MAD observations of Young Clusters

N. Huélamo, D. Barrado, E.L. Martín, M. Morales-Calderón, A. Bayo (LAEX-CAB, Madrid) H. Bouy (IAC, Tenerife)

- J. Kolb, E. Marchetti, M. Petr-Gotzens (ESO, Garching)
- M. Sterzik, V. Ivanov (ESO, Chile)

The Mass Function

- Mas function: important outcome of stellar formation. It holds clues on the origin of stars and BDs
- Mass function is `well-known' in a variety of environments but not so much in the cores of stellar clusters

Classical Adaptive Optics

The problem of anisoplanatism

- AO works well within ~15" radius from the guide star
- Clusters are highly affected by anisoplanatism

Multi Conjugate Adaptive Optics (MCAO)

- Several reference stars (NGS or LGS)
- Several deformable mirrors
- 'Uniform' correction accross a wider FOV

What is MAD?

Multi conjugate Adaptive optics Demonstrator

- It is a prototype MCAO system in the framework of the E-ELT and the 2nd generation VLT instruments
- MAD is designed to perform wide Field of View (FoV) AO correction over 2 arcmin on the sky by using relatively bright (mv < 14) Natural Guide Stars (NGS).
- It is equipped with a 1x1 arcmin IR camera, CAMCAO

MAD observations

MAD was offered to the general community for 23 nights spread over three Science Demonstration runs between November 2007 and August 2008

- Clusters: prime targets for MAD Lambda Ori, Sigma Ori, NGC2362, Trapezium, Lupus
- Requirements
- 3 bright stars V < 12-13 mag within 1' radius FOV

Sigma Ori

- Age: 3~5Myr
- Distance: 350pc
- 5 massives stars
- Several isolated
 planetary mass objects
- Extensively studied except in its core

MAD performance

MCAO field and ref. stars (NTT/SofI Ks-image)

MAD Ks-image

- Very bright reference stars
- Not optimal configuration (almost aligned) 36 detections including 30 new sources
- Strehl ratios 30-45 %

MAD performance

Collinder 69

- Age: 2~5Myr
- Distance: 400pc
- Located in the λ-Orionis star forming region
- Only 2 massive stars
- Numerous very low mass stars, brown dwarfs and planetary mass members

Collinder 69

MCAO field and ref. stars(NTT/SofI Ks-image)

- Nice regular geometry
- but faint AO ref. stars

MAD Ks image

- → Strehl ratio 5~25%
- FWIIM 0.09~0.12"
- > 32 detections including 30 new sources

Collinder 69

Bouy, Huélamo, Barrado y Navascués et al. 2009

NGC 2362

- Age ~5 Myr
- d $^{\sim}1.5$ kpc
- Negligible extinction (no rest of the parental cloud)
- Lack of circumstellar disks
- Strong X-ray emission

(e.g. Moitinho et al. 2001, Damiani et al. 2006, Dahm et al. 2007, Currie et al. 2009)

NGC2362

- Relatively faint objects
- Optimal configuration

More than 150 sources detected

NGC2362

- Several substellar candidates

Several resolved binaries close to the central source

Huélamo, Moitinho, Bouy et al, in prep.

MCAO?

SOUTH

- ESO: GLAO (2013)
- Gemini MCAO system (GeMS): first light 2010

NORTH

- NO MCAO at the GTC
- NGAO/Keck will be ready at 2015 at best

What can we do until 2015?

What about mounting MAD at the GTC?

- MAD is built, commisioned and ready to use
- GTC Visitor Instrument program

MAD/GTC will allow MCAO studies until the Keck system is ready. It will the the first MCAO system to explore the Northern hemisphere.

MAD vs MAD-MAX

IRA# 12. (0). 100pm

V=17 mag (MAD-MAX)