

VLT Instruments

Instruments Operational on the VLT/I

ANTU ISAAC

KUYEN FLAMES

MELIPAL VISITOR

YEPUN

AMBER

VISIR

SINFONI

CRIRES

UVES

VIMOS

NACO

Observatory

FORS Image Quality & Stability

young brown dwarf

I band - TW5 system

- Image Quality Telescope driven
 Best image obtained (HR mode)
 - 0.18" (integration time: a few seconds)
 - 0.25" (integration time: several minutes)

UVES @ UT2 Nasmyth

UVES: highly sensitive R~10⁵ Spectrometer

Be (0.313 μ m) abundance in stars of a Globular Cluster (V=16(!))

NA-CO: At Diffraction Limit

NA-CO Galactic Center

Near-IR Flare from Galactic Centre (VLT YEPUN + NACO)

ESO PR Photo 29a/03 (29 October 2003)

© European Southern Observatory

Visible Imaging Multi-Object Spectrograph (VIMOS)

MULTIPLEX!

4 Imagers & Spectrographs
4x 7'x8' FOV, up to 700 spectra

Multi Object - Multi mode High Resolution

Largest FoV (25 arcmin Diameter)

GIRAFFE (R~6000 to ~30000): 132 MEDUSA 1.2" fibres 15 Deployable 2x3" IFUs 1 central IFU

8 1" Fibres to UVES Red (R=45000)

Figure 3: Four out of 14 slices from the η Carinae ARGUS data cube around the $H\alpha$ and the [NIII] lines. The horizontal lines at the back indicate the positions of the 10 slices which could not be shown.

VLT Imager and Spectrometer for the InfraRed

<u>Diffraction-limited</u> (seeing < 0.8")

Multi-mode instrument:

> Imaging: $N(8-13 \mu m)$ and $Q(16-20 \mu m)$

18 filters (R=20 to 100)

pfov: 0.075" and 0.127"

> Long slit Spectroscopy: LR (R=300),

MR (3000) and

HR (15000-30000 in Q and N)

VISIR performance

Detector Upgrade In preparation

VLT UT4 (YEPUN)

First Light Jan '04

SINFONI

AO Module

60 elements curvature Natural & Laser Guide Star

SPIFFI

3D spectrometer (0.95-2.5 μ m) FOV = 0".8 to 8", $\lambda/\Delta\lambda \sim 4000$ (32 x 32) pixels, 1024 channels

AO-corrected 3D IR spectro-imager ⇒ any small structured target

AO Assisted IFU

Z=2.4 Hα Velocity Map Resolution ~ 0.15" V dispersion ~ 240 km/sec

Emission of the Galaxy BzK-15504 (SINFONI/VLT)

9 yrs after ... CRIRES

- 1-5 µm range
- $\Re \sim 10^5$ with 0.2" slit:

AO ASSISTED!

- single order (echelle + pre-disperser)
- •75 m/sec calibration and stability precision

VLT 1.5 Generation: HAWK-I

HAWK - I: FoV + Resolution

7.5 x 7.5 arcmin with 0.1" sampling (4 x 2Kx2K IR array) From Y(Z) to K band

X-shooter,2nd generation VLT instrument #1, will start operations on October 1, 2009

Detecting First Fireworks: Gamma-ray bursts and SNae

Denmark	P. Rasmussen (coPI and PM), J. Hjorth (Science Team cochair))
ESO	S. D'Odorico (coPI), H.Dekker (PM), J.Vernet (IS). J.L. Lizon (Integration), M.Downing (CCDs), G. Finger (NIR array), C.Lucuix (Electronics), A. Modigliani (pipeline)
France	F. Hammer (coPI), I. Guinouard (IFU PM), P.Goldoni (DRS PM)
Italy	R. Pallavicini (coPI,†2009), S. Randich (coPI 2009->), F. Zerbi (PM)
Netherlands	L. Kaper (coPI), R. Navarro (PM), P. Groot (Science Team chair)

UV to K' bands in one shot,
Single target (slit or mini IFU),
Fix format,
Intermediate Resolution
High-Efficiency Spectrograph

X-shooter at Cassegrain of UT3, March 09

August 2009

X-shooter Commissioning Results

Very first light spectra with all 3 arms on the real time display, 14/03/09 23:22 Standard Star, 10s

X-shooter Characteristics

- Wavelength range: three arms covering 300 nm to 2500 nm (NIR arm fully cryogenic)
- Active control centering of targets on the three slits
- Fixed prism cross-dispersed echelle format (slit length 11"or 1.8"x4" IFU reformattable)
- Spectral resolution: ~7,000 to 12,000 for 0.6" slit or IFU
- Detectors: 2Kx4K 15 um CCDs (UVB and VIS arms); 2Kx1K 18 um Hawaii
 2RG MBE (NIR arm)
- ADC for UVB and VIS arms, calibration unit and A&G unit
- High Detective Quantum Efficiency
- Quality pipeline delivering sky-subtracted, wav cal 2D spectra and 3D data cube for the IFU

Summary overview of instrument performance (measured at UT3 versus predicted)

- □ Three arms parallel operation successful demonstrated (acquisition and centering on the three slits)
- □ UV and V ADC performance to specifications
- ☐ Instrument flexures in backbone, UV-B and V-R arms within specifications. NIR arm flexures a factor 1.5 out of specs
- ☐ Efficiency of UV-B and V-R arm in specs; NIR lower, under investigation
- Smooth operation of the control and observing software

Efficiency (predicted vs. measured) atmosphere + telescope + instrument

- Efficiency of UV-B and V-R arms as predicted
- NIR arm efficiency lower then predicted (50% in J, 20% in H.) Pupil alignment, to be verified, could account for 20% losses. Poor transmission of the prism s likely culprit of the poor J performance.

Examples of scientific performance: GRB host, starburst, emission line galaxy at z=0.105, r=20.5, K=16.6 (4x1200s exposures, combined for sky subtraction). UVB: 320-559nm, R= 5100, VIS:560-1040nm, R=8800, NIR: 1040-2400, R=5600

Examples of scientific performance: QSO at z=6.016. (Vega)=18.8 (2x30m, A-B)

H and J Bands, R= 5900

VIS-R above 700nm, R= 8800

X-shooter Commissioning Results

Examples of scientific performance: IFU Vis-R spectrum of SN 1987A in the LMC

20m integration, Spectral Range 550-1025 nm, R=12600

August 2009

X-shooter Commissioning Results

VLTI

- Four 8.2m telescopes (UTs)
- All equipped with AO (MACAO)
- Six Baselines 47m-130m
- Four 1.8m telescopes (ATs)
- Movable to 30 stations
- Baselines 8m-202m
- Six delay lines
- PRIMA dual feed facility
- IRIS lab tip/tilt tracker
- FINITO fringe tracker
- MIDI/AMBER/VINCI

MIDI in the VLTI lab

The MIDI Instrument at the VLT Interferometric Laboratory on Paranal

·ES·

AMBER in the VLTI Lab

The VLTI Today

AMBER

2-3 beam, JHK R=35, 10³, 10⁴

Paranal 2004/2

AMBER first fringes on Sirius

Beam #1

Beam #2

Interferometry

Image: 100/1000 (VLTI siderostats, March2004)

MIDI

2 beam, N-band R=30, 230

Paranal 2002/11

+ FINITO, IRIS, Differential Delay Lines, ARAL, vibration correction, ...

Imaging with the VLTI

Kraus et al. 2009 (in press)

LeBouquin et al. 2009 (in press)

VLT/I Angular Resolution

An extensive θ - $\delta\theta$ Coverage

VLT/I Spectral Resolution

VLT/I Instruments: an European Effort

The study, development and construction of VLT instruments has been done by, and in collaboration with, more than 40 institutes within ESO countries.

Thank You