eso1918ru — Научный релиз

Телескоп ESO нашел, возможно, самую маленькую карликовую планету в Солнечной системе

28 октября 2019 г., St.-Petersburg

Используя приемник ESO SPHERE на Очень Большом Телескопе (VLT), астрономы установили, что астероид Гигея может быть классифицирован как карликовая планета. Это четвертый по размеру объект в главном поясе астероидов после Цереры, Весты и Паллады. Астрономы впервые наблюдали Гигею с разрешением, достаточно высоким для того, чтобы изучать его поверхность и определить его форму и размеры. Оказалось, что Гигея имеет сферическую форму и потенциально может отобрать у Цереры «звание» самой маленькой карликовой планеты в Солнечной системе.

Объект главного пояса астероидов, Гигея с первого взгляда удовлетворяет трем из четырех требований, предъявляемых к карликовым планетам: она обращается вокруг Солнца, не является ничьим спутником и, в отличие от планет, не расчистила окрестностей своей орбиты. Четвертое требование заключается в том, что объект должен иметь массу, достаточную для того, чтобы под воздействием собственной гравитации принять приблизительно сферическую форму. Именно это теперь и выявили у Гигеи наблюдения на VLT.

Благодаря уникальным возможностям приемника SPHERE на VLT, одного из наиболее мощных в мире устройств для построения изображений, мы смогли непосредственно определить форму Гигеи, которая оказалась примерно сферической”, -- говорит ведущий исследователь Пьер Вернацца (Pierre Vernazza) из Астрофизической лаборатории в Марселе (Франция). “Благодаря полученным изображениям Гигея может быть переклассифицирована в карликовую планету, на сегодняшний день самую маленькую в Солнечной системе”.

Исследовательская группа также использовала результаты наблюдений с инструментом SPHERE для уточнения оценок размеров Гигеи. Теперь оценка диаметра планеты чуть превышает 430 км. Плутон, самая известная карликовая планета, имеет диаметр около 2400 км, а поперечник Цереры составляет примерно 950 км.

К всеобщему удивлению, наблюдения не выявили на поверхности Гигеи очень большого ударного кратера, который ученые рассчитывали там увидеть. Об этом сообщается в статье, публикуемой сегодня в Nature Astronomy. Гигея – главный объект одного из самых больших семейств астероидов, которое насчитывает около 7000 членов, произошедших из одного и того же родительского тела. Астрономы ожидали, что событие, которое привело к образованию многочисленного семейства малых планет, должно было оставить глубокий и заметный след на поверхности Гигеи. 

Этот результат оказался совершенно неожиданным – ведь мы рассчитывали найти большой ударный кратер, такой же, как на Весте”, говорит Вернацца. Но хотя наблюдения астрономов покрыли 95% поверхности Гигеи, удалось определенно идентифицировать только два кратера. “Ни один из этих двух кратеров не мог бы образоваться вследствие удара, который и привел к появлению семейства астероидов Гигеи, общий объем которых сравним с объемом тела диаметром около 100 км. Они слишком маленькие”, объясняет соавтор работы Мирослав Брож (Miroslav Brož) из Астрономического института при Карловом университете в Праге (Чешская республика).

Группа решила продолжать исследования. Методами численного моделирования ученым удалось показать, что и сферическая форма Гигеи, и большое семейство астероидов, скорее всего, являются результатом катастрофического лобового стокновения с крупным телом диаметром между 75 и 150 км. Моделирование показало, что это столкновение, которое, как полагают, произошло примерно 2 миллиарда лет назад, полностью разрушило родительское тело. Когда обломки вновь стали объединяться, они образовали сферической формы Гигею и тысячи сопровождающих ее мелких астероидов. “Такое столкновение двух крупных тел в поясе астероидов за последние 3–4 миллиарда лет является уникальным”, говорит Павел Шевечек (Pavel Ševeček), докторант Астрономического института при Карловом университете, также участвовавший в исследовании. 

Детальное изучение астероидов стало возможным благодаря не только прогрессу в математическом моделировании, но и появлению более мощных телескопов. “Благодаря VLT и адаптивно-оптическому инструменту нового поколения SPHERE, мы теперь получаем изображения астероидов главного пояса с беспрецедентным разрешением, уничтожая разрыв между наземными наблюдениями и результатами, получаемыми с борта межпланетных миссий”, -- заключает Вернацца.

Узнать больше

Результаты исследования представлены в статье, которая публикуется в выпуске журнала Nature Astronomy от 28 октября.

Состав исследовательской группы: P. Vernazza (Aix Marseille Université, CNRS, Laboratoire d'Astrophysique de Marseille, Marseille, France), L. Jorda (Aix Marseille Université, CNRS, Laboratoire d'Astrophysique de Marseille, Marseille, France), P. Ševeček (Institute of Astronomy, Charles University, Prague, Czech Republic), M. Brož (Institute of Astronomy, Charles University, Prague, Czech Republic), M. Viikinkoski (Mathematics and Statistics, Tampere University, Tampere, Finland), J. Hanuš (Institute of Astronomy, Charles University, Prague, Czech Republic), B. Carry (Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Laboratoire Lagrange, Nice, France), A. Drouard (Aix Marseille Université, CNRS, Laboratoire d'Astrophysique de Marseille, Marseille, France), M. Ferrais (Space Sciences, Technologies and Astrophysics Research Institute, Université de Liège, Liège, Belgium), M. Marsset (Department of Earth, Atmospheric and Planetary Sciences, MIT, Cambridge, MA, USA), F. Marchis (Aix Marseille Université, CNRS, Laboratoire d'Astrophysique de Marseille, Marseille, France, and SETI Institute, Carl Sagan Center, Mountain View, USA), M. Birlan (Observatoire de Paris, Paris, France), E. Podlewska-Gaca (Astronomical Observatory Institute, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland, and Institute of Physics, University of Szczecin, Poland), E. Jehin (Space Sciences, Technologies and Astrophysics Research Institute, Université de Liège, Liège, Belgium), P. Bartczak (Astronomical Observatory Institute, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland), G. Dudzinski (Astronomical Observatory Institute, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland), J. Berthier (Observatoire de Paris, Paris, France), J. Castillo-Rogez (Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA), F. Cipriani (European Space Agency, ESTEC – Scientific Support Office, The Netherlands), F. Colas (Observatoire de Paris, Paris, France), F. DeMeo (Department of Earth, Atmospheric and Planetary Sciences, MIT, Cambridge, MA, USA), C. Dumas (TMT Observatory, Pasadena, USA), J. Durech (Institute of Astronomy, Charles University, Prague, Czech Republic), R. Fetick (Aix Marseille Université, CNRS, Laboratoire d'Astrophysique de Marseille, Marseille, France and ONERA, The French Aerospace Lab, Chatillon Cedex, France), T. Fusco (Aix Marseille Université, CNRS, Laboratoire d'Astrophysique de Marseille, Marseille, France and and ONERA, The French Aerospace Lab, Chatillon Cedex, France), J. Grice (Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Laboratoire Lagrange, Nice, France and Open University, School of Physical Sciences, The Open University, Milton Keynes, UK), M. Kaasalainen (Mathematics and Statistics, Tampere University, Tampere, Finland), A. Kryszczynska (Astronomical Observatory Institute, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland), P. Lamy (Aix Marseille Université, CNRS, Laboratoire d'Astrophysique de Marseille, Marseille, France), H. Le Coroller (Aix Marseille Université, CNRS, Laboratoire d'Astrophysique de Marseille, Marseille, France), A. Marciniak (Astronomical Observatory Institute, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland), T. Michalowski (Astronomical Observatory Institute, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland), P. Michel (Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Laboratoire Lagrange, Nice, France), N. Rambaux (Observatoire de Paris, Paris, France), T. Santana-Ros (Departamento de Fı́sica, Universidad de Alicante, Alicante, Spain), P. Tanga (Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Laboratoire Lagrange, Nice, France), F. Vachier (Observatoire de Paris, Paris, France), A. Vigan (Aix Marseille Université, CNRS, Laboratoire d'Astrophysique de Marseille, Marseille, France), O. Witasse (European Space Agency, ESTEC – Scientific Support Office, The Netherlands), B. Yang (European Southern Observatory, Santiago, Chile), M. Gillon (Space Sciences, Technologies and Astrophysics Research Institute, Université de Liège, Liège, Belgium), Z. Benkhaldoun (Oukaimeden Observatory, High Energy Physics and Astrophysics Laboratory, Cadi Ayyad University, Marrakech, Morocco), R. Szakats (Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, Budapest, Hungary), R. Hirsch (Astronomical Observatory Institute, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland), R. Duffard (Instituto de Astrofísica de Andalucía, Glorieta de la Astronomía S/N, Granada, Spain), A. Chapman (Buenos Aires, Argentina), J. L. Maestre (Observatorio de Albox, Almeria, Spain).

Европейская Южная Обсерватория (ESO, European Southern Observatory) -- ведущая межгосударственная астрономическая организация Европы, намного обгоняющая по продуктивности другие наземные астрономические обсерватории мира. В ее работе участвуют 16 стран: Австрия, Бельгия, Великобритания, Германия, Дания, Ирландия, Испания, Италия, Нидерланды, Польша, Португалия, Финляндия, Франция, Чешская Республика, Швейцария и Швеция, а также Чили, предоставившая свою территорию для размещения обсерваторий ESO, и Австралия, являющаяся ее стратегическим партнером. ESO проводит в жизнь масштабную программу проектирования, строительства и эксплуатации мощных наземных наблюдательных инструментов, позволяющих астрономам выполнять важнейшие научные исследования. ESO также играет ведущую роль в организации и поддержке международного сотрудничества в области астрономии. ESO располагает тремя уникальными наблюдательными пунктами мирового класса, находящимися в Чили: Ла Силья, Параналь и Чахнантор. В обсерватории Параналь установлен Очень Большой Телескоп ESO (The Very Large Telescope, VLT), способный работать в формате Очень Большого Телескопа-Интерферометра VLTI, и два крупнейших широкоугольных телескопа: VISTA, выполняющий обзоры неба в инфракрасных лучах, и обзорный телескоп оптического диапазона VLT (VLT Survey Telescope). ESO также является одним из основных партнеров по эксплуатации двух инструментов субмиллиметрового диапазона на плато Чахнантор: телескопа APEX и крупнейшего астрономического проекта современности ALMA. На Серро Армазонес, недалеко от Параналя, ESO ведет строительство 39-метрового Чрезвычайно Большого Телескопа ELT, который станет «величайшим оком человечества, устремленным в небо».

Ссылки

Контакты

Kirill Maslennikov
Pulkovo Observatory
St.-Petersburg, Russia
Телефон: +79112122130
Сотовый: +79112122130
Email: kirill.maslennikov1@gmail.com

Pierre Vernazza
Laboratoire d’Astrophysique de Marseille
Marseille, France
Телефон: +33 4 91 05 59 11
Email: pierre.vernazza@lam.fr

Miroslav Brož
Charles University
Prague, Czech Republic
Email: mira@sirrah.troja.mff.cuni.cz

Pavel Ševeček
Charles University
Prague, Czech Republic
Email: pavel.sevecek@gmail.com

Bárbara Ferreira
ESO Public Information Officer
Garching bei München, Germany
Телефон: +49 89 3200 6670
Email: pio@eso.org

Connect with ESO on social media

Перевод пресс-релиза ESO eso1918.

О релизе

Релиз №:eso1918ru
Название:Hygiea
Тип:Solar System : Interplanetary Body : Dwarf planet
Facility:Very Large Telescope
Instruments:SPHERE

Изображения

SPHERE: снимок Гигеи
SPHERE: снимок Гигеи
SPHERE: изображения Гигеи, Весты и Цереры
SPHERE: изображения Гигеи, Весты и Цереры

Видео

ESOcast 211 Light: Телескоп ESO нашел, возможно, самую маленькую карликовую планету в Солнечной системе
ESOcast 211 Light: Телескоп ESO нашел, возможно, самую маленькую карликовую планету в Солнечной системе
Положение астероида Гигея в Солнечной системе
Положение астероида Гигея в Солнечной системе
Моделирование удара, который в конечном счете объясняет сферическую форму Гигеи
Моделирование удара, который в конечном счете объясняет сферическую форму Гигеи

Также смотрите наши