eso1819pt-br — Nota de imprensa científica

VLT testa teoria da relatividade geral de Einstein fora da Via Láctea

21 de Junho de 2018, Sao Carlos

Com o auxílio do instrumento MUSE montado no Very Large Telescope do ESO, no Chile, e do Telescópio Espacial Hubble da NASA/ESA, astrônomos fizeram o teste mais preciso até hoje da teoria da relatividade geral de Einstein fora da Via Láctea. A galáxia próxima ESO 325-G004 atua como uma forte lente gravitacional, distorcendo a luz emitida por uma galáxia distante situada atrás dela e dando origem a um anel de Einstein em torno do seu centro. Ao comparar a massa de ESO 325-G004 com a curvatura do espaço em sua volta, os astrônomos descobriram que a gravidade nestas escalas astronômicas se comporta como previsto pela relatividade geral, eliminando assim algumas teorias de gravidade alternativas.

Com o auxílio do instrumento MUSE montado no VLT do ESO, uma equipe liderada por Thomas Collett, da Universidade de Portsmouth no Reino Unido, calculou a massa da galáxia ESO 325-G004 ao medir o movimento das estrelas nesta galáxia elíptica próxima.

Collett explica “Usamos dados obtidos pelo Very Large Telescope do ESO, no Chile, para medir quão rapidamente as estrelas estavam se movendo em ESO 325-G004, o que nos permitiu inferir a quantidade de massa que deve existir na galáxia para manter estas estrelas em órbita.

Por outro lado, a equipe conseguiu também medir outro aspecto da gravidade. Com o Telescópio Espacial Hubble da NASA/ESA, observou-se um anel de Einstein, um fenômeno que resulta da luz de uma galáxia distante estar sendo distorcida por ESO 325-G004. A observação deste anel permitiu aos astrônomos medir que quantidade de luz, e consequentemente espaço-tempo, está sendo distorcida pela enorme massa de ESO 325-G004.

A teoria da relatividade geral de Einstein prevê que os objetos deformem o espaço-tempo à sua volta, fazendo com que a luz que passa por ele seja desviada e dando origem a um fenômeno conhecido por lente gravitacional. Este efeito apenas se torna evidente para objetos muito massivos. São conhecidas algumas centenas de lentes gravitacionais fortes, mas muitas estão demasiado distantes para se medir com precisão as suas massas. No entanto, a galáxia ESO 325-G004 constitui uma das lentes mais próximas de nós, situada a apenas 450 milhões de anos-luz de distância da Terra.

Collett continua “Com dados obtidos pelo MUSE determinamos a massa da galáxia situada em primeiro plano e com o Hubble medimos a quantidade de efeito de lente gravitacional observado. Em seguida comparamos estas duas maneiras de medir a força da gravidade — e o resultado foi exatamente o previsto pela relatividade geral, com uma incerteza de apenas 9%. Trata-se do teste da relatividade geral fora da Via Láctea mais preciso realizado até hoje. E usamos apenas uma galáxia!

A relatividade geral foi testada com muita precisão nas escalas do Sistema Solar, e o movimento das estrelas ao redor do buraco negro no centro da Via Láctea está sendo estudado com detalhe, mas até agora não tinha havido testes precisos para escalas astronômicas maiores. Testar o longo alcance das propriedades da gravidade é vital para validar o atual modelo cosmológico.

Esta descoberta pode ter implicações importantes para os modelos de gravidade alternativos à relatividade geral Estas teorias alternativas prevêem que os efeitos da gravidade na curvatura do espaço-tempo são “dependentes da escala”, o que significa que a gravidade se comportaria de modo diferente a escalas astronômicas diferentes. Collett e a sua equipe descobriram que este não é muito provavelmente o caso, a menos que estas diferenças ocorram apenas a escalas maiores que 6000 anos-luz.

O Universo é um lugar espantoso, dando-nos acesso a estas lentes gravitacionais que podemos usar como laboratórios,” acrescenta o membro da equipe Bob Nichol da Universidade de Portsmouth. “É extremamente satisfatório usar os melhores telescópios do mundo para desafiar Einstein e descobrir que afinal ele tinha razão.

Mais Informações

Este trabalho foi descrito no artigo científico intitulado “A precise extragalactic test of General Relativity” de Collett et al., que será publicado na revista Science.

A equipe é composta por T. E. Collett (Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth, RU), L. J. Oldham (Institute of Astronomy, University of Cambridge, Cambridge, RU), R. Smith (Centre for Extragalactic Astronomy, Durham University, Durham, RU), M. W. Auger (Institute of Astronomy, University of Cambridge, Cambridge, RU), K. B. Westfall (Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth, RU; University of California Observatories – Lick Observatory, Santa Cruz, EUA), D. Bacon (Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth, RU), R. C. Nichol (Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth, RU), K. L. Masters (Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth, RU), K. Koyama (Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth, RU), R. van den Bosch (Instituto Max Planck de Astronomia, Königstuhl, Heidelberg, Alemanha).

O ESO é a mais importante organização europeia intergovernamental para a investigação em astronomia e é de longe o observatório astronômico mais produtivo do mundo. O ESO tem 15 Estados Membros: Alemanha, Áustria, Bélgica, Dinamarca, Espanha, Finlândia, França, Holanda, Itália, Polônia, Portugal, Reino Unido, República Checa, Suécia e Suíça, para além do país de acolhimento, o Chile, e a Austrália, um parceiro estratégico. O ESO destaca-se por levar a cabo um programa de trabalhos ambicioso, focado na concepção, construção e operação de observatórios astronômicos terrestres de ponta, que possibilitam aos astrônomos importantes descobertas científicas. O ESO também tem um papel importante na promoção e organização de cooperação na investigação astronômica. O ESO mantém em funcionamento três observatórios de ponta no Chile: La Silla, Paranal e Chajnantor. No Paranal, o ESO opera  o Very Large Telescope e o Interferômetro do Very Large Telescope, o observatório astronômico óptico mais avançado do mundo, para além de dois telescópios de rastreio: o VISTA, que trabalha no infravermelho, e o VLT Survey Telescope, concebido exclusivamente para mapear os céus no visível. O ESO é também um parceiro principal em duas infraestruturas situadas no Chajnantor, o APEX e o ALMA, o maior projeto astronômico que existe atualmente. E no Cerro Armazones, próximo do Paranal, o ESO está a construir o Extremely Large Telescope (ELT) de 39 metros, que será “o maior olho do mundo virado para o céu”.

Links

Contatos

Gustavo Rojas
Universidade Federal de São Carlos
São Carlos, Brasil
Tel.: +551633519797
e-mail: grojas@ufscar.br

Thomas Collett
Institute of Cosmology and Gravitation — University of Portsmouth
Portsmouth, UK
Tel.: +44 239 284 5146
e-mail: thomas.collett@port.ac.uk

Richard Hook
ESO Public Information Officer
Garching bei München, Germany
Tel.: +49 89 3200 6655
Cel.: +49 151 1537 3591
e-mail: pio@eso.org

Connect with ESO on social media

Este texto é a tradução da Nota de Imprensa do ESO eso1819, cortesia do ESON, uma rede de pessoas nos Países Membros do ESO, que servem como pontos de contato local para a imprensa. O representante brasileiro é Eugênio Reis Neto, do Observatório Nacional/MCTIC. A nota de imprensa foi traduzida por Margarida Serote (Portugal) e adaptada para o português brasileiro por Eugênio Reis Neto.

Sobre a nota de imprensa

No. da notícia:eso1819pt-br
Nome:ESO 325-G004
Tipo:Early Universe : Cosmology
Facility:Very Large Telescope
Instruments:MUSE
Science data:2018Sci...360.1342C

Imagens

Imagem da galáxia ESO 325-G004
Imagem da galáxia ESO 325-G004
Lente gravitacional das galáxias longínquas com formação estelar intensa (figura esquemática)
Lente gravitacional das galáxias longínquas com formação estelar intensa (figura esquemática)
Dois métodos para medir a massa de uma galáxia
Dois métodos para medir a massa de uma galáxia
O aglomerado de galáxias Abell S0740
O aglomerado de galáxias Abell S0740

Vídeos

ESOcast 166 Light: Novo teste da teoria da relatividade geral de Einstein (4K UHD)
ESOcast 166 Light: Novo teste da teoria da relatividade geral de Einstein (4K UHD)
Concepção artística de um objeto massivo distorcendo o espaço-tempo
Concepção artística de um objeto massivo distorcendo o espaço-tempo
Panorâmica sobre a galáxia ESO 325-G004
Panorâmica sobre a galáxia ESO 325-G004
Entrevista com Thomas Collett sobre este trabalho
Entrevista com Thomas Collett sobre este trabalho

Veja também