Observations of the Galactic Center with VLT/NACO

Rainer Schödel, IAA (CSIC)

Jornada ESO 2009, Madrid, 22 September 2009

NACO in a Nutshell

- NAOS + CONICA = NACO
- NIR camera plus adaptive optics system (144 actuators)
- VLT UT 4 (Yepun)
- Diffraction limited imaging at 1-5 µm ~40 -110 milli-arcsec
- Unique feature: IR WFS
- Numerous (or rather: innumerable) modes: spectroscopy, SDI, polarization, coronagraphy, cube mode, many(!) filters...

50 light days

←

14 light days

MPE/ESO

14 light days

MPE/ESO L

14 light days

MPE/ESO L

MPE/ESO

MPE/ESO

UCLA/Keck

e.g. Eckart & Genzel (1996); Ghez et al. (1998, 2003,2008); Genzel et al. (2000); Eckart et al. (2002); Schödel et al. (2002, 2003, 2009); Reid et al. (2004); Eisenhauer et al. (2003, 2005); Gillessen et al. (2009); Doeleman et al. (2008) etc.

The Nuclear Star Cluster of the Milky Way

e.g. Launhardt et al. (2002), Schoedel et al., (2007), Graham & Spitler (2009)

The Nuclear Star Cluster of the Milky Way

e.g. Launhardt et al. (2002), Schoedel et al., (2007), Graham & Spitler (2009)

The Nuclear Star Cluster of the Milky Way

e.g. Launhardt et al. (2002), Schoedel et al., (2007), Graham & Spitler (2009)

1. Stellar population in the central parsec of the Milky Way:

multi-band imaging with NACO

NSC population is mixed old/young. Components must be separated in order to understand cluster structure.

→ Is there a density cusp around the BH or not?

NSC population is mixed old/young. Components must be separated in order to understand cluster structure.

→ Is there a density cusp around the BH or not?

NACO/VLT, 2.2 μm adaptive optics, ~0.06" FWHM

10,000 point sources $(mag_K \le 17.5)$

NSC population is mixed old/young. Components must be separated in order to understand cluster structure.

→ Is there a density cusp around the BH or not?

NSC population is mixed old/young. Components must be separated in order to understand cluster structure.

→ Is there a density cusp around the BH or not?

Main difficulties for classification of stars:

- high and variable extinction
- only H,K,L observations (narrow range of stellar colors)
- anisoplanatic effects make photometric accuracy better than 0.05 mag extremely challenging
- FOV of spectroscopy very small

Buchholz, Schödel, & Eckart (2009, A&A)

Buchholz, Schödel, & Eckart (2009, A&A)

n(r) of old stars $\neq n(r)$ of young stars

Decreasing density of old stars toward Sgr A*.

- \rightarrow γ < 1.0 with >99% probability (Do et al., 2009)
- → no "classical" cusp
- → density near Sgr A* may be 10-100 times lower than expected

(Buchholz, Schoedel et al., 2009; Do et al., 2009; Bartko et al., 2009)

2. Kinematics and mass of the nuclear star cluster of the Milky Way:

high precision astrometry with NACO

Schödel, Merritt, & Eckart (2009, A&A), Trippe et al. (2008)

Schödel, Merritt, & Eckart (2009, A&A), Trippe et al. (2008)

Velocity dispersion at the Galactic Center

Velocity dispersion at the Galactic Center

Velocity dispersion at the Galactic Center

Modeling the enclosed mass

- **Extended mass** is detected for the first time **unambiguously** from the stellar dynamics in the central parsec.
- Cluster rotation confirmed
- Extended mass in central parsec: $M_{\star}(r < lpc) = 1.5 \times 10^6 M_{\odot}$ for M/L = const.

Consistent with normal stars.

Schödel, Merritt & Eckart (2009, A&A)

3. Extinction toward the Galactic Center

precision photometry with NACO

- Precision photometry (<5%) with AO over large and crowded
 FOV
- Red clump stars used to constrain absolute extinction and NIR extinction law.
- $A_{\lambda} \propto \lambda^{-\alpha}$, with $\alpha = 2.22 \pm 0.23$
- → significantly steeper than previously assumed in agreement with other recent work (e.g. Nishiyama et al., 2009; Gosling et al., 2009; Stead & Hoare 2009)
- High resolution extinction map for the central parsec

Schoedel 2009 & Schoedel et al., 2009, submitted to A&A

Schoedel 2009 & Schoedel et al., 2009, submitted to A&A

- Precision photometry (<5%) with AO over large and crowded
 FOV
- Red clump stars used to constrain absolute extinction and NIR extinction law.
- $A_{\lambda} \propto \lambda^{-\alpha}$, with $\alpha = 2.22 \pm 0.23$
- → significantly steeper than previously assumed in agreement with other recent work (e.g. Nishiyama et al., 2009; Gosling et al., 2009; Stead & Hoare 2009)
- High resolution extinction map for the central parsec

Schoedel 2009 & Schoedel et al., 2009, submitted to A&A

4. Extreme stars in an extreme environment

sparse aperture masking interferometry with NACO

Galactic center NACO/VLT I'

Galactic center NACO/VLT L'

offset from Sgr A*, RA ["]

VLTI (MIDI) observations: dust formation zone resolved (Pott et al., 2008)

offset from Sgr A*, RA ["]

offset from Sgr A*, RA ["]

X [pix]

100

50

Y [pix]

NACO sparse aperture masking (SAM)
9 Holes mask

2 nights of visitor mode observations in July 2009

80% loss due to bad weather (resubmission), but nevertheless some success

5. Sagittarius A*

Sagittarius A*: IR/multiwavelength observations

- since 2004 yearly ~3-5 full nights at NaCo/VLT
- PI:A. Eckart (University of Cologne)
- Goals: understand Sgr A* variability: BH spin, accretion disk/outflow

Recent publications:

Meyer et al. (2007), Schödel et al. (2007), Eckart et al. (2008), Meyer (2008, 2009), Eckart et al. (2009)...

Thank you!

...for questions contact the ESO USD

...and also rainer@iaa.es