Pressemitteilungen

Subscribe to receive news from ESO in your language!
eso0308 — Organisatorische Pressemitteilung
"First Light" for HARPS at La Silla
27. März 2003: The initial commissioning period of the new HARPS spectrograph (High Accuracy Radial Velocity Planet Searcher) of the 3.6-m telescope at the ESO La Silla Observatory has been successfully accomplished in the period February 11 - 27, 2003. This new instrument is optimized to detect planets in orbit around other stars ("exoplanets") by means of accurate (radial) velocity measurements with an unequalled precision of 1 meter per second . This high sensitivity makes it possible to detect variations in the motion of a star at this level, caused by the gravitational pull of one or more orbiting planets, even relatively small ones. "First Light" occurred on February 11, 2003, during the first night of tests. The instrument worked flawlessly and was fine-tuned during subsequent nights, achieving the predicted performance already during this first test run. The measurement of accurate stellar radial velocities is a very efficient way to search for planets around other stars. More than one hundred extrasolar planets have so far been detected , providing an increasingly clear picture of a great diversity of exoplanetary system. However, current technical limitations have so far prevented the discovery around solar-type stars of exoplanets that are much less massive than Saturn, the second-largest planet in the solar system. HARPS will break through this barrier and will carry this fundamental exploration towards detection of exoplanets with masses like Uranus and Neptune. Moreover, in the case of low-mass stars - like Proxima Centauri - HARPS will have the unique capability to detect big "telluric" planets with only a few times the mass of the Earth. The HARPS instrument is being offered to the research community in the ESO member countries, already from October 2003.
Weiter
eso0305 — Pressemitteilung Wissenschaft
Distant World in Peril Discovered from La Silla
22. Januar 2003: When, in a distant future, the Sun begins to expand and evolves into a "giant" star, the surface temperature on the Earth will rise dramatically and our home planet will eventually be incinerated by that central body. Fortunately for us, this dramatic event is several billion years away. However, that sad fate will befall another planet, just discovered in orbit about the giant star HD 47536, already within a few tens of millions of years. At a distance of nearly 400 light-years from us, it is the second-remotest planetary system discovered to date [1]. This is an interesting side-result of a major research project, now carried out by a European-Brazilian team of astronomers [2]. In the course of a three-year spectroscopic survey, they have observed about 80 giant stars in the southern sky with the advanced FEROS spectrograph on the 1.52-m telescope installed at the ESO La Silla Observatory (Chile). It is one of these stars that has just been found to host a giant planet. This is only the fourth such case known and with a diameter of about 33 million km (or 23.5 times that of our Sun), HD 47536 is by far the largest of those giant stars [1]. The distance of the planet from the star is still of the order of 300 million km (or twice the distance of the Earth from the Sun), a safe margin now, but this will not always be so. The orbital period is 712 days, i.e., somewhat less than two Earth years, and the planet's mass is 5 - 10 times that of Jupiter. The presence of exoplanets in orbit around giant stars, some of which will eventually perish into their central star (be "cannibalized"), provides a possible explanation of the anomalous abundance of certain chemical elements that is observed in the atmospheres of some stars. This interesting discovery bodes well for coming observations of exoplanetary systems with new, more powerful instruments, like HARPS to be installed next year at the ESO 3.6-m telescope on La Silla, and also the Very Large Telescope Interferometer (VLTI) now being commissioned at Paranal.
Weiter
eso0304 — Pressemitteilung Wissenschaft
Isolated Star-Forming Cloud Discovered in Intracluster Space
16. Januar 2003: At a distance of some 50 million light-years, the Virgo Cluster is the nearest galaxy cluster. It is located in the zodiacal constellation of the same name (The Virgin) and is a large and dense assembly of hundreds of galaxies. The "intracluster" space between the Virgo galaxies is permeated by hot X-ray emitting gas and, as has become clear recently, by a sparse "intracluster population of stars". So far, stars have been observed to form in the luminous parts of galaxies. The most massive young stars are often visible indirectly by the strong emission from surrounding cocoons of hot gas, which is heated by the intense radiation from the embedded stars. These "HII regions" (pronounced "Eitch-Two" and so named because of their content of ionized hydrogen) may be very bright and they often trace the beautiful spiral arms seen in disk galaxies like our own Milky Way. New observations by the Japanese 8-m Subaru telescope and the ESO Very Large Telescope (VLT) have now shown that massive stars can also form in isolation, far from the luminous parts of galaxies [1]. During a most productive co-operation between astronomers working at these two world-class telescopes, a compact HII region has been discovered at the very boundary between the outer halo of a Virgo cluster galaxy and Virgo intracluster space. This cloud is illuminated and heated by a few hot and massive young stars. The estimated total mass of the stars in the cloud is only a few hundred times that of the Sun. Such an object is rare at the present epoch. However, there may have been more in the past, at which time they were perhaps responsible for the formation of a fraction of the intracluster stellar population in clusters of galaxies. Massive stars in such isolated HII regions will explode as supernovae at the end of their short lives, and enrich the intracluster medium with heavy elements. Observations of two other Virgo cluster galaxies, Messier 86 and Messier 84, indicate the presence of other isolated HII regions, thus suggesting that isolated star formation may occur more generally in galaxies. If so, this process may provide a natural explanation to the current riddle why some young stars are found high up in the halo of our own Milky Way galaxy, far from the star-forming clouds in the main plane.
Weiter
eso0303 — Pressemitteilung Wissenschaft
Discovery of Nearest Known Brown Dwarf
13. Januar 2003: A team of European astronomers [1], [2] has discovered a Brown Dwarf object (a 'failed' star) less than 12 light-years from the Sun. It is the nearest yet known. Now designated Epsilon Indi B, it is a companion to a well-known bright star in the southern sky, Epsilon Indi (now "Epsilon Indi A"), previously thought to be single. The binary system is one of the twenty nearest stellar systems to the Sun. The brown dwarf was discovered from the comparatively rapid motion across the sky which it shares with its brighter companion : the pair move a full lunar diameter in less than 400 years. It was first identified using digitised archival photographic plates from the SuperCOSMOS Sky Surveys (SSS) and confirmed using data from the Two Micron All Sky Survey (2MASS). Follow-up observations with the near-infrared sensitive SOFI instrument on the ESO 3.5-m New Technology Telescope (NTT) at the La Silla Observatory confirmed its nature and has allowed measurements of its physical properties. Epsilon Indi B has a mass just 45 times that of Jupiter, the largest planet in the Solar System, and a surface temperature of only 1000 °C. It belongs to the so-called 'T dwarf' category of objects which straddle the domain between stars and giant planets. Epsilon Indi B is the nearest and brightest T dwarf known. Future studies of the new object promise to provide astronomers with important new clues as to the formation and evolution of these exotic celestial bodies, at the same time yielding interesting insights into the border zone between planets and stars.
Weiter
eso0236 — Organisatorische Pressemitteilung
New Vistas Open with MIDI at the VLT Interferometer
18. Dezember 2002: Following several weeks of around-the-clock work, a team of astronomers and engineers from Germany, the Netherlands, France and ESO [2] has successfully performed the first observations with the MID-Infrared interferometric instrument (MIDI), a new, extremely powerful instrument just installed in the underground laboratory of the VLT Interferometer (VLTI) at the Paranal Observatory (Chile). In the early morning of December 15, 2002, two of the 8.2 m VLT unit telescopes (ANTU and MELIPAL) were pointed towards the southern star Epsilon Carinae and the two light beams were directed via the complex intervening optics system towards MIDI. After a few hours of tuning and optimization, strong and stable interferometric fringes were obtained, indicating that all VLTI components - from telescopes to the new instrument - were working together perfectly. Two more stars were observed before sunrise, further proving the stability of the entire system. The first observations with MIDI mark one more important step towards full and regular operation of the VLT Interferometer [3]. They are a result of five years of determined efforts within a concerted technology project, based on a close collaboration between ESO and several European research institutes (see below). Now opening great research vistas, they also represent several "firsts" in observational astrophysics, together amounting to a real breakthrough in the field of astronomical interferometry.
Weiter
eso0234 — Pressemitteilung Wissenschaft
Deepest Infrared View of the Universe
11. Dezember 2002: An international team of astronomers [2] has made the deepest-ever near-infrared Ks-band image of the sky, using the ISAAC multi-mode instrument on the 8.2-m VLT ANTU telescope. For this, the VLT was pointed for more than 100 hours under optimal observing conditions at the Hubble Deep Field South (HDF-S) and obtained images in three near-infrared filters. The resulting images reveal extremely distant galaxies, which appear at infrared wavelengths, but are barely detected in the deepest optical images acquired with the Hubble Space Telescope (HST). Astronomer Marijn Franx from the University of Leiden and leader of the team concludes: "These results demonstrate that very deep observations in the near-infrared are essential to obtain a proper census of the earliest phases of the universe. The new VLT images have opened a new research domain which has not been observationally accessible before". The HDF-S is a tiny field on the sky in the southern constellation Tucana (The Toucan) - only about 1% of the area of the full moon. The NASA/ESA Hubble Space Telescope (HST) observed it with a total exposure time of about 1 week, yielding the deepest optical images ever taken of the sky, similar to those made earlier on the Hubble Deep Field North (HDF-N). The VLT infrared images of the same field were obtained in the course of a major research project, the Faint InfraRed Extragalactic Survey (FIRES). They were made at wavelengths up to 2.3 µm where the HST is not competitive.
Weiter
eso0232 — Pressemitteilung Wissenschaft
How Small are Small Stars Really?
29. November 2002: At a distance of only 4.2 light-years, Proxima Centauri is the nearest star to the Sun currently known [2]. It is visible as an 11-magnitude object in the southern constellation of Centaurus and is the faintest member of a triple system, together with Alpha Centauri, the brightest (double) star in this constellation. Proxima Centauri is a very-low-mass star, in fact barely massive enough to burn hydrogen to helium in its interior. It is about seven times smaller than the Sun, and the surface temperature is "only" about 3000 degrees, about half of that of our own star. Consequently, it is also much fainter - the intrinsic brightness is only 1/150th of that of our Sun. Low-mass stars are very interesting objects , also because the physical conditions in their interiors have much in common with those of giant planets, like Jupiter in our solar system. A determination of the sizes of the smallest stars has been impossible until now because of their general faintness and lack of adequate instrumentation. However, astronomers have long been keen to move forward in this direction, since such measurements would provide indirect, crucial information about the behaviour of matter under extreme conditions. When the first observations with the VLT Interferometer (VLTI), combining the light from two of the 8.2-m VLT Unit Telescopes (ANTU and MELIPAL), were made one year ago, interferometric measurements were also obtained of Proxima Centauri . They formed part of the VLTI commissioning and the data were soon released to the ESO community, cf. the special website. Now, an international team of astronomers from Switzerland, France and ESO/Chile has successfully analysed these observations by means of newly developed, advanced software. For the first time ever, they obtained a highly accurate measurement of the size of such a small star. Three other small stars were also measured and the results are in excellent agreement with stellar theory, indicating that our present understanding of the structure and composition of very small stars is reasonably correct . More VLTI observations are soon to follow, eventually also of even smaller objects, like Brown Dwarfs.
Weiter
eso0228 — Pressemitteilung Wissenschaft
A Glimpse of the Young Milky Way
30. Oktober 2002: A faint star in the southern Milky Way, designated HE 0107-5240 , has been found to consist virtually only of hydrogen and helium . It has the lowest abundance of heavier elements ever observed , only 1/200,000 of that of the Sun - 20 times less than the previous record-holding star. This is the result of a major ongoing research project by an international team of astronomers [2]. It is based on a decade-long survey of the southern sky, with detailed follow-up observations by means of the powerful UV-Visual Echelle Spectrograph (UVES) on the 8.2-m VLT KUEYEN telescope at the ESO Paranal Observatory in Chile. This significant discovery now opens a new window towards the early times when the Milky Way galaxy was young, possibly still in the stage of formation. It proves that, contrary to most current theories, comparatively light stars like HE 0107-5240 (with 80% of the mass of the Sun) may form in environments (nearly) devoid of heavier elements. Since some years, astronomers have been desperately searching for stars of the very first stellar generation in the Milky Way, consisting only of hydrogen and helium from the Big Bang. None have been detected so far and doubts have arisen that they exist at all. The present discovery provides new hope that it will ultimately be possible to find such stellar relics from the young Universe and thereby to study "unpolluted" Big Bang material.
Weiter
eso0226 — Pressemitteilung Wissenschaft
Surfing a Black Hole
16. Oktober 2002: An international team of astronomers [2], lead by researchers at the Max-Planck Institute for Extraterrestrial Physics (MPE) , has directly observed an otherwise normal star orbiting the supermassive black hole at the center of the Milky Way Galaxy. Ten years of painstaking measurements have been crowned by a series of unique images obtained by the Adaptive Optics (AO) NAOS-CONICA (NACO) instrument [3] on the 8.2-m VLT YEPUN telescope at the ESO Paranal Observatory. It turns out that earlier this year the star approached the central Black Hole to within 17 light-hours - only three times the distance between the Sun and planet Pluto - while travelling at no less than 5000 km/sec. Previous measurements of the velocities of stars near the center of the Milky Way and variable X-ray emission from this area have provided the strongest evidence so far of the existence of a central Black Hole in our home galaxy and, implicitly, that the dark mass concentrations seen in many nuclei of other galaxies probably are also supermassive black holes. However, it has not yet been possible to exclude several alternative configurations. In a break-through paper appearing in the research journal Nature on October 17th, 2002, the present team reports their exciting results, including high-resolution images that allow tracing two-thirds of the orbit of a star designated "S2" . It is currently the closest observable star to the compact radio source and massive black hole candidate "SgrA*" ("Sagittarius A") at the very center of the Milky Way. The orbital period is just over 15 years. The new measurements exclude with high confidence that the central dark mass consists of a cluster of unusual stars or elementary particles, and leave little doubt of the presence of a supermassive black hole at the centre of the galaxy in which we live.
Weiter
eso0225 — Organisatorische Pressemitteilung
Four Eyes Are Better
26. September 2002: During the nights of September 15/16 and 16/17, 2002, preliminary tests were successfully carried out during which the light beams from all four VLT 8.2-m Unit Telescopes (UTs) at the ESO Paranal Observatory were successively combined, two by two, to produce interferometric fringes . This marks a next important step towards the full implementation of the VLT Interferometer (VLTI) that will ultimately provide European astronomers with unequalled opportunities for exciting front-line research projects. It is no simple matter to ensure that the quartet of ANTU, KUEYEN, MELIPAL and YEPUN , each a massive giant with a suite of computer-controlled active mirrors, can work together by sending beams of light towards a common focal point via a complex system of compensating optics. Yet, in the span of only two nights, the four VLT telescopes were successfully "paired" to do exactly this, yielding a first tantalizing glimpse of the future possibilities with this new science machine. While there is still a long way ahead to the routine production of extremely sharp, interferometric images, the present test observations have allowed to demonstrate directly the 2D-resolution capacity of the VLTI by means of multiple measurements of a distant star. Much valuable experience was gained during those two nights and the ESO engineers and scientists are optimistic that the extensive test observations with the numerous components of the VLTI will continue to progress rapidly. Five intense, technical test periods are scheduled during the next six months; some of these with the Mid-Infrared interferometric instrument for the VLTI (MIDI) which will soon be installed at Paranal. Later in 2003, the first of the four moveable VLTI 1.8-m Auxiliary Telescopes (ATs) will be put in place on the top of the mountain; together they will permit regular interferometric observations, also without having to use the large UTs.
Weiter
eso0215 — Pressemitteilung Wissenschaft
Ultrabass Sounds of the Giant Star xi Hya
15. Mai 2002: About 30 years ago, astronomers realised that the Sun resonates like a giant musical instrument with well-defined periods (frequencies). It forms a sort of large, spherical organ pipe. The energy that excites these sound waves comes from the turbulent region just below the Sun's visible surface.
Observations of the solar sound waves (known as "helioseismology") have resulted in enormous progress in the exploration of the interior of the Sun, otherwise hidden from view. As is the case on Earth, seismic techniques can be applied and the detailed interpretation of the observed oscillation periods has provided quite accurate information about the structure and motions inside the Sun, our central star. It has now also become possible to apply this technique to some solar-type stars. The first observations concerned the northern star eta Bootis. Last year, extensive and much more accurate observations with the 1.2-m Swiss telescope at the ESO La Silla Observatory proved that Alpha Centauri , a solar "twin", behaves very much like the Sun, and that some of the periods are quite similar to those in the Sun. These new observational data were of a superb quality, and that study marked a true break-through in the new research field of "asteroseismology" (seismology of the stars) for solar-type stars. But what about other types of stars, for instance those that are much larger than the Sun?
Weiter
eso0209 — Pressemitteilung Wissenschaft
VIMOS - a Cosmology Machine for the VLT
13. März 2002: One of the most fundamental tasks of modern astrophysics is the study of the evolution of the Universe . This is a daunting undertaking that requires extensive observations of large samples of objects in order to produce reasonably detailed maps of the distribution of galaxies in the Universe and to perform statistical analysis. Much effort is now being put into mapping the relatively nearby space and thereby to learn how the Universe looks today . But to study its evolution, we must compare this with how it looked when it still was young . This is possible, because astronomers can "look back in time" by studying remote objects - the larger their distance, the longer the light we now observe has been underway to us, and the longer is thus the corresponding "look-back time." This may sound easy, but it is not. Very distant objects are very dim and can only be observed with large telescopes. Looking at one object at a time would make such a study extremely time-consuming and, in practical terms, impossible. To do it anyhow, we need the largest possible telescope with a highly specialised, exceedingly sensitive instrument that is able to observe a very large number of (faint) objects in the remote universe simultaneously. The VLT VIsible Multi-Object Spectrograph (VIMOS) is such an instrument. It can obtain many hundreds of spectra of individual galaxies in the shortest possible time; in fact, in one special observing mode, up to 6400 spectra of the galaxies in a remote cluster during a single exposure, augmenting the data gathering power of the telescope by the same proportion. This marvellous science machine has just been installed at the 8.2-m MELIPAL telescope, the third unit of the Very Large Telescope (VLT) at the ESO Paranal Observatory. A main task will be to carry out 3-dimensional mapping of the distant Universe from which we can learn its large-scale structure. "First light" was achieved on February 26, 2002, and a first series of test observations has successfully demonstrated the huge potential of this amazing facility. Much work on VIMOS is still ahead during the coming months in order to put into full operation and fine-tune the most efficient "galaxy cruncher" in the world. VIMOS is the outcome of a fruitful collaboration between ESO and several research institutes in France and Italy, under the responsibility of the Laboratoire d'Astrophysique de Marseille (CNRS, France). The other partners in the "VIRMOS Consortium" are the Laboratoire d'Astrophysique de Toulouse, Observatoire Midi-Pyrénées, and Observatoire de Haute-Provence in France, and Istituto di Radioastronomia (Bologna), Istituto di Fisica Cosmica e Tecnologie Relative (Milano), Osservatorio Astronomico di Bologna, Osservatorio Astronomico di Brera (Milano) and Osservatorio Astronomico di Capodimonte (Naples) in Italy.
Weiter
eso0208 — Pressemitteilung Wissenschaft
UVES Investigates the Environment of a Very Remote Galaxy
11. März 2002: Observations with ESO's Very Large Telescope (VLT) have enabled an international group of astronomers [1] to study in unprecedented detail the surroundings of a very remote galaxy, almost 12 billion light-years distant [2]. The corresponding light travel time means that it is seen at a moment only about 3 billion years after the Big Bang. This galaxy is designated MS 1512-cB58 and is the brightest known at such a large distance and such an early time. This is due to a lucky circumstance: a massive cluster of galaxies (MS 1512+36) is located about halfway along the line-of-sight, at a distance of about 7 billion light-years, and acts as a gravitational "magnifying glass." Thanks to this lensing effect, the image of MS1512-cB58 appears 50 times brighter. Nevertheless, the apparent brightness is still as faint as magnitude 20.6 (i.e., nearly 1 million times fainter than what can be perceived with the unaided eye). Moreover, MS 1512-cB58 is located 36° north of the celestial equator and never rises more than 29° above the horizon at Paranal. It was therefore a great challenge to secure the present observational data with the UVES high-dispersion spectrograph on the 8.2-m VLT KUEYEN telescope. The extremely detailed UVES-spectrum of MS 1512-cB58 displays numerous signatures (absorption lines) of intergalactic gas clouds along the line-of-sight . Some of the clouds are quite close to the galaxy and the astronomers have therefore been able to investigate the distribution of matter in its immediate surroundings. They found an excess of material near MS 1512-cB58, possible evidence of a young supercluster of galaxies , already at this very early epoch. The new observations thus provide an invaluable contribution to current studies of the birth and evolution of structures in the early Universe. This is the first time this kind of observation has ever been done of a galaxy at such a large distance . All previous studies were based on much more luminous quasars (QSOs - extremely active galaxy nuclei). However, any investigation of the intergalactic matter around a quasar is complicated by the strong radiation and consequently, high ionization of the gas by the QSO itself, rendering an unbiased assessment of the gas distribution impossible.
Weiter
eso0203 — Organisatorische Pressemitteilung
Multiple Eyes for the VLT
28. Januar 2002: The ESO Very Large Telescope (VLT) at the Paranal Observatory is being equipped with many state-of-the-art astronomical instruments that will allow observations in a large number of different modes and wavebands [1]. Soon to come is the Fibre Large Array Multi-Element Spectrograph (FLAMES) , a project co-ordinated by ESO. It incorporates several complex components, now being constructed at various research institutions in Europe and Australia.

One of these, a true technological feat, is a unique system of 15 deployable fibre bundles, the so-called Integral Field Units (IFUs) . They can be accurately positioned within a sky field-of-view measuring no less that 25 arcmin in diameter, i.e., almost as large as the full Moon . Each of the IFUs looks like an insect's eye and images a small sky area (3 x 2 arcsec 2 ) with a multiple microlens. From each IFU, 20 narrow light beams are sent via optical fibres to an advanced spectrograph. All 300 spectra are recorded simultaneously by a sensitive digital camera.

A major advantage of this technique is that, contrary usual spectroscopic observations in which spectral information is obtained along a (one-dimensional) line on the sky, it now allows (two-dimensional) area spectroscopy . This will permit extremely efficient spectral observations of many celestial objects, including faint galaxies, providing detailed information about their internal structure and motions. Such studies will have an important impact on our understanding, e.g., of the early evolution of galaxies , the main building blocks in the Universe.

The IFUs have been developed by a team of astronomers and engineers [2] at the Observatoire de Paris-Meudon. All IFU components are now at the ESO Headquarters in Garching (Germany) where they are being checked and integrated into the instrument [3].
Weiter
Angezeigt werden 801 bis 900 von 1281