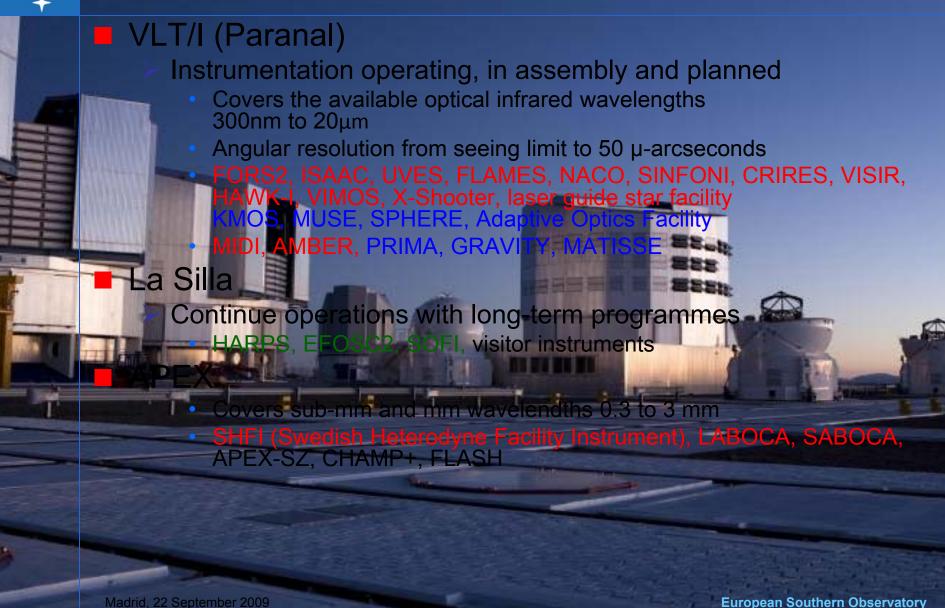


European Southern Observatory

Mission

- Develop and operate world-class observing facilities for astronomical research
- Organize collaborations in astronomy
- Intergovernmental treaty-level organization
 - > Founded in 1962, by 5 countries
 - Currently 14 member states
- Observatories in Chile
 - Optical/infrared: La Silla and Paranal
 - > Sub-mm: APEX and ALMA partnerships on Chajnantor
- HQ in Garching and Office in Santiago


ESO's world

La Silla Paranal



ALMA

- Science requirements
 - Detect CO and [CII] in Milky
 - Way galaxy at z=3 in < 24 hr
 - Dust emission, gas kinematics in proto-planetary disks
 - Resolution to match Hubble, JWST and 8-10m with AO
 - Complement to Herschel
- Specifications
 - 66 antennas (54x12m, 12x7m)
 - > 14 km max baseline (< 10mas)
 - 30-1000 GHz (10–0.3mm), up to 10 receiver bands

European Southern Observatory

E-ELT

- Detailed design study
 - Baseline 42m primary mirror
 - Adaptive optics built-in
 - Industry strongly engaged
 - Study complete in 2010
- Project
 - Builds on *entire* expertise at ESO *and* in the member states
 - Construction 2011-2018
 - Synergy: JWST/ALMA/SKA

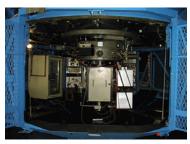
La Silla

- Medium-size telescopes
 - ➤ 3.6m: HARPS for exo-planet searches
 - ➤ 3.5m NTT: EFOSC2 & visitor instruments
 - ➤ 2.2m in partnership with MPG
- Small telescopes
 - Closed/funded externally

La Silla: 5 Operational Instruments

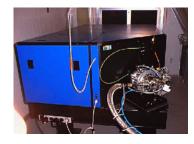
3.6m

HARPS


NTT

SOFI

EFOSC2


2.2*m*

WFI

FEROS

GROND

Paranal

VLT Instruments

VLTI Instruments

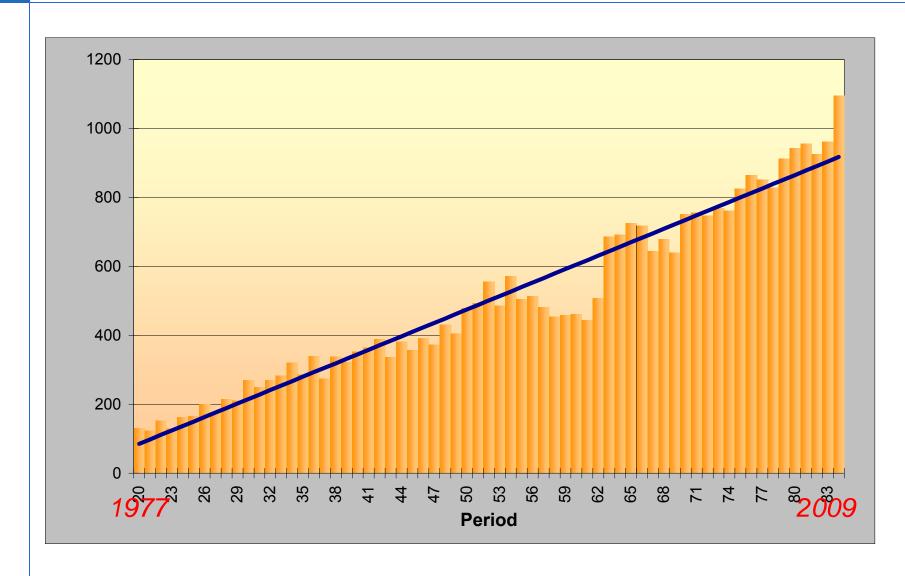
AMBER

Top list of ESO science

- Galactic Centre
 - Supermassive black hole
- Extrasolar planets
 - First images of exo-planets
 - Lightest known planets
- Accelerating Universe
 - Spectroscopy of distant supernovae
- Gamma-Ray Bursts/Supernovae
 - Explosion physics
 - > Tracers of the distant universe

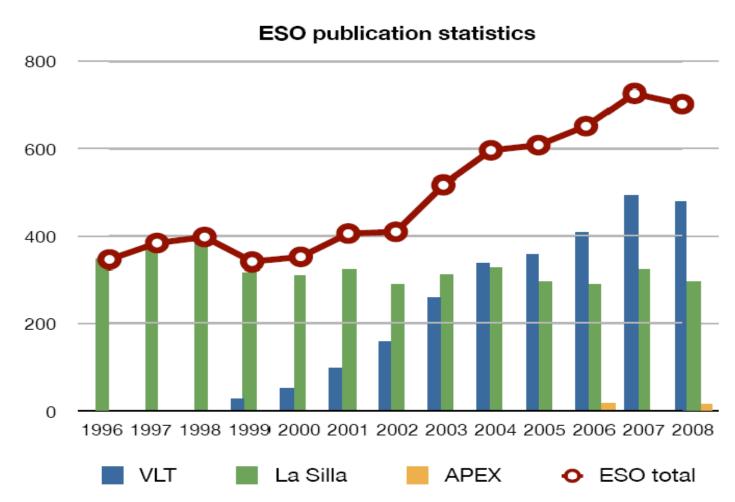
Other top science from ESO

- Metal-poor stars
 - > Tracing the chemical enrichment
 - Finding the oldest known stars
- Stellar populations in nearby galaxies
 - Measuring stars beyond the Local Group
- Massive galaxies in the distant Universe
 - Puzzles in galaxy formation
- Varying physical constants?
 - Measure the fine-structure constant over time
- Testing the cosmological model
 - Cosmic background temperature

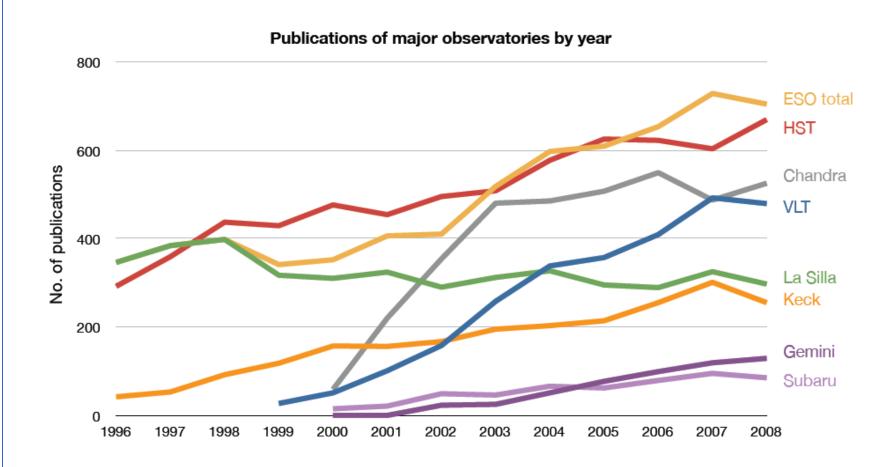


More top science

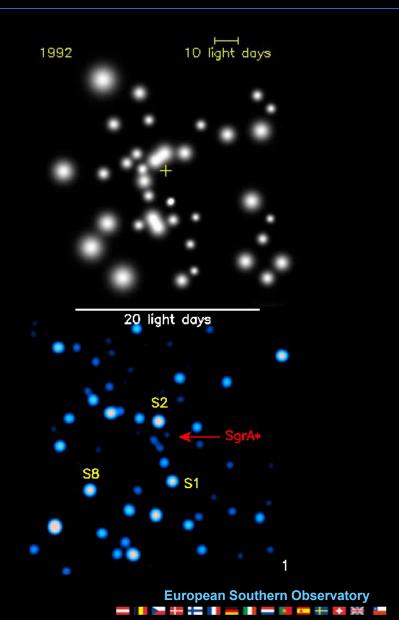
- Detecting and imaging the torus around AGN
- Measure the geometric shape of stars
- Determine the size of stars
 - ➤ E.g. Cepheids to calibrate the period-luminosity relation
- Star formation
 - Debris disks, chemistry in circumstellar disks
- Measure the structure of the Milky Way
 - Local spiral arm
 - Bulge, disk and halo, run-away stars
- Solar System objects
 - Comets, asteroids, weather on Titan



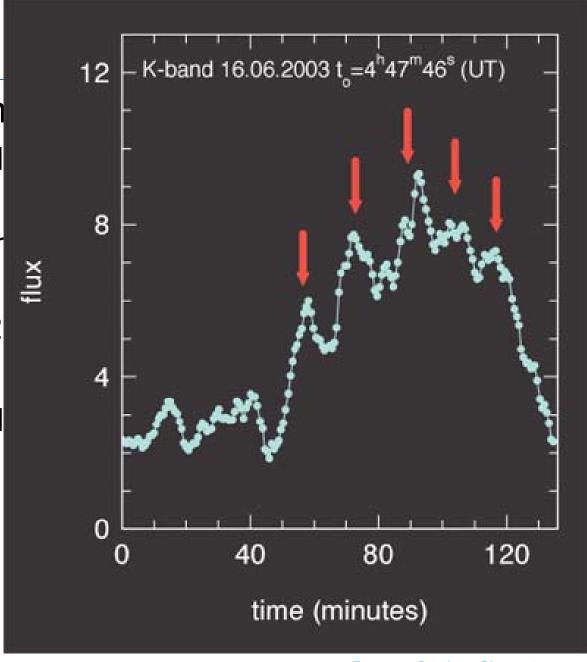
Proposal submission


ESO Publication Statistics

available at http://www.eso.org/sci/libraries/edocs/ESO/ESOstats.pdf


ESO and other Observatories

Black hole at the Galactic Centre


- Mass determination through stellar orbits
- Structure around the black hole revealed through flashes
- Coordinated studies with other wavelengths
- Multi-year study
 - use of AO instruments (SHARP on NTT, ISAAC NACO, SINFONI on VLT)

Flashes

- Variable IR em
 - Detection of H also flares
 - consistent with of Sgr A*
 - Discovery in 2
 - > Flare duration
 - substructure d

The ESO exo-planet machinery

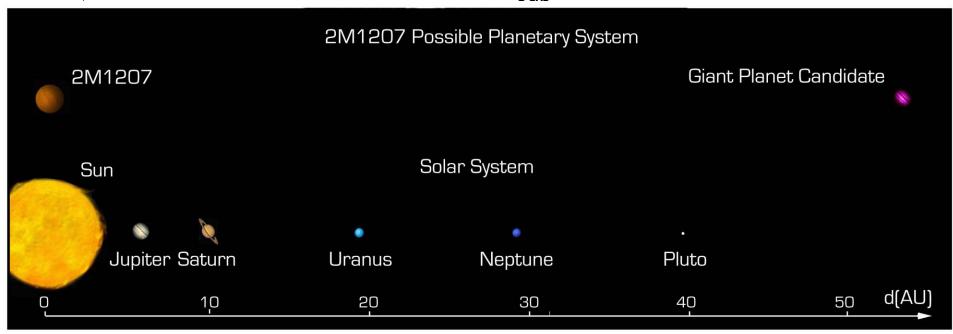
- HARPS at 3.6m telescope
 - best radial velocity machine at a 4m telescope (supported by UVES on VLT)
 - extremely stable spectrograph
 - ▶ fast pipeline → nearly immediate results
- NACO
 - > adaptive optics system on an 8m telescope
- VLTI
 - highest spatial resolution for follow-up observations of known systems
- NACO/SINFONI/FORS2
 - > transit measurements
 - atmospheres of exo-planets

ESO results on exo-planets

- Most radial velocity detections through HARPS
 - lowest-mass planets known so far
 - rocky planets, earth-mass planets
 - planetary systems
- First direct image of a planet
 - > around a brown dwarf
 - now innermost planet directly images (β Pic)
- Combination with transits
 - characterization of planets
 - mass, density, temperatures

A planet with 1.9M_⊕ and one in the habitable zone

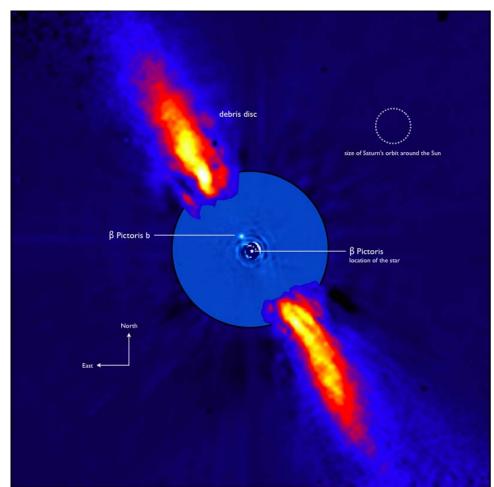
Gliese 581



European Southern Observatory

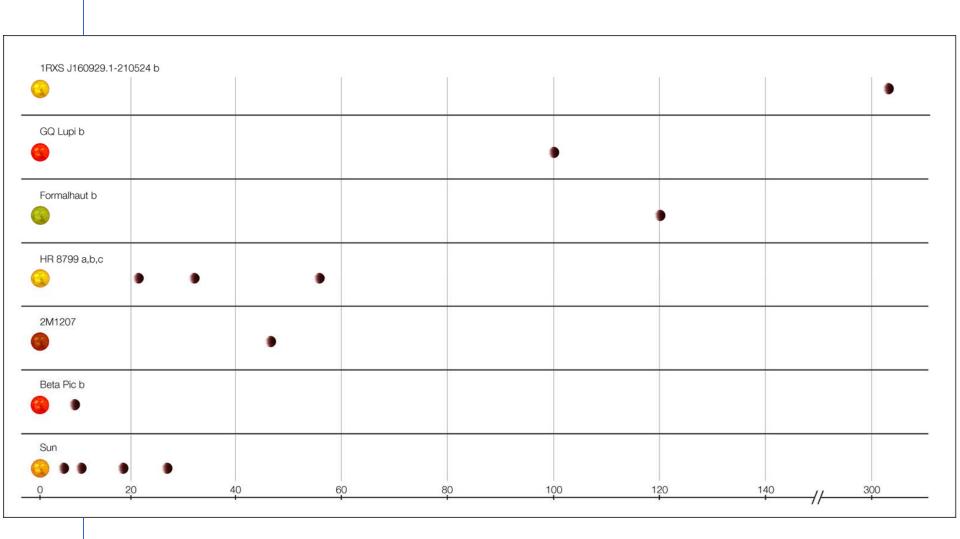
First image of an exo-planet

- Red object near a brown dwarf
 - ➤ NACO observations (with the IR wavefront sensor) of a brown dwarf (2MASSWJ1207334-393254)
 - ➤ Brown dwarf with ~25 M_{Jup} at 70 pc in the

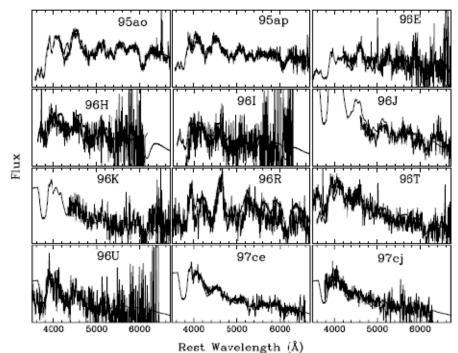

Chauvin et al., A&A, 425, L29

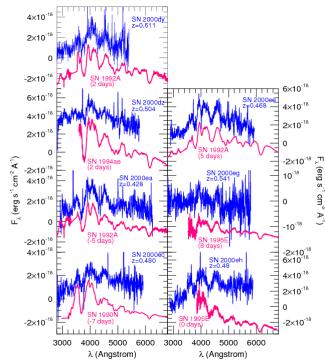
λ (μm)

β Pic planet


- Planet within the massive dust disk
- Orbit only a few AU
- NACO imaging

Lagrange et al. 2009, A&A, 493, L21


Imaged planets



Accelerating Universe

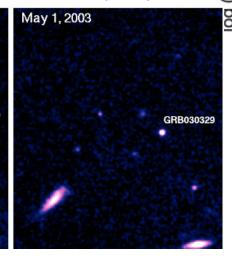
- Contribution of most of the early photometry and spectroscopy of High-z SN Search Team
 - ➤ difference between a 4m and a 8m telescope

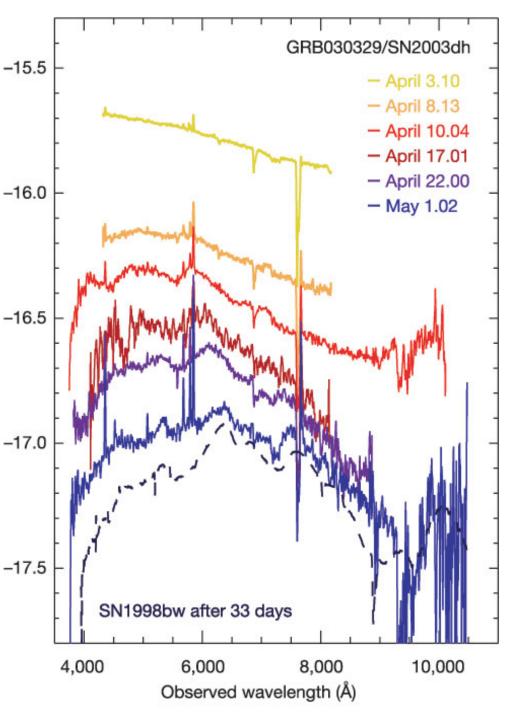
Riess et al. 1998, AJ, 116, 1009

Leibundgut & Sollerman 2001

Gamma-Ray Bursts

- Identification relied on optical data
 - > redshifts, explosion energies, explosion physics
- Cosmological probes
 - the most distant observable stars
 - light houses to measure the intergalactic medium
 - tracers of chemical enrichment?
- Very short duration
 - required special instrumentation and software to observe adequately


April 3, 2003

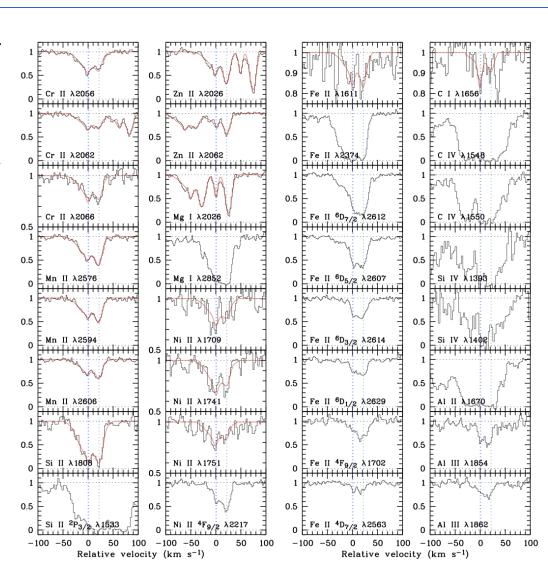

SN/GI

- Spectral signature Gamma-Ray Bure
- GRB 030329/SN: GRB 980425/SN

UVES spectrum for known GRB – "co

FORS1 and 2 obse 3 until May 1)

Madrid, 22 September 2009

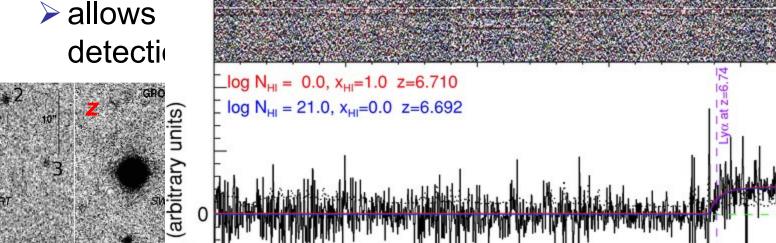

Rapid Response Mode (RRM)

UVES observations of GRB 060418

10 minutes after the initial Swift trigger

Many metal line systems at 3 redshifts. [Zn/Fe] >> QSO abs.

GRB0809


Gamma-Ray Bursts

- Most distant stellar objects ever observed
 - redshifts 6.7 and 8.2 (tentative)

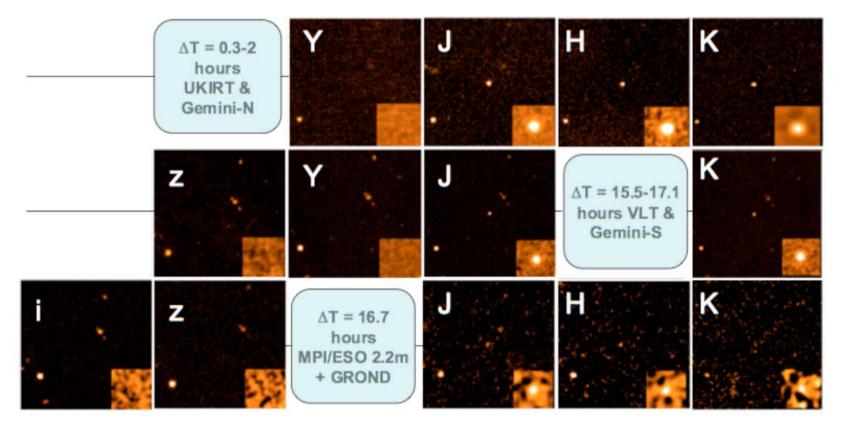
7500

- ➤ lookback time of nearly 12.5 billion years (or 95% of the age of the universe)
- VLT equipped with rapid response mode

8000

8500

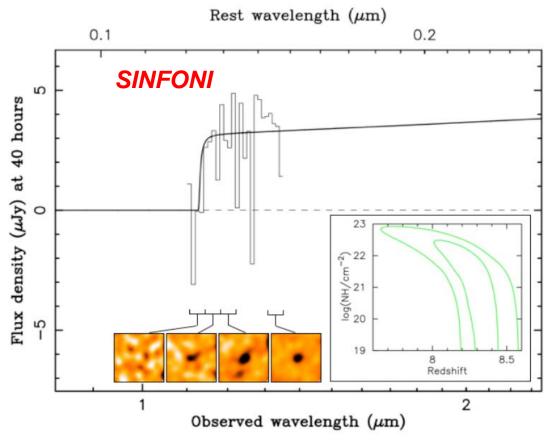
Observed wavelength (A)


9000

9500

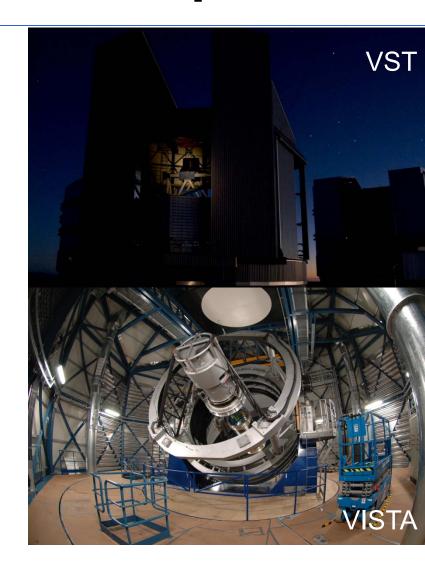
Most distant stellar object yet observed – GRB 090423

- Optical drop-out, bright in the near-infrared
- Rapid decline



Tanvir et al., Nature submitted

GRB 090423

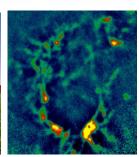

- Spectroscopy 17 hours after outburst
- Lyman break indicates a redshift of z≈8.2

The Survey Telescopes

- Under construction
 - > VST 2.6m for optical
 - VISTA 4.1m for infrared
 - Completion in late 2009
- Science
 - Multi-year program of large public surveys
 - Coordinated by ESO
 - Develops European survey capability

Chajnantor

APEX


- 12m sub-millimeter antenna, operated by ESO @ Sequitor
- MPG (50%), Sweden (23%) and ESO (27%)

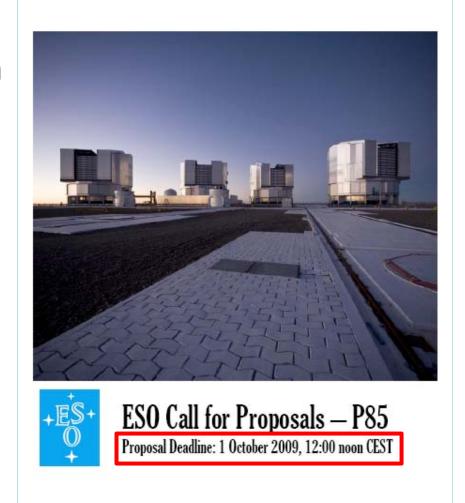
- > Transformational science
- ▶ 66 antennas at 5050m
- ➤ Operations support at 2950m
- Global partnership with North America East Asia & Chile

Chajnantor

- Three facility and three `PI` instruments on APEX
- Watch out for ALMA
 - > early science in 2011
 - be prepared

ALMA 2009

Madrid, 22 September 2009

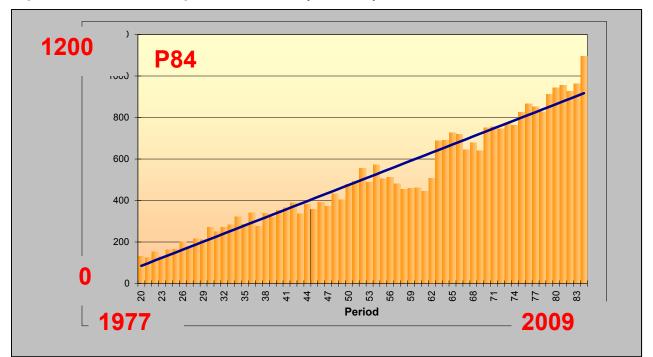

ALMA 2013

Proposing for ESO time

Call for proposals is open

Structure of the ESO OPC

- Observing Programmes Committee
 - > 4 scientific categories
 - Cosmology (A)
 - Galaxies and Active Galactic Nuclei (B)
 - Interstellar Medium, Star Formation and Planetary Systems (C)
 - Stellar Evolution (D)
 - ➤ 13 panels
 - 3 for category A
 - 2 for category B
 - 4 each for categories C and D


Proposal types

- 5 proposal types all handled by OPC
 - normal programmes
 - short programmes
 - large programmes
 - Coordinated VLT/XMM projects
 - Target of Opportunity
 - calibration programmes
 - all considered by the OPC
- Director Discretionary Time
 - submission any time
 - decided by ESO Director General

ESO proposals

- Nearly 1000 proposals submitted
 - ➤ P83 962 proposals
 - 58 proposals with Spanish PI (6.0%)
 - ▶ P84 1095 proposals submitted
 - 69 proposals with Spanish PI (6.3%)

ESO proposals

- Pressure factor typically high
 - typical oversubscription for ESO telescopes is >3
 - often reaching 5 and in certain periods/RA ranges 8 or higher
 - ➤ Large Programmes have an acceptance rate of about 20% or less
 - Pressure on ToO proposals is extremely high
 - GRBs, supernovae, novae, stellar occultations by TNOs, microlensing,

High pressures

Some right ascensions are already in high demand

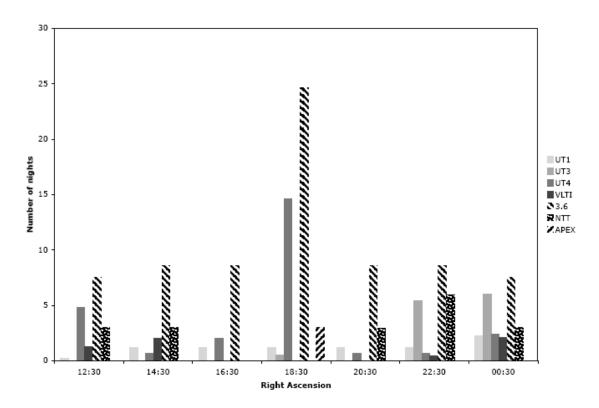


Figure 3: Expected time allocation (in nights) for ongoing Large Programmes in Period 85. The RA bins are defined as for Figs. 1 and 2.

Call for Proposals

- Important document
 - > contains a lot of relevant information
 - especially important for first-time users
 - contains many useful links to instrumentation and other useful information

binding document, if proposal is approved

Call for Proposals

Everybody must read

Ι	Ph	ase 1 Instructions	1
1	ESC	O Proposals Invited	1
	1.1	Important recent changes (since Periods 82 and 83)	2
	1.2	Important reminders	5
	1.3	Foreseen changes in the upcoming Periods	6
2	Get	ting Started	6
	2.1	Distribution of requested Right Ascension	6
		2.1.1 Prediction of RA demand during Period 84	7
	2.2	Exposure Time Calculators available Online	9
	2.3	Online Data Products: Public Imaging Surveys, Science Verification, Advanced Data	
		Products, etc	9
3	Hov	v to submit an ESO Phase 1 proposal	10
	3.1	How to obtain the ESOFORM Proposal Package	10
	3.2	How to fill the ESOFORM Proposal Form	10
		3.2.1 Important recent changes to ESOFORM	10
		3.2.2 Observing conditions: definitions	11
	3.3	Proposal Submission	11

Call for Proposals

Find the appropriate instrument

II	E	SO Telescopes and their Instrumentation	13
4	The	Observatory	13
	4.1	La Silla	13
	4.2	Paranal	14
		4.2.1 The VLT UTs	14
		4.2.2 UTs Performance	14
		4.2.3 Laser Guide Star facility on UT4	15
		4.2.4 Paranal Sky accessibility, zones of avoidance	16
		4.2.5 The ATs (VLTI only)	16
		4.2.6 Paranal meteorological conditions	16
	4.3	Chajnantor	16
5	Scie	entific Instruments: La Silla	18
	5.1	SofI — Son of ISAAC, on the NTT	18
	5.2	EFOSC-2 — ESO Faint Object Spectrograph and Camera 2, on the NTT	18
	5.3	HARPS — High Accuracy Radial velocity Planetary Search, on the 3.6-m	19
	5.4	FEROS — Fibre-fed Extended Range Optical Spectrograph, on the 2.2-m	20
	5.5	WFI — Wide Field Imager, on the 2.2-m	20
6	Scie	entific Instruments: Paranal	21
	6.1	CRIRES, Cryogenic high-resolution IR Échelle Spectrograph	21
		6.1.1 Calibration	22
		6.1.2 Sensitivity	22
	6.2	FORS2, Focal Reducer/low dispersion Spectrograph 2	22
		6.2.1 Multi-object Spectroscopy	23
		6.2.2 High throughput filters	23
		6.2.3 Volume-phased holographic grisms	23
		6.2.4 Polarimetry	23
		6.2.5 High Time Resolution mode	23
		6.2.6 FORS Instrumental Mask Simulator (FIMS)	24
		6.2.7 Accurate Astrometry or Pre-imaging Required	24
	6.3	FLAMES, Fibre Large Array Multi-Element Spectrograph	25
		6.3.1 Instrument Capabilities	25

What makes a proposal successful?

Exciting science

providing a clear progress in our understanding of some phenomenon

A neat idea

unusual method, new idea, new approach, unique observation or experiment

Clear language

- presentation of an exciting story, which is interesting for many people
- > cover all questions somebody may have
- information to the point

What makes a proposal successful?

- A consistent story
 - > the proposal is complete and provides all information
 - quantitative arguments for the amount of time requested
- Good Luck!

ESO Archive

- The ESO data archive
 - > is a rich source of excellent data
 - abstracts of previous proposals available
 - data public one year after they have been delivered to the PI
 - great way to compete with your competitor, if they got observing time
 - easy retrieval and selection of calibration data

Get involved

- Participate in OPC
- Participate in other ESO activities
 - get to know the organisation better
 - > active interactions with ESO people
- Have a lively scientific exchange with the (European) astronomical community
 - > conferences, workshops
 - regularly publish your results

Get involved

- Participate in OPC
- Participate in other ESO activities
 - get to know the organisation better
 - > active interactions with ESO people
- Have a lively scientific exchange with the (European) astronomical community
 - > conferences, workshops
 - regularly publish your results

ESO's goals for next five years

- Best science from La Silla Paranal Observatory
 - Second generation instruments (VLT/VLTI)
 - Key surveys with VST and VISTA
 - ➤ Long-term programs for unique science on La Silla
 - Prepare for ALMA science with APEX
- Deliver ALMA on time and budget
- Design world-leading E-ELT, and secure funding for construction and operations

