Advanced press release search

Subscribe to receive news from ESO in your language!
Search results for ‘releases with Instruments matching 'MIDI'.’

eso0414 — Science Release
Closer to the Monster
5 May 2004: Fulfilling an old dream of astronomers, observations with the Very Large Telescope Interferometer (VLTI) at the ESO Paranal Observatory (Chile) have now made it possible to obtain a clear picture of the immediate surroundings of the black hole at the centre of an active galaxy. The new results concern the spiral galaxy NGC 1068, located at a distance of about 50 million light-years. They show a configuration of comparatively warm dust (about 50°C) measuring 11 light-years across and 7 light-years thick, with an inner, hotter zone (500°C), about 2 light-years wide. These imaging and spectral observations confirm the current theory that black holes at the centres of active galaxies are enshrouded in a thick doughnut-shaped structure of gas and dust called a "torus." For this trailblazing study, the first of its kind of an extragalactic object by means of long-baseline infrared interferometry, an international team of astronomers [2] used the new MIDI instrument in the VLTI Laboratory. It was designed and constructed in a collaboration between German, Dutch and French research institutes [3]. Combining the light from two 8.2-m VLT Unit Telescopes during two observing runs in June and November 2003, respectively, a maximum resolution of 0.013 arcsec was achieved, corresponding to about 3 light-years at the distance of NGC 1068. Infrared spectra of the central region of this galaxy were obtained that indicate that the heated dust is probably of alumino-silicate composition. The new results are published in a research paper appearing in the May 6, 2004, issue of the international research journal Nature.
Read more
eso0236 — Organisation Release
New Vistas Open with MIDI at the VLT Interferometer
18 December 2002: Following several weeks of around-the-clock work, a team of astronomers and engineers from Germany, the Netherlands, France and ESO [2] has successfully performed the first observations with the MID-Infrared interferometric instrument (MIDI), a new, extremely powerful instrument just installed in the underground laboratory of the VLT Interferometer (VLTI) at the Paranal Observatory (Chile). In the early morning of December 15, 2002, two of the 8.2 m VLT unit telescopes (ANTU and MELIPAL) were pointed towards the southern star Epsilon Carinae and the two light beams were directed via the complex intervening optics system towards MIDI. After a few hours of tuning and optimization, strong and stable interferometric fringes were obtained, indicating that all VLTI components - from telescopes to the new instrument - were working together perfectly. Two more stars were observed before sunrise, further proving the stability of the entire system. The first observations with MIDI mark one more important step towards full and regular operation of the VLT Interferometer [3]. They are a result of five years of determined efforts within a concerted technology project, based on a close collaboration between ESO and several European research institutes (see below). Now opening great research vistas, they also represent several "firsts" in observational astrophysics, together amounting to a real breakthrough in the field of astronomical interferometry.
Read more
eso0225 — Organisation Release
Four Eyes Are Better
26 September 2002: During the nights of September 15/16 and 16/17, 2002, preliminary tests were successfully carried out during which the light beams from all four VLT 8.2-m Unit Telescopes (UTs) at the ESO Paranal Observatory were successively combined, two by two, to produce interferometric fringes . This marks a next important step towards the full implementation of the VLT Interferometer (VLTI) that will ultimately provide European astronomers with unequalled opportunities for exciting front-line research projects. It is no simple matter to ensure that the quartet of ANTU, KUEYEN, MELIPAL and YEPUN , each a massive giant with a suite of computer-controlled active mirrors, can work together by sending beams of light towards a common focal point via a complex system of compensating optics. Yet, in the span of only two nights, the four VLT telescopes were successfully "paired" to do exactly this, yielding a first tantalizing glimpse of the future possibilities with this new science machine. While there is still a long way ahead to the routine production of extremely sharp, interferometric images, the present test observations have allowed to demonstrate directly the 2D-resolution capacity of the VLTI by means of multiple measurements of a distant star. Much valuable experience was gained during those two nights and the ESO engineers and scientists are optimistic that the extensive test observations with the numerous components of the VLTI will continue to progress rapidly. Five intense, technical test periods are scheduled during the next six months; some of these with the Mid-Infrared interferometric instrument for the VLTI (MIDI) which will soon be installed at Paranal. Later in 2003, the first of the four moveable VLTI 1.8-m Auxiliary Telescopes (ATs) will be put in place on the top of the mountain; together they will permit regular interferometric observations, also without having to use the large UTs.
Read more
Showing 1 to 18 of 18