Kids

eso1837ru — Научный релиз

«Сверхземля» на орбите вокруг звезды Барнарда

В ходе наблюдательной кампании «Красные точки» открыта экзопланета у ближайшей к Солнцу одиночной звезды

14 ноября 2018 г., St.-Petersburg

14 ноября 2018 г.
У ближайшей к Солнцу одиночной звезды есть экзопланета массой по крайней мере в 3.2 раза больше массы Земли — так называемая «сверхземля». Этот ледяной, тускло освещенный мир открыт в ходе одной из самых масштабных на сегодняшний день астрономических наблюдательных кампаний по данным, полученным на целом ряде телескопов по всему миру, в том числе и с знаменитым инструментом ESO, «охотником за планетами» HARPS. Обнаруженная планета – вторая из ближайших к Земле экзопланет, известных науке. Звезда Барнарда – самая быстролетящая из звезд нашего неба.

Зарегистрирована планета у звезды Барнарда, на расстоянии всего 6 световых лет от нас. Это открытие, о котором сообщается в статье, публикуемой сегодня в журнале Nature — результат осуществления проектов «Красные точки» и CARMENES: в рамках этих кампаний по поиску близлежащих каменистых экзопланет уже была открыта планета у Проксимы Центавра, нашего ближайшего звездного соседа.

Новая планета, обозначаемая «звезда Барнарда b», теперь вторая по близости к Земле из известных экзопланет [1]. Данные наблюдений говоря о том, что эта планета, вероятно, принадлежит к классу «сверхземель»: ее масса не менее 3.2 масс Земли, и она обращается вокруг материнской звезды примерно за 233 дня. Звезда Барнарда – красный карлик, холодная маломассивная звезда, очень тускло освещающая новооткрытый мир. Планета звезды Барнарда получает от своего светила всего 2% энергии, которую Земля получает от Солнца.

Несмотря на относительную близость к материнской звезде — примерно 0.4 расстояния между Землей и Солнцем — экзопланета лежит вблизи линии снега, границы, за которой летучие компоненты, такие, как водяной пар, могут конденсироваться в лед. В этом замороженном и темном мире температура, вероятно, близка к –170 : для жизни в известной нам форме эти условия нельзя назвать благоприятными.

Звезд Барнарда, названная в честь астронома E.E.Барнарда – ближайшая к Солнцу одиночная звезда. Эта звезда старая — вероятно, вдвое старше нашего Солнца — и относительно неактивная, но отличается самой большой видимой скоростью движения среди всех звезд, видимых на небе Земли [2]. «Сверхземли» -- наиболее распространенный тип планет у таких маломассивных звезд, как звезда Барнарда, что лишний раз подтверждает достоверность сделанного открытия. Более того, современные теории образования планет предсказывают, что «линия снега» -- идеальное место для формирования таких планет.

Предыдущие поиски планет у звезды Барнарда ни к чему не приводили. Прорыв был осуществлен только в результате объединения измерений на нескольких высокоточных инструментах, смонтированных на телескопах в разных частях мира [3].

“После очень тщательного анализа мы на 99% уверены, что открыли планету”, -- говорит ведущий ученый группы Игнасий Рибас (Ignasi Ribas) из Института космических исследований Каталонии и Института наук о космосе Испании (CSIC. “Однако, мы продолжим наблюдения этой быстролетящей звезды, чтобы исключить возможные – хоть и крайне маловероятные – естественные вариации ее яркости, которые могли бы ошибочно быть интерпретированы как вызванные присутствием планеты”.

Среди инструментов, использованных при наблюдениях, были и знаменитые «охотники за планетами» ESO: спектрографы HARPS и UVES. Приемник HARPS сыграл важнейшую роль в этом проекте. Мы объединили архивные данные, полученные другими исследователями, с новыми перекрывающимися измерениями звезды Барнарда, выполненными с разным оборудованием”, -- рассказывает Гильем Англада Эскуде (Guillem Anglada Escudé) из Университета Королевы Марии в Лондоне, еще один ведущий ученый в группе, получившей этот замечательный результат [4]. “Именно комбинация различных инструментов оказалась ключевым фактором в перекрестной проверке результатов измерений”.

Для поиска экзопланеты астрономы использовали эффект Допплера. Когда планета обращается вокруг звезды, ее притяжение заставляет звезду немного смещаться. Когда звезда движется от Земли, ее спектр испытывает красное смещение, то есть, длины волн в спектре немного увеличиваются, а когда звезда движется к Земле, длины волн ее излучения смещаются в короткую, голубую сторону.

Астрономы используют этот эффект, чтобы измерить изменения скорости звезды, вызванные присутствием экзопланеты, для чего нужна необыкновенная точность. Приемник HARPS способен регистрировать изменения скорости звезды в 3.5 км/ч, что примерно соответствует скорости человека при ходьбе. Такой способ «ловли» экзопланет называется методом лучевых скоростей. Этот метод впервые использован для регистрации «сверхземли» на столь далекой от материнской звезды орбите.

“Мы использовали наблюдения, выполненные с семью различными инструментами на протяжении 20 лет, получив таким образом один из самых протяженных и больших массивов данных, когда-либо использовавшихся для точных измерений лучевых скоростей”, -- говорит Рибас. ”В результате объединения всех данных мы получили массив из 771 измерения — огромное количество информации!”

“Мы все очень много работали для того, чтобы добиться этого результата”, -- резюмирует Англада-Эскуде. “Наше открытие стало возможно благодаря широкому сотрудничеству в рамках проекта «Красные точки», в котором участвовали исследовательские группы всего мира. И до сих пор в различных обсерваториях мира продолжаются наблюдения, идет сбор новых данных для подтверждения и уточнения наших выводов”.

Примечания

[1] Ближе к Солнцу, чем звезда Барнарда, только тройная звезда альфа Центавра. В 2016 году на телескопах ESO и других инструментах астрономы получили ясные доказательства существования планеты у ближайшей к Земле звезды Проксимы Центавра. Эта планета, находящаяся чуть больше, чем в четырех световых годах от Земли, была открыта группой Гиллема Англада Эскуде.

[2] Общая скорость звезды Барнарда относительно Солнца примерно 500 000 км/ч. Но, хоть эта скорость и огромна, есть и еще более быстрые звезды. Заметным делает движение звезды быстрота ее видимого с Земли смещения по небу среди других звезд – так называемого видимого движения. Звезда Барнарда проходит по небу расстояние, равное видимому диаметру лунного диска, за 180 лет — хоть это, как будто, и не очень впечатляет, все же это намного быстрее видимого движения любой другой звезды.

[3] В исследованиях были задействованы следующие инструменты: HARPS на 3.6-м телескопе ESO; UVES на VLT ESO; HARPS-N на Национальном телескопе Галилея; HIRES на 10-метровом телескопе Кека; PFS на 6.5-м телескопе Магеллана института Карнеги; APF на 2.4-м телескопе Ликской обсерватории; CARMENES в обсерватории Калар Альто. Дополнительные наблюдения были выполнены на 90-см телескопе обсерватории Сьера Невада, 40-см робот-телескопе обсерватории SPACEOBS и на 80-см телескопе Хуана Оро астрономической обсерватории Монтсек (OAdM).

[4] История открытия во всех подробностях будет рассказана на этой неделе в ESOBlog.

Узнать больше

Результаты исследования представлены в статье A super-Earth planet candidate orbiting at the snow-line of Barnard’s star, публикуемой в журнале Nature от 15 ноября.

Состав исследовательской группы: I. Ribas (Institut de Ciències de l’Espai, Spain & Institut d’Estudis Espacials de Catalunya, Spain), M. Tuomi (Centre for Astrophysics Research, University of Hertfordshire, United Kingdom), A. Reiners (Institut für Astrophysik Göttingen, Germany), R. P. Butler (Department of Terrestrial Magnetism, Carnegie Institution for Science, USA), J. C. Morales (Institut de Ciències de l’Espai, Spain & Institut d’Estudis Espacials de Catalunya, Spain), M. Perger (Institut de Ciències de l’Espai, Spain & Institut d’Estudis Espacials de Catalunya, Spain), S. Dreizler (Institut für Astrophysik Göttingen, Germany), C. Rodríguez-López (Instituto de Astrofísica de Andalucía, Spain), J. I. González Hernández (Instituto de Astrofísica de Canarias Spain & Universidad de La Laguna, Spain), A. Rosich (Institut de Ciències de l’Espai, Spain & Institut d’Estudis Espacials de Catalunya, Spain), F. Feng (Centre for Astrophysics Research, University of Hertfordshire, United Kingdom), T. Trifonov (Max-Planck-Institut für Astronomie, Germany), S. S. Vogt (Lick Observatory, University of California, USA), J. A. Caballero (Centro de Astrobiología, CSIC-INTA, Spain), A. Hatzes (Thüringer Landessternwarte, Germany), E. Herrero (Institut de Ciències de l’Espai, Spain & Institut d’Estudis Espacials de Catalunya, Spain), S. V. Jeffers (Institut für Astrophysik Göttingen, Germany), M. Lafarga (Institut de Ciències de l’Espai, Spain & Institut d’Estudis Espacials de Catalunya, Spain), F. Murgas (Instituto de Astrofísica de Canarias, Spain & Universidad de La Laguna, Spain), R. P. Nelson (School of Physics and Astronomy, Queen Mary University of London, United Kingdom), E. Rodríguez (Instituto de Astrofísica de Andalucía, Spain), J. B. P. Strachan (School of Physics and Astronomy, Queen Mary University of London, United Kingdom), L. Tal-Or (Institut für Astrophysik Göttingen, Germany & School of Geosciences, Tel-Aviv University, Israel), J. Teske (Department of Terrestrial Magnetism, Carnegie Institution for Science, USA & Hubble Fellow), B. Toledo-Padrón (Instituto de Astrofísica de Canarias, Spain & Universidad de La Laguna, Spain), M. Zechmeister (Institut für Astrophysik Göttingen, Germany), A. Quirrenbach (Landessternwarte, Universität Heidelberg, Germany), P. J. Amado (Instituto de Astrofísica de Andalucía, Spain), M. Azzaro (Centro Astronómico Hispano-Alemán, Spain), V. J. S. Béjar (Instituto de Astrofísica de Canarias, Spain & Universidad de La Laguna, Spain), J. R. Barnes (School of Physical Sciences, The Open University, United Kingdom), Z. M. Berdiñas (Departamento de Astronomía, Universidad de Chile), J. Burt (Kavli Institute, Massachusetts Institute of Technology, USA), G. Coleman (Physikalisches Institut, Universität Bern, Switzerland), M. Cortés-Contreras (Centro de Astrobiología, CSIC-INTA, Spain), J. Crane (The Observatories, Carnegie Institution for Science, USA), S. G. Engle (Department of Astrophysics & Planetary Science, Villanova University, USA), E. F. Guinan (Department of Astrophysics & Planetary Science, Villanova University, USA), C. A. Haswell (School of Physical Sciences, The Open University, United Kingdom), Th. Henning (Max-Planck-Institut für Astronomie, Germany), B. Holden (Lick Observatory, University of California, USA), J. Jenkins (Departamento de Astronomía, Universidad de Chile), H. R. A. Jones (Centre for Astrophysics Research, University of Hertfordshire, United Kingdom), A. Kaminski (Landessternwarte, Universität Heidelberg, Germany), M. Kiraga (Warsaw University Observatory, Poland), M. Kürster (Max-Planck-Institut für Astronomie, Germany), M. H. Lee (Department of Earth Sciences and Department of Physics, The University of Hong Kong), M. J. López-González (Instituto de Astrofísica de Andalucía, Spain), D. Montes (Dep. de Física de la Tierra Astronomía y Astrofísica & Unidad de Física de Partículas y del Cosmos de la Universidad Complutense de Madrid, Spain), J. Morin (Laboratoire Univers et Particules de Montpellier, Université de Montpellier, France), A. Ofir (Department of Earth and Planetary Sciences, Weizmann Institute of Science. Israel), E. Pallé (Instituto de Astrofísica de Canarias, Spain & Universidad de La Laguna, Spain), R. Rebolo (Instituto de Astrofísica de Canarias, Spain, & Consejo Superior de Investigaciones Científicas & Universidad de La Laguna, Spain), S. Reffert (Landessternwarte, Universität Heidelberg, Germany), A. Schweitzer (Hamburger Sternwarte, Universität Hamburg, Germany), W. Seifert (Landessternwarte, Universität Heidelberg, Germany), S. A. Shectman (The Observatories, Carnegie Institution for Science, USA), D. Staab (School of Physical Sciences, The Open University, United Kingdom), R. A. Street (Las Cumbres Observatory Global Telescope Network, USA), A. Suárez Mascareño (Observatoire Astronomique de l'Université de Genève, Switzerland & Instituto de Astrofísica de Canarias Spain), Y. Tsapras (Zentrum für Astronomie der Universität Heidelberg, Germany), S. X. Wang (Department of Terrestrial Magnetism, Carnegie Institution for Science, USA), and G. Anglada-Escudé (School of Physics and Astronomy, Queen Mary University of London, United Kingdom & Instituto de Astrofísica de Andalucía, Spain).

Европейская Южная Обсерватория (ESO, European Southern Observatory) -- ведущая межгосударственная астрономическая организация Европы, намного обгоняющая по продуктивности другие наземные астрономические обсерватории мира. В ее работе участвуют 16 стран: Австрия, Бельгия, Великобритания, Германия, Дания, Ирландия, Испания, Италия, Нидерланды, Польша, Португалия, Финляндия, Франция, Чешская Республика, Швейцария и Швеция, а также Чили, предоставившая свою территорию для размещения обсерваторий ESO, и Австралия, являющаяся ее стратегическим партнером. ESO проводит в жизнь масштабную программу проектирования, строительства и эксплуатации мощных наземных наблюдательных инструментов, позволяющих астрономам выполнять важнейшие научные исследования. ESO также играет ведущую роль в организации и поддержке международного сотрудничества в области астрономии. ESO располагает тремя уникальными наблюдательными пунктами мирового класса, находящимися в Чили: Ла Силья, Параналь и Чахнантор. В обсерватории Параналь установлен Очень Большой Телескоп ESO (The Very Large Telescope, VLT), способный работать в формате Очень Большого Телескопа-Интерферометра VLTI, и два крупнейших широкоугольных телескопа: VISTA, выполняющий обзоры неба в инфракрасных лучах, и обзорный телескоп оптического диапазона VLT (VLT Survey Telescope). ESO также является одним из основных партнеров по эксплуатации двух инструментов субмиллиметрового диапазона на плато Чахнантор: телескопа APEX и крупнейшего астрономического проекта современности ALMA. На Серро Армазонес, недалеко от Параналя, ESO ведет строительство 39-метрового Чрезвычайно Большого Телескопа ELT, который станет «величайшим оком человечества, устремленным в небо».

Ссылки

Контакты

Kirill Maslennikov
Pulkovo Observatory
St.-Petersburg, Russia
Телефон: +79112122130
Сотовый: +79112122130
Email: kirill.maslennikov1@gmail.com

Ignasi Ribas (Lead Scientist)
Institut d’Estudis Espacials de Catalunya and the Institute of Space Sciences, CSIC
Barcelona, Spain
Телефон: +34 93 737 97 88 (ext 933027)
Email: iribas@ice.cat

Guillem Anglada-Escudé
Queen Mary University of London
London, United Kingdom
Телефон: +44 (0)20 7882 3002
Email: g.anglada@qmul.ac.uk

Calum Turner
ESO Public Information Officer
Garching bei München, Germany
Телефон: +49 89 3200 6670
Сотовый: +49 151 1537 3591
Email: pio@eso.org

Connect with ESO on social media

Перевод пресс-релиза ESO eso1837.

О релизе

Релиз №:eso1837ru
Название:Barnard's Star b
Тип:Milky Way : Star : Circumstellar Material : Planetary System
Facility:Very Large Telescope
Instruments:HARPS
Science data:2018Natur.563..365R

Изображения

Глазами художника: на поверхности сверхземли у звезды Барнарда
Глазами художника: на поверхности сверхземли у звезды Барнарда
Глазами художника: «сверхземля» у звезды Барнарда
Глазами художника: «сверхземля» у звезды Барнарда
Звезда Барнарда в созвездии Змееносца
Звезда Барнарда в созвездии Змееносца
Область неба вокруг звезды Барнарда, с иллюстрацией ее движения
Область неба вокруг звезды Барнарда, с иллюстрацией ее движения
The nearest stars to the Sun (infographic)
The nearest stars to the Sun (infographic)
только на английском

Видео

ESOcast 184 Light: Super-Earth Orbiting Barnard’s Star (4K UHD)
ESOcast 184 Light: Super-Earth Orbiting Barnard’s Star (4K UHD)
только на английском
Глазами художника: звезда Барнарда и ее «сверхземля»
Глазами художника: звезда Барнарда и ее «сверхземля»
Исследуем поверхность «сверхземли» у звезды Барнарда (взгляд художника)
Исследуем поверхность «сверхземли» у звезды Барнарда (взгляд художника)
Звезда Барнарда в окрестности Солнца
Звезда Барнарда в окрестности Солнца

Также смотрите наши