & Peterson, B. M. Determining Central Black Hole Masses in Distant Active
 598 Galaxies and Quasars. II. Improved Optical and UV Scaling Relationships. *Astrophys. J.*

599 641, 689–709 (2006).

600 49 Kormendy, J. & Ho, L. C. Coevolution (Or Not) of Supermassive Black Holes and Host
601 Galaxies. *Annu. Rev. Astron. Astrophys.* **51**, 511–653 (2013).

602 50 Zahid, H. J., Geller, M. J., Fabricant, D. G. & Hwang, H. S. The Scaling of Stellar Mass
603 and Central Stellar Velocity Dispersion for Quiescent Galaxies at $z < 0.7$. *Astrophys. J.* **832**,
604 203 (2016).

605 51 Runnoe, J. C., Brotherton, M. S. & Shang, Z. Updating quasar bolometric luminosity
606 corrections. *Mon. Not. R. Astron. Soc.* **422**, 478–493 (2012).

607 52 Selsing, J., Fynbo, J. P. U., Christensen, L. & Krogager, J. K. An X-Shooter composite of
608 bright $1 < z < 2$ quasars from UV to infrared. *Astron. Astrophys.* **585**, A87 (2016).

609 53 Wang, J., Hall, P. B., Ge, J., Li, A. & Schneider, D. P. Detections of the 2175 Å Dust Feature
610 at $1.4 < z < 1.5$ from the Sloan Digital Sky Survey. *Astrophys. J.* **609**, 589–596 (2004).

611 54 Srianand, R., Gupta, N., Petitjean, P., Noterdaeme, P. & Saikia, D. J. Detection of the 2175
612 Å extinction feature and 21-cm absorption in two MgII systems at $z \sim 1.3$. *Mon. Not. R.*
613 *Astron. Soc.* **391**, L69–L73 (2008).

614 55 Zhang, S. *et al.* Seven Broad Absorption Line Quasars With Excess Broadband Absorption
615 Near 2250 Å. *Astrophys. J.* **802**, 92 (2015).

616 56 Noterdaeme, P. *et al.* Discovery of a Perseus-like cloud in the early Universe. H I-to-
617 H₂ transition, carbon monoxide and small dust grains at $z_{abs} \approx 2.53$ towards the quasar
618 J0000+0048. *Astron. Astrophys.* **597**, A82 (2017).

619 57 Gordon, K. D., Clayton, G. C., Misselt, K. A., Landolt, A. U. & Wolff, M. J. A Quantitative
620 Comparison of the Small Magellanic Cloud, Large Magellanic Cloud, and Milky Way
621 Ultraviolet to Near-Infrared Extinction Curves. *Astrophys. J.* **594**, 279–293 (2003).

622 58 Hamann, F. *et al.* Extremely red quasars in BOSS. *Mon. Not. R. Astron. Soc.* **464**, 3431–3463
623 (2017).

624 59 Veilleux, S. *et al.* The Surprising Absence of Absorption in the Far-ultraviolet Spectrum of
625 Mrk 231. *Astrophys. J.* **764**, 15 (2013).

626 60 Bergeron, J. & Boissé, P. Extent and structure of intervening absorbers from absorption
627 lines redshifted on quasar emission lines. *Astron. Astrophys.* **604**, A37 (2017).

628 61 Lacour, S. *et al.* Velocity Dispersion of the High Rotational Levels of H₂. *Astrophys. J.*
629 **627**, 251–262 (2005).

630 62 Noterdaeme, P. *et al.* Excitation mechanisms in newly discovered H₂-bearing damped
631 Lyman- α clouds: systems with low molecular fractions. *Astron. Astrophys.* **474**, 393–407
632 (2007).

633 ⁶³ Balashev, S. A., Varshalovich, D. A. & Ivanchik, A. V. Directional radiation and photo-
634 dissociation regions in molecular hydrogen clouds. *Astronomy Letters* **35**, 150–166
635 (2009).

636 ⁶⁴ Noterdaeme, P. *et al.* Down-the-barrel observations of a multi-phase quasar outflow at high
637 redshift. VLT/X-shooter spectroscopy of the proximate molecular absorber at $z = 2.631$
638 towards SDSS J001514+184212. *Astron. Astrophys.* **646**, A108 (2021).

639 ⁶⁵ Kosenko, D. N. *et al.* HD molecules at high redshift: cosmic ray ionization rate in the
640 diffuse interstellar medium. *Mon. Not. R. Astron. Soc.* **505**, 3810–3822 (2021).

641 ⁶⁶ Asplund, M., Grevesse, N., Sauval, A. J. & Scott, P. The Chemical Composition of the Sun.
642 *Annu. Rev. Astron. Astrophys.* **47**, 481–522 (2009).

643 ⁶⁷ Noterdaeme, P. *et al.* Spotting high- z molecular absorbers using neutral carbon. Results
644 from a complete spectroscopic survey with the VLT. *Astron. Astrophys.* **612**, A58 (2018).

645 ⁶⁸ Balashev, S. A. & Kosenko, D. N. Neutral carbon in diffuse interstellar medium: abundance
646 matching with H_2 for damped Lyman alpha systems at high redshifts. *Mon. Not. R. Astron. Soc.*
647 **527**, 12109–12119 (2024).

648 ⁶⁹ Schroder, K., Staemmler, V., Smith, M. D., Flower, D. R. & Jaquet, R. Excitation of the
649 fine-structure transitions of C in collisions with ortho- and para- H_2 . *Journal of Physics B
650 Atomic Molecular Physics* **24**, 2487–2502 (1991).

651 ⁷⁰ Abrahamsson, E., Krems, R. V. & Dalgarno, A. Fine-Structure Excitation of O I and C I by
652 Impact with Atomic Hydrogen. *Astrophys. J.* **654**, 1171–1174 (2007).

653 ⁷¹ Staemmler, V. & Flower, D. R. Excitation of the $C(2p^2, ^3P_j)$ fine structure states in collisions
654 with $He(1s^2, ^1S_0)$. *Journal of Physics B Atomic Molecular Physics* **24**, 2343–2351 (1991).

655 ⁷² Le Petit, F., Nehmé, C., Le Bourlot, J. & Roueff, E. A Model for Atomic and Molecular
656 Interstellar Gas: The Meudon PDR Code. *Astrophys. J. Suppl. Ser.* **164**, 506–529 (2006).

657 ⁷³ Klimenko, V. V. & Balashev, S. A. Physical conditions in the diffuse interstellar medium
658 of local and high-redshift galaxies: measurements based on the excitation of H_2 rotational
659 and C I fine-structure levels. *Mon. Not. R. Astron. Soc.* **498**, 1531–1549 (2020).

660 ⁷⁴ Sternberg, A., Le Petit, F., Roueff, E. & Le Bourlot, J. H I-to- H_2 Transitions and H I Column
661 Densities in Galaxy Star-forming Regions. *Astrophys. J.* **790**, 10 (2014).

662 ⁷⁵ Bialy, S. & Sternberg, A. Analytic H I-to- H_2 Photodissociation Transition Profiles.
663 *Astrophys. J.* **822**, 83 (2016).

664 ⁷⁶ Astropy Collaboration *et al.* The Astropy Project: Sustaining and Growing a Community-
665 oriented Open-source Project and the Latest Major Release (v5.0) of the Core Package.
666 *Astrophys. J.* **935**, 167 (2022).

667 ⁷⁷ Hunter, J. D. Matplotlib: A 2D Graphics Environment. *Computing in Science and*
668 *Engineering* **9**, 90–95 (2007).

669 ⁷⁸ Harris, C. R. *et al.* Array programming with NumPy. *Nature* **585**, 357–362 (2020).

670 ⁷⁹ Bradley, L. *et al.* astropy/photutils: 1.12.0 (2024). <https://doi.org/10.5281/zenodo.10967176>.

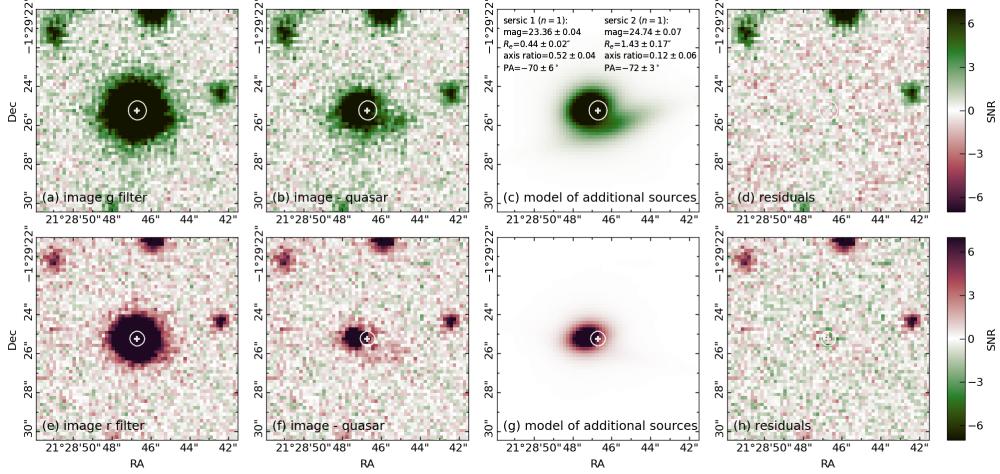
672 ⁸⁰ Virtanen, P. *et al.* SciPy 1.0: fundamental algorithms for scientific computing in Python. *Nature Methods* **17**, 261–272 (2020).

674 **Acknowledgments.** SB is supported by RSF grant 23-12-00166 and thanks IAP for hospi-
675 tality where part of this work was done. The research leading to these results received support
676 from the French *Agence Nationale de la Recherche* under ANR grant 17-CE31-0011-01/project
677 “HIH2” (PI Noterdaeme).

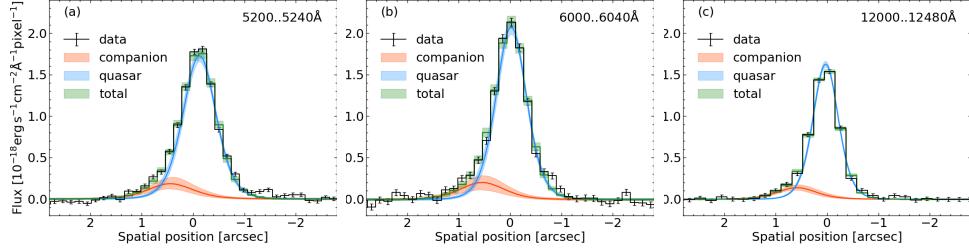
678 **Data Availability.** The Subaru imaging data are available on the Hyper Suprime-Cam
679 Legacy Archive (HSCLA; <https://hscla.mtk.nao.ac.jp/>). VLT spectroscopic data were col-
680 lected at the European Southern Observatory under ESO programme 105.203L (PI: P.
681 Noterdaeme) and publicly available through the ESO science archive at <https://archive.eso.org/cms.html>. ALMA data collected under program ID 2022.1.01792.S (PI: S. López) are
683 publicly available at ALMA science archive at <https://almascience.eso.org/aq/>.

684 **Code Availability.** Astropy,⁷⁶ Bagpipes,³⁸ Matplotlib,⁷⁷ NumPy,⁷⁸ Photutils,⁷⁹ SciPy,⁸⁰
685 SOFIA,^{36,37} Emcee,³⁵ spectro <https://github.com/balashev/spectro> Meudon PDR <https://pdr.obspm.fr/>

687 **Author Contributions.** S.A.B. and P.N. wrote the manuscript and led the analysis of the
688 optical data. S.A.B. modeled the physical conditions. N.G. performed the analysis of the
689 ALMA data. J.-K.K. reduced the X-shooter data. All authors contributed to the observing
690 proposals, text and interpretation of the results.


691 **Author Information.** Correspondence and requests for materials should be addressed to
692 s.balashev@gmail.com. The authors declare no competing interests.

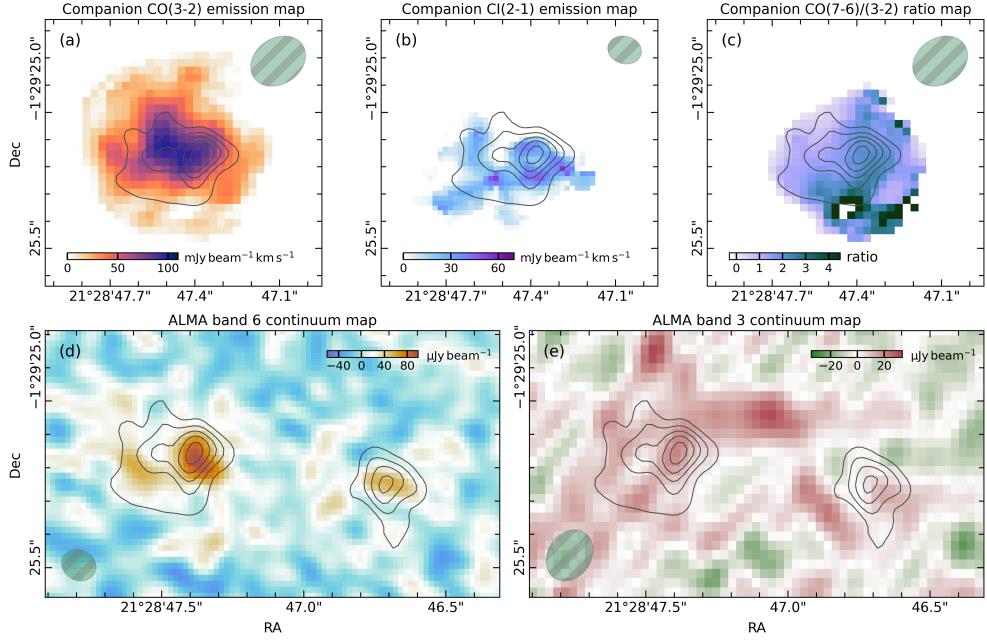
Extended Data Table 1: Details of ALMA spectral line cubes and detected line emission.


Band	SPW	Target line	ν_{rest} [GHz]	Beam ^a	Res. ^b		rms ^c [mJy \times beam ⁻¹]	Line flux ^d	
					[km s $^{-1}$]	[Jy km s $^{-1}$]		Companion	Quasar
3	25	CO(3-2)	345.7960	0.210'' \times 0.166'', -51.5°	12.4	0.29	0.271 \pm 0.034	<0.10	
"	27	HCO+(4-3)	356.7343	0.207'' \times 0.161'', -51.1°	12.0	0.29	<0.10	<0.10	
"	29	CS(8-7)	391.8468	0.190'' \times 0.150'', -52.0°	10.9	0.32	<0.10	<0.10	
6	27	CO(7-6)	806.6518	0.121'' \times 0.101'', +72.4°	10.6	0.37	0.383 \pm 0.044	0.207 \pm 0.039	
"	"	C I(2-1)	809.3420	"	"	"	0.170 \pm 0.036	<0.12	

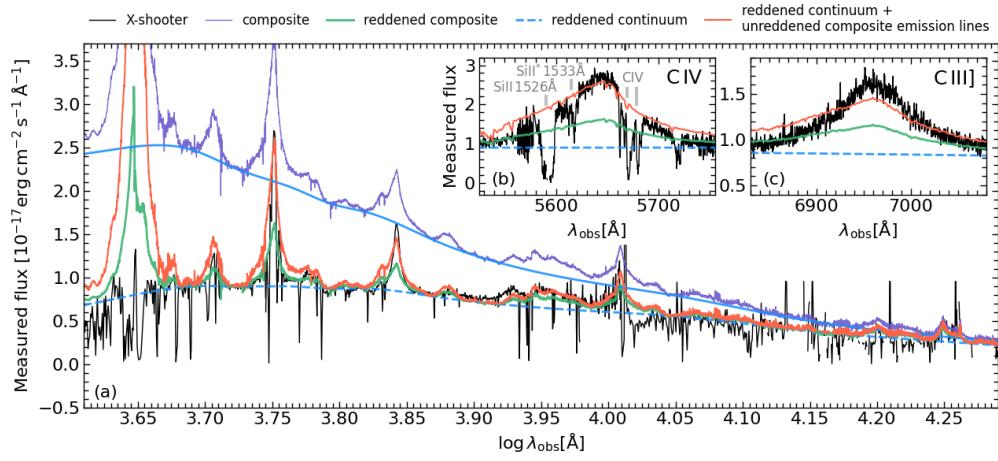
^a Spatial resolution i.e., the synthesized beam in terms of major and minor axis, and position angle. ^b Spectral resolution in the quasar frame. ^c Spectral rms. ^d For non-detections 3σ upper limits estimated assuming a line FWHM of 100 km s $^{-1}$.

693 Extended Data

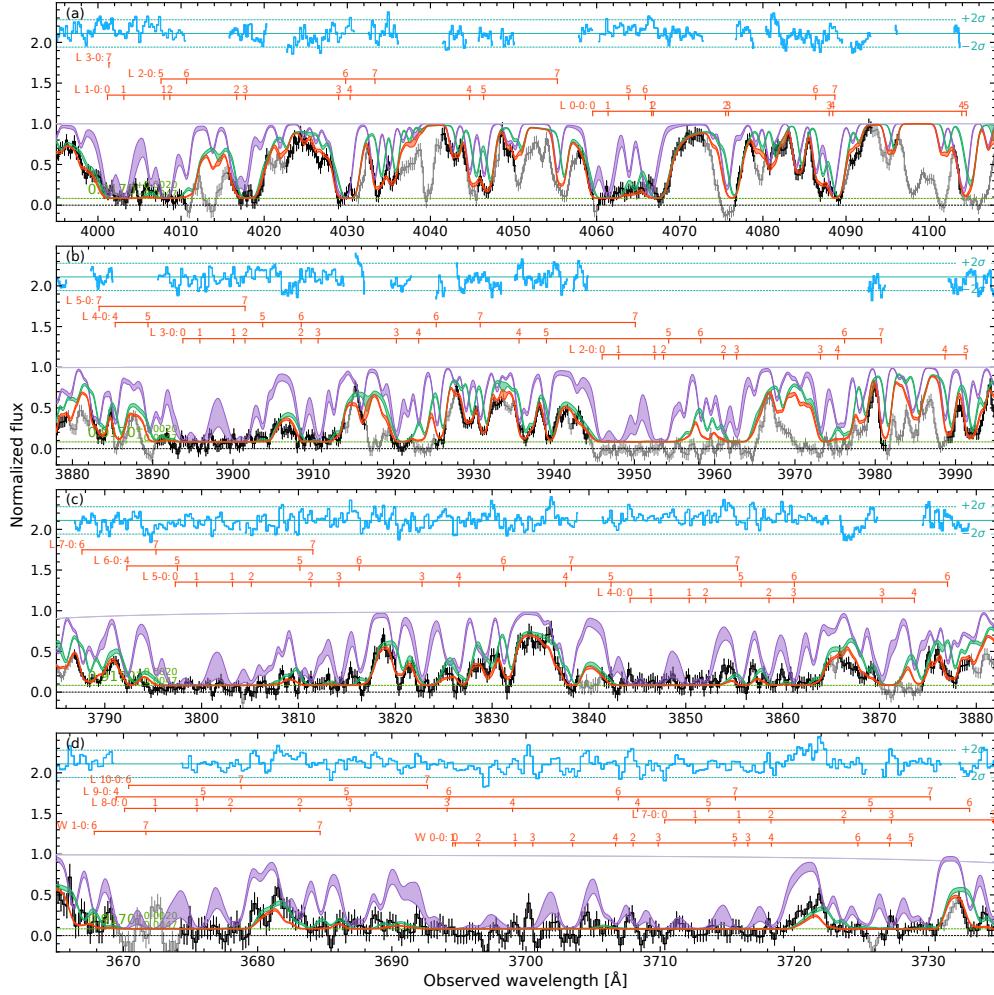
Extended Data Fig. 1: Hyper Suprime-Cam deep images of the field around J012555.11-012925.00. **a, e**, the original image. **b, f**, quasar's point spread function (PSF) subtracted image. **c, g**, model of additional sources. **d, h**, residuals. The top and bottom panels correspond to g and r filters, respectively. The white cross and circle indicate the position of the quasar and the FWHM of the point spread function, respectively.


Extended Data Fig. 2: Spatial profile of the 2D X-shooter spectrum of J012555.11–012925.00. The data (black lines with error bars) is shown here collapsed into three **a, b, c**, wavelength regions (indicated in the top right corner). The spatial profile is modeled by the sum (green) of two Moffat profiles, corresponding to the quasar (blue) and the companion galaxy (red). The error bars indicate the standard deviation of the collapsed flux, while the colored stripes represent the 0.683 credible interval of the models.

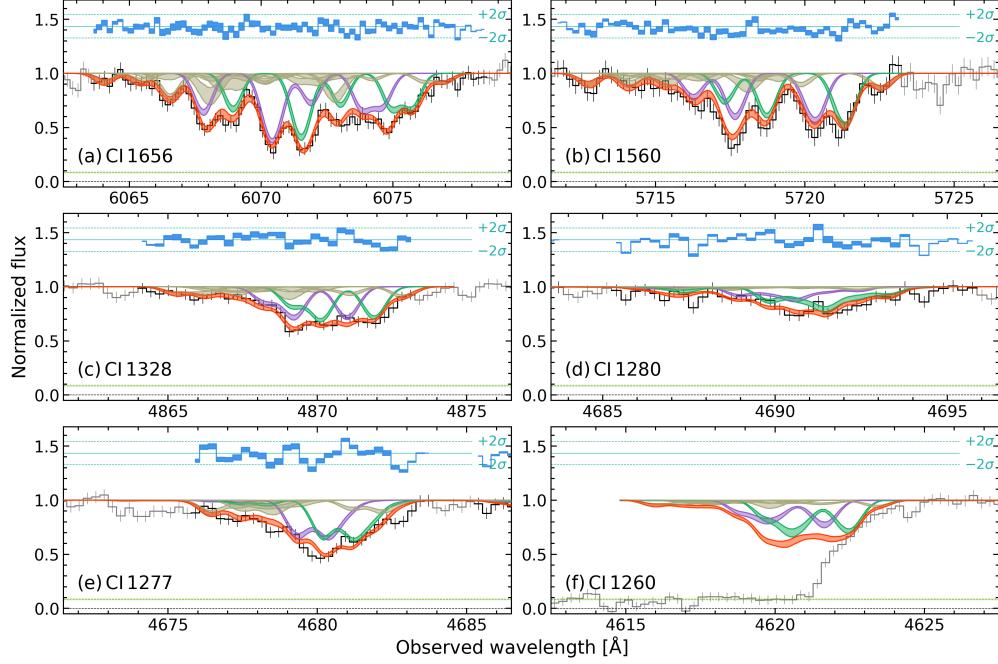
Extended Data Table 2: Spectral energy distribution fitting of the companion and quasar host galaxy with BAGPIPES.


parameter	description	prior	posterior	
			Companion galaxy	Host galaxy
z	redshift	Gaussian from CO	2.663 ± 0.001	2.656 ± 0.001
$\log M_*, [M_\odot]$	stellar mass	log10	$10.84^{+0.12}_{-0.12}$	$10.7^{+0.3}_{-0.3}$
α_{dpl}	falling SFH slope	uniform	< 0.1	$-0.8^{+0.8}_{-0.8}$
β_{dpl}	rising SFH slope	uniform	> 1.5	$-2..3$
$\tau_{\text{dpl}} [\text{Gyr}]$	SFR peak time	log10	$2.2^{+0.1}_{-0.2}$	$0.5..2$
Z	metallicity	Gaussian and log10	< 0.9	$0.8..2.1$
Av	extinction	log10	$1.2^{+0.1}_{-0.1}$	$0.7^{+0.2}_{-0.3}$
U_{min}	dust parameter	log10	> 3.2	> 1.3
γ	dust parameter	log10	> 0.9	> 0.3
$\log U$	ionization parameter	uniform	< -3.3	> -2.4
Derived quantities:				
SFR [$M_\odot \text{ yr}^{-1}$]		current star-formation rate	250^{+60}_{-50}	24^{+17}_{-11}

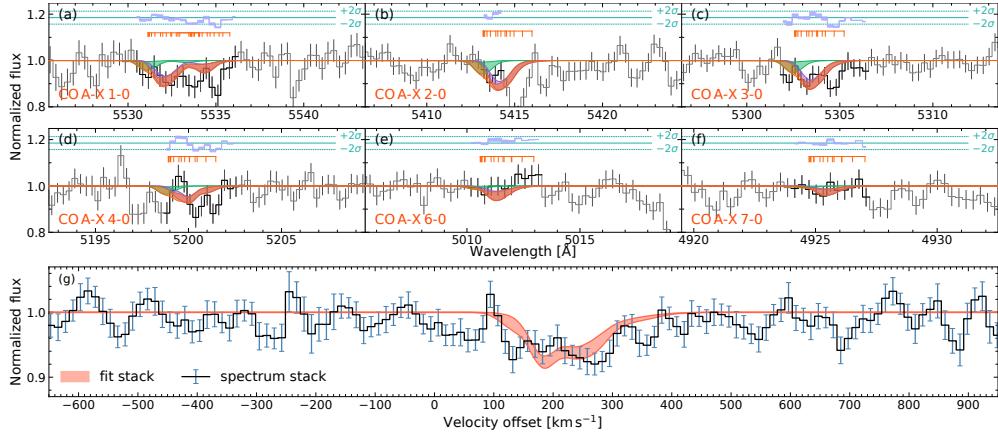
Extended Data Fig. 3: Spectral regions around C II 1334 Å and Ly α lines at $z = 2.622$. **a, b, c**, C II 1334 Å line. **d, e, f**, Ly α line. The strong C II and Ly α absorption suppress light from the quasar's central engine, acting like a coronagraph which reveals the ~ 10 times fainter emission from the host galaxy as residual emission in the absorption trough. **a, d**, the portions of the 1D X-shooter spectrum extracted along the quasar trace, with cyan and blue dashed lines indicating the zero flux level and the average line flux residual, respectively. The error bars represent the standard deviation of the measured flux. **b, e**, the 2D X-shooter spectrum (smoothed for illustration purposes) of the same spectral regions. **c, f**, the spatial profiles integrated along the dispersion axis, with the blue histogram corresponding to regions within the saturated lines (black dashed boxes in **b, e**), while the red filled histogram correspond to the continuum emission. This faint emission clearly extends beyond the point spread function, in agreement with an origin in an extended object. In **e**, the blob at $\lambda \sim 4430 - 4465$ Å corresponds to the extended Ly α emission seen in the bottom of the extremely strong Ly α absorption line. The red dotted and blue dashed lines denote the centroids of the ALMA CO emission of the companion and quasar host galaxies, respectively in both spatial and velocity space, with the stripe indicating their velocity spread.



Extended Data Fig. 4: Line and continuum ALMA images of the field around J012555.11–012925.00. **a, b, c,** The integrated emission of CO(3-2) and C₁(2-1) lines, together with CO(7-6)/(3-2) line ratios, respectively, centered on the companion galaxy. **d, e,** ALMA band 6 and 3 wideband continuum images, respectively. The gray contours indicate the CO(7-6) emission shown in Fig. 1. The green hatch ellipses in each panel represent the synthesized beam.



Extended Data Fig. 5: A full view of the X-shooter spectrum of J012555.11–012925.00.


The black, purple, green lines show respectively the observed spectrum, the quasar composite spectrum from⁵² and the same composite reddened by an SMC-like extinction law with $A_V = 0.2$ at $z=2.66$. The blue line depicts the continuum component of the quasar spectrum (i.e. removing emission lines) reddened by the same extinction. The red spectrum is the sum of the reddened continuum and the unreddened emission lines and clearly reproduces much better the emission lines redwards of Ly- α . This indicates that the continuum light from the quasar accretion disc passes through dusty gas, while light from the emission line regions is almost unaffected, implying that dust is confined in much smaller regions. **b, c** indicate zoom-in on the spectral region around C IV and C III] emission lines. The position of metal absorption lines associated with the proximate DLA are marked by grey ticks and labels.

Extended Data Fig. 6: Fit to the line profiles of H_2 lines associated with the proximate absorber at $z = 2.662$ towards J 012555.11–012925.00. The black lines represent the observed normalized spectrum, with the error bars representing the standard deviation. The green, violet, and red stripes indicate the profiles of H_2 components A, B, and the total profile, respectively. Black and green dashed horizontal lines at the bottom of each panel show the zero flux level and partial coverage, respectively. Blue step-like lines at the top of each panel display the residuals, with horizontal lines representing -2σ , 0, and 2σ levels. Red horizontal segments identify the band (Lyman/Werner, vibrational level of upper and lower state) as well as main rotational levels (numbers above ticks, only shown for component A for clarity). Note that lines from low rotational levels in the L2-0 band (around 3950 Å) are blended with the strong Ly α line from intervening $\text{H}\alpha$ at $z = 2.25$, identified through its associated metal transitions.

Extended Data Fig. 7: Fit to the C I absorption line profiles associated with the proximate absorber at $z \approx 2.662$ towards J 012555.11–012925.00. The graphical elements are the same as in Extended Data Fig. 6 with profiles of additional components shown by gray lines. Each profile contains absorption from three fine-structure levels of the ground state.

Extended Data Fig. 8: Possible detection of CO absorption lines at $z = 2.662$ in the proximate absorber towards J 012555.11–012925.00. a-f, The fit to individual CO bands. The black line show the observed spectrum, while the green, blue and red lines represent the two individual components and total line profiles. g, The stack of the observed spectrum (black) and total profile model (red).