Eyeing the Centre of the Milky Way

Stefan Gillessen discusses what we knew before the latest observations of S2

27 July 2018
What you’ll discover in this blog post:
  • What’s so special about the centre of our galaxy
  • What the team has been observing for 26 years
In May 2018, the star S2 made its closest approach to the galactic centre in 16 years. This star can help us study an elusive area of our galaxy, the heart of the Milky Way, which was not well understood until only a few decades ago. In the first of a series of three blog posts, Stefan Gillessen, astronomer with the galactic centre research group at the Max Planck Institute for Extraterrestrial Physics, shares more of what we previously knew of this area as the group releases the latest observations from this year.

Q: To start, can you tell us a bit about the environment at the centre of the Milky Way?

A: In the galactic centre, we know of a radio source: Sagittarius A*. It was discovered in 1974 but it turned out to be quite difficult to reliably determine the mass of this very compact radio source.

For example, the centre is hidden behind dense dust clouds, making it impossible to see in visible light. However, with the advent of infrared detectors, we can now look through these clouds, and so we now know that there are actually thousands of stars. We can observe these stars and see them moving individually.

Animation of the orbit of the star S2 around the galactic centre black hole.
Credit: ESO/L. Calçada/spaceengine.org
This time-lapse of images from the GRAVITY instrument on ESO´s Very Large Telescope tracks the progress of the star S2 as it made a close passage past the black hole at the centre of the Milky Way in May 2018.
Credit: ESO/GRAVITY Collaboration

Q: What about the galactic centre was your team observing and why?

A: We want to learn more about the black hole. We cannot observe a black hole directly — it is black, not even light can escape from it. However, we can study the surroundings of the black hole. Imagine you would like to observe a lion at a waterhole. Usually, it is hard to spot when it is lying below a bush. However, all the other animals that you actually can see start behaving differently. The lion influences its environment — and so does a black hole. The stars close to a massive black hole feel the strong gravity, and do not move on straight trajectories, but on Keplerian ellipses. By now, we know of 45 stars orbiting the black hole at the centre of our Milky Way. It is just like the planets are orbiting the Sun in our Solar System. The difference is that the stellar orbits around the Milky Way centre are randomly oriented (as opposed to an almost flat plane like our Solar System) and the orbital periods are somewhat longer, in the range of tens or hundreds of years.

Q: What’s so extraordinary about the star S2 and why is it useful for studying SgrA*?

A: The star S2 is special in that its orbit is very close and that it is actually bright enough for making detailed measurements. S2 completes a revolution in only about 16 years — this means that we can actually study a full orbit (or more) in one astronomer’s lifetime. This is exactly what we did. Starting in 1992 we began observing its orbit, including the closest approach in 2002. In 2008, we had the first full revolution completed and have continued observations, covering now a second pericenter approach in May 2018.

Q: Where did you go for observations and why did you need to go there?

A: The galactic centre is located in the skies of the southern hemisphere, so the best thing to do is to go south. As the stars are quite faint we need a large telescope and for the best view, it helps to be high up and in a dry environment. And, most crucial, we need the images to be as sharp as possible since the stars in the galactic centre are very densely packed. That’s why we use the VLT operated by ESO in the Chilean Atacama Desert. It offers all the requirements we need.

Q: What needs to be researched after these observations?

Unlike those galaxies, however, the Milky Way centre is right on our doorstep — and this makes it possible to study it in exquisite detail.

A: After the discovery of the black hole, the next logical step was to investigate this black hole in more detail. Due to the extremely strong gravitational field, we expected to see the effects of general relativity — but only if we can look close enough. This is why we needed to push the technology. Our team has developed SINFONI and GRAVITY. With SINFONI we can measure the radial velocity of stars very accurately and GRAVITY gives us extremely sharp images and accurate positions.

Q: Why should we study the galactic centre?

A: Ever since the discovery of the radio source in the galactic centre, there have been discussions on its nature, and, in particular, if it could be the counterpart of a supermassive black hole, which is also the source type speculated to be at the centre of quasars. Unlike those galaxies, however, the Milky Way centre is right on our doorstep — and this makes it possible to study it in exquisite detail. And it is very a unique laboratory - where does one otherwise have access to a massive black hole to study the extreme physics close to an event horizon?

Learn more about the first successful test of Einstein’s General Theory of Relativity near a supermassive black hole in ESOcast 173.
Credit: ESO/L. Calçada/spaceengine.org

Numbers in this article

45 The number of stars seen orbiting the supermassive black hole at the centre of the Milky Way.
1974 Year the radio source at the heart of the Milky Way was discovered.
1992 The year of the first observations of S2.
2016 Year of the first light of GRAVITY.

Biography Stefan Gillessen

Stefan Gillessen is a senior staff scientist at the Max Planck Institute for Extraterrestrial Physics (MPE) in Garching, Germany, where he joined the Galactic Centre team in 2004 after having completed a PhD thesis in particle astrophysics. For his work on the galactic centre, he was awarded an ERC Starting GRANT.

Send us your comments!
Subscribe to receive news from ESO in your language
Accelerated by CDN77
Terms & Conditions
Cookie Settings and Policy

Our use of Cookies

We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.

You can read manage your cookie preferences and find out more by visiting 'Cookie Settings and Policy'.

ESO Cookies Policy


The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.

This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.

What are cookies?

Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.

Categories of cookies we use

Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
csrftoken
XSRF protection token. We use this cookie to protect against cross-site request forgery attacks.
1st party
Stored
1 year
user_privacy
Your privacy choices. We use this cookie to save your privacy preferences.
1st party
Stored
6 months
_grecaptcha
We use reCAPTCHA to protect our forms against spam and abuse. reCAPTCHA sets a necessary cookie when executed for the purpose of providing its risk analysis. We use www.recaptcha.net instead of www.google.com in order to avoid unnecessary cookies from Google.
3rd party
Stored
6 months

Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
preferred_language
Language settings. We use this cookie to remember your preferred language settings.
1st party
Stored
1 year
ON | OFF
sessionid
ESO Shop. We use this cookie to store your session information on the ESO Shop. This is just an identifier which is used on the server in order to allow you to purchase items in our shop.
1st party
Stored
2 weeks
ON | OFF

Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.

Matomo Cookies:

This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.

On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.

ON | OFF

Matomo cookies settings:

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
_pk_id
Stores a unique visitor ID.
1st party
Stored
13 months
_pk_ses
Session cookie temporarily stores data for the visit.
1st party
Stored
30 minutes
_pk_ref
Stores attribution information (the referrer that brought the visitor to the website).
1st party
Stored
6 months
_pk_testcookie
Temporary cookie to check if a visitor’s browser supports cookies (set in Internet Explorer only).
1st party
Stored
Temporary cookie that expires almost immediately after being set.

Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.

Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.

YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.

Cookies can also be classified based on the following elements.

Regarding the domain, there are:

As for their duration, cookies can be:

How to manage cookies

Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.

In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:

Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.

You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).

Updates to the ESO Cookies Policy

The ESO Cookies Policy may be subject to future updates, which will be made available on this page.

Additional information

For any queries related to cookies, please contact: pdprATesoDOTorg.

As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.