Saopštenja za medije

Subscribe to receive news from ESO in your language!
eso0510 — Naučno saopštenje
Young and Exotic Stellar Zoo
22. mart 2005.: Super star clusters are groups of hundreds of thousands of very young stars packed into an unbelievably small volume. They represent the most extreme environments in which stars and planets can form. Until now, super star clusters were only known to exist very far away, mostly in pairs or groups of interacting galaxies. Now, however, a team of European astronomers [1] have used ESO's telescopes to uncover such a monster object within our own Galaxy, the Milky Way, almost, but not quite, in our own backyard! The newly found massive structure is hidden behind a large cloud of dust and gas and this is why it took so long to unveil its true nature. It is known as "Westerlund 1" and is a thousand times closer than any other super star cluster known so far. It is close enough that astronomers may now probe its structure in some detail. Westerlund 1 contains hundreds of very massive stars, some shining with a brilliance of almost one million suns and some two-thousand times larger than the Sun (as large as the orbit of Saturn)! Indeed, if the Sun were located at the heart of this remarkable cluster, our sky would be full of hundreds of stars as bright as the full Moon. Westerlund 1 is a most unique natural laboratory for the study of extreme stellar physics, helping astronomers to find out how the most massive stars in our Galaxy live and die. From their observations, the astronomers conclude that this extreme cluster most probably contains no less than 100,000 times the mass of the Sun, and all of its stars are located within a region less than 6 light-years across. Westerlund 1 thus appears to be the most massive compact young cluster yet identified in the Milky Way Galaxy.
Pročitajte više
eso0509 — Naučno saopštenje
A Tale of Two Populations
15. mart 2005.: On the basis of stellar spectra totalling more than 200 hours of effective exposure time with the 8.2-m VLT Kueyen telescope at Paranal (Chile), a team of astronomers [1] has made a surprising discovery about the stars in the giant southern globular cluster Omega Centauri. It has been known for some time that, contrary to other clusters of this type, this stellar cluster harbours two different populations of stars that still burn hydrogen in their centres. One population, accounting for one quarter of its stars, is bluer than the other. Using the FLAMES multi-object spectrograph that is particularly well suited to this kind of work, the astronomers found that the bluer stars contain more heavy elements than those of the redder population. This was exactly opposite to the expectation and they are led to the conclusion that the bluer stars have an overabundance of the light element helium of more than 50%. They are in fact the most helium rich stars ever found. But why is this so? The team suggests that this puzzle may be explained in the following way. First, a great burst of star formation took place during which all the stars of the red population were produced. As other normal stars, these stars transformed their hydrogen into helium by nuclear burning. Some of them, with masses of 10-12 times the mass of the Sun, soon thereafter exploded as supernovae, thereby enriching the interstellar medium in the globular cluster with helium. Next, the blue population stars formed from this helium-rich medium. This unexpected discovery provides important new insights into the way stars may form in larger stellar systems.
Pročitajte više
eso0428 — Naučno saopštenje
Is This Speck of Light an Exoplanet?
10. septembar 2004.: Is this newly discovered feeble point of light the long-sought bona-fide image of an exoplanet? A research paper by an international team of astronomers [2] provides sound arguments in favour, but the definitive answer is now awaiting further observations. On several occasions during the past years, astronomical images revealed faint objects, seen near much brighter stars. Some of these have been thought to be those of orbiting exoplanets, but after further study, none of them could stand up to the real test. Some turned out to be faint stellar companions, others were entirely unrelated background stars. This one may well be different. In April of this year, the team of European and American astronomers detected a faint and very red point of light very near (at 0.8 arcsec angular distance) a brown-dwarf object, designated 2MASSWJ1207334-393254. Also known as "2M1207", this is a "failed star", i.e. a body too small for major nuclear fusion processes to have ignited in its interior and now producing energy by contraction. It is a member of the TW Hydrae stellar association located at a distance of about 230 light-years. The discovery was made with the adaptive-optics supported NACO facility [3] at the 8.2-m VLT Yepun telescope at the ESO Paranal Observatory (Chile). The feeble object is more than 100 times fainter than 2M1207 and its near-infrared spectrum was obtained with great efforts in June 2004 by NACO, at the technical limit of the powerful facility. This spectrum shows the signatures of water molecules and confirms that the object must be comparatively small and light. None of the available observations contradict that it may be an exoplanet in orbit around 2M1207. Taking into account the infrared colours and the spectral data, evolutionary model calculations point to a 5 jupiter-mass planet in orbit around 2M1207. Still, they do not yet allow a clear-cut decision about the real nature of this intriguing object. Thus, the astronomers refer to it as a "Giant Planet Candidate Companion (GPCC)" [4]. Observations will now be made to ascertain whether the motion in the sky of GPCC is compatible with that of a planet orbiting 2M1207. This should become evident within 1-2 years at the most.
Pročitajte više
eso0426 — Saopštenje organizacije
SINFONI Opens with Upbeat Chords
24. avgust 2004.: The European Southern Observatory, the Max-Planck-Institute for Extraterrestrial Physics (Garching, Germany) and the Nederlandse Onderzoekschool Voor Astronomie (Leiden, The Netherlands), and with them all European astronomers, are celebrating the successful accomplishment of "First Light" for the Adaptive Optics (AO) assisted SINFONI ("Spectrograph for INtegral Field Observation in the Near-Infrared") instrument, just installed on ESO's Very Large Telescope at the Paranal Observatory (Chile). This is the first facility of its type ever installed on an 8-m class telescope, now providing exceptional observing capabilities for the imaging and spectroscopic studies of very complex sky regions, e.g. stellar nurseries and black-hole environments, also in distant galaxies. Following smooth assembly at the 8.2-m VLT Yepun telescope of SINFONI's two parts, the Adaptive Optics Module that feeds the SPIFFI spectrograph, the "First Light" spectrum of a bright star was recorded with SINFONI in the early evening of July 9, 2004. The following thirteen nights served to evaluate the performance of the new instrument and to explore its capabilities by test observations on a selection of exciting astronomical targets. They included the Galactic Centre region, already imaged with the NACO AO-instrument on the same telescope. Unprecedented high-angular resolution spectra and images were obtained of stars in the immediate vicinity of the massive central black hole. During the night of July 15 - 16, SINFONI recorded a flare from this black hole in great detail. Other interesting objects observed during this period include galaxies with active nuclei (e.g., the Circinus Galaxy and NGC 7469), a merging galaxy system (NGC 6240) and a young starforming galaxy pair at redshift 2 (BX 404/405). These first results were greeted with enthusiasm by the team of astronomers and engineers [2] from the consortium of German and Dutch Institutes and ESO who have worked on the development of SINFONI for nearly 7 years. The work on SINFONI at Paranal included successful commissioning in June 2004 of the Adaptive Optics Module built by ESO, during which exceptional test images were obtained of the main-belt asteroid (22) Kalliope and its moon. Moreover, the ability was demonstrated to correct the atmospheric turbulence by means of even very faint "guide" objects (magnitude 17.5), crucial for the observation of astronomical objects in many parts of the sky. SPIFFI - SPectrometer for Infrared Faint Field Imaging - was developed at the Max Planck Institute for Extraterrestrische Physik (MPE) in Garching (Germany), in a collaboration with the Nederlandse Onderzoekschool Voor Astronomie (NOVA) in Leiden and the Netherlands Foundation for Research in Astronomy (ASTRON), and ESO.
Pročitajte više
eso0417 — Saopštenje organizacije
Feeling the Heat
12. maj 2004.: Close to midnight on April 30, 2004, intriguing thermal infrared images of dust and gas heated by invisible stars in a distant region of our Milky Way appeared on a computer screen in the control room of the ESO Very Large Telescope (VLT). These images mark the successful "First Light" of the VLT Imager and Spectrometer in the InfraRed (VISIR), the latest instrument to be installed on this powerful telescope facility at the ESO Paranal Observatory in Chile. The event was greeted with a mixture of delight, satisfaction and some relief by the team of astronomers and engineers from the consortium of French and Dutch Institutes and ESO who have worked on the development of VISIR for around 10 years [1]. Pierre-Olivier Lagage (CEA, France), the Principal Investigator, is content : "This is a wonderful day! A result of many years of dedication by a team of engineers and technicians, who can today be proud of their work. With VISIR, astronomers will have at their disposal a great instrument on a marvellous telescope. And the gain is enormous; 20 minutes of observing with VISIR is equivalent to a whole night of observing on a 3-4m class telescope." Dutch astronomer and co-PI Jan-Willem Pel (Groningen, The Netherlands) adds: "What's more, VISIR features a unique observing mode in the mid-infrared: spectroscopy at a very high spectral resolution. This will open up new possibilities such as the study of warm molecular hydrogen most likely to be an important component of our galaxy."
Pročitajte više
eso0414 — Naučno saopštenje
Closer to the Monster
5. maj 2004.: Fulfilling an old dream of astronomers, observations with the Very Large Telescope Interferometer (VLTI) at the ESO Paranal Observatory (Chile) have now made it possible to obtain a clear picture of the immediate surroundings of the black hole at the centre of an active galaxy. The new results concern the spiral galaxy NGC 1068, located at a distance of about 50 million light-years. They show a configuration of comparatively warm dust (about 50°C) measuring 11 light-years across and 7 light-years thick, with an inner, hotter zone (500°C), about 2 light-years wide. These imaging and spectral observations confirm the current theory that black holes at the centres of active galaxies are enshrouded in a thick doughnut-shaped structure of gas and dust called a "torus." For this trailblazing study, the first of its kind of an extragalactic object by means of long-baseline infrared interferometry, an international team of astronomers [2] used the new MIDI instrument in the VLTI Laboratory. It was designed and constructed in a collaboration between German, Dutch and French research institutes [3]. Combining the light from two 8.2-m VLT Unit Telescopes during two observing runs in June and November 2003, respectively, a maximum resolution of 0.013 arcsec was achieved, corresponding to about 3 light-years at the distance of NGC 1068. Infrared spectra of the central region of this galaxy were obtained that indicate that the heated dust is probably of alumino-silicate composition. The new results are published in a research paper appearing in the May 6, 2004, issue of the international research journal Nature.
Pročitajte više
eso0412 — Naučno saopštenje
A "Dragon" on the Surface of Titan
14. april 2004.: New images of unsurpassed clarity have been obtained with the ESO Very Large Telescope (VLT) of formations on the surface of Titan, the largest moon in the Saturnian system. They were made by an international research team [1] during recent commissioning observations with the "Simultaneous Differential Imager (SDI)", a novel optical device, just installed at the NACO Adaptive Optics instrument [2]. With the high-contrast SDI camera, it is possible to obtain extremely sharp images in three colours simultaneously. Although mainly conceived for exoplanet imaging, this device is also very useful for observations of objects with thick atmospheres in the solar system like Titan. Peering at the same time through a narrow, unobscured near-infrared spectral window in the dense methane atmosphere and an adjacent non-transparent waveband, images were obtained that are virtually uncontaminated by atmospheric components. They map the reflectivity of a large number of surface features in unprecedented detail. The images show a number of surface regions with very different reflectivity. Of particular interest are several large "dark" areas of uniformly low reflectivity. One possible interpretation is that they represent huge surface reservoirs of liquid hydrocarbons. Whatever the case, these new observations will be most useful for the planning of the delivery of the Huygens probe - now approaching the Saturn system on the NASA/ESA Cassini spacecraft and scheduled for descent to Titan's surface in early 2005.
Pročitajte više
eso0404 — Saopštenje organizacije
Announcing the VT-2004 Public Education Programme
16. februar 2004.: On June 8, 2004, Venus - the Earth's sister planet - will pass in front of the Sun. This event, a 'transit', is extremely rare - the last one occurred in 1882, 122 years ago. Easily observable in Europe, Asia, Africa and Australia, it is likely to attract the attention of millions of people on these continents and, indeed, all over the world. On this important occasion, the European Southern Observatory (ESO) has joined forces with the European Association for Astronomy Education (EAAE), the Institut de Mécanique Céleste et de Calcul des Éphémérides (IMCCE) and the Observatoire de Paris in France, as well as the Astronomical Institute of the Academy of Sciences of the Czech Republic to establish the Venus Transit 2004 (VT-2004) public education programme. It is supported by the European Commission in the framework of the European Science and Technology Week and takes advantage of this extraordinary celestial event to expose the public - in a well-considered, interactive and exciting way - to a number of fundamental issues at the crucial interface between society and basic science. VT-2004 has several components, including an instructive and comprehensive website ( It is directed towards the wide public in general and the media, school students and their teachers, as well as amateur astronomers in particular. It invites all interested persons to participate actively in the intercontinental VT-2004 Observing Campaign (that reenacts historical Venus Transit observations) and the VT-2004 Video Contest. During the VT-2004 Final Event in November, the winners of the Video Contest will be chosen by an international jury. This meeting will also serve to discuss the project and its impact.
Pročitajte više
eso0339 — Naučno saopštenje
The Colour of the Young Universe
19. decembar 2003.: An international team of astronomers [1] has determined the colour of the Universe when it was very young. While the Universe is now kind of beige, it was much bluer in the distant past , at a time when it was only 2,500 million years old. This is the outcome of an extensive and thorough analysis of more than 300 galaxies seen within a small southern sky area, the so-called Hubble Deep Field South. The main goal of this advanced study was to understand how the stellar content of the Universe was assembled and has changed over time. Dutch astronomer Marijn Franx , a team member from the Leiden Observatory (The Netherlands), explains: "The blue colour of the early Universe is caused by the predominantly blue light from young stars in the galaxies. The redder colour of the Universe today is caused by the relatively larger number of older, redder stars." The team leader, Gregory Rudnick from the Max-Planck Institut für Astrophysics (Garching, Germany) adds: "Since the total amount of light in the Universe in the past was about the same as today and a young blue star emits much more light than an old red star, there must have been significantly fewer stars in the young Universe than there is now. Our new findings imply that the majority of stars in the Universe were formed comparatively late, not so long before our Sun was born, at a moment when the Universe was around 7,000 million years old." These new results are based on unique data collected during more than 100 hours of observations with the ISAAC multi-mode instrument at ESO's Very Large Telescope (VLT), as part of a major research project, the Faint InfraRed Extragalactic Survey (FIRES) . The distances to the galaxies were estimated from their brightness in different optical near-infrared wavelength bands.
Pročitajte više
eso0329 — Naučno saopštenje
Optical Detection of Anomalous Nitrogen in Comets
12. septembar 2003.: A team of European astronomers [1] has used the UVES spectrograph on the 8.2-m VLT KUEYEN telescope to perform a uniquely detailed study of Comet LINEAR (C/2000 WM1) . This is the first time that this powerful instrument has been employed to obtain high-resolution spectra of a comet. At the time of the observations in mid-March 2002, Comet LINEAR was about 180 million km from the Sun, moving outwards after its perihelion passage in January. As comets are believed to carry "pristine" material - left-overs from the formation of the solar system, about 4,600 million years ago - studies of these objects are important to obtain clues about the origins of the solar system and the Earth in particular. The high quality of the data obtained of this moving 9th-magnitude object has permitted a determination of the cometary abundance of various elements and their isotopes [2]. Of particular interest is the unambiguous detection and measurement of the nitrogen-15 isotope. The only other comet in which this isotope has been observed is famous Comet Hale-Bopp - this was during the passage in 1997, when it was much brighter than Comet LINEAR. Most interestingly, Comet LINEAR and Comet Hale-Bopp display the same isotopic abundance ratio, about 1 nitrogen-15 atom for each 140 nitrogen-14 atoms ( 14 N/ 15 N = 140 ± 30) . That is about half of the terrestrial value (272). It is also very different from the result obtained by means of radio measurements of Comet Hale-Bopp ( 14 N/ 15 N = 330 ± 75). Optical and radio measurements concern different molecules (CN and HCN, respectively), and this isotopic anomaly must be explained by some differentiation mechanism. The astronomers conclude that part of the cometary nitrogen is trapped in macromolecules attached to dust particles.
Pročitajte više
eso0326 — Naučno saopštenje
New Insight into the Cosmic Renaissance Epoch
21. avgust 2003.: Using the ESO Very Large Telescope (VLT) , two astronomers from Germany and the UK [2] have discovered some of the most distant galaxies ever seen. They are located about 12,600 million light-years away. It has taken the light now recorded by the VLT about nine-tenths of the age of the Universe to traverse this huge distance. We therefore observe those galaxies as they were at a time when the Universe was very young, less than about 10% of its present age . At this time, the Universe was emerging from a long period known as the "Dark Ages," entering the luminous "Cosmic Renaissance" epoch. Unlike previous studies which resulted in the discovery of a few, widely dispersed galaxies at this early epoch, the present study found at least six remote citizens within a small sky area, less than five per cent the size of the full moon! This allowed understanding the evolution of these galaxies and how they affect the state of the Universe in its youth. In particular, the astronomers conclude on the basis of their unique data that there were considerably fewer luminous galaxies in the Universe at this early stage than 500 million years later. There must therefore be many less luminous galaxies in the region of space that they studied, too faint to be detected in this study. It must be those still unidentified galaxies that emit the majority of the energetic photons needed to ionise the hydrogen in the Universe at that particularly epoch.
Pročitajte više
eso0325 — Naučno saopštenje
The VLT Measures the Shape of a Type Ia Supernova
6. avgust 2003.: An international team of astronomers [2] has performed new and very detailed observations of a supernova in a distant galaxy with the ESO Very Large Telescope (VLT) at the Paranal Observatory (Chile). They show for the first time that a particular type of supernova, caused by the explosion of a "white dwarf", a dense star with a mass around that of the Sun, is asymmetric during the initial phases of expansion. The significance of this observation is much larger than may seem at a first glance . This particular kind of supernova, designated "Type Ia", plays a very important role in the current attempts to map the Universe. It has for long been assumed that Type Ia supernovae all have the same intrinsic brightness , earning them a nickname as "standard candles." If so, differences in the observed brightness between individual supernovae of this type simply reflect their different distances. This, and the fact that the peak brightness of these supernovae rivals that of their parent galaxy, has allowed to measure distances of even very remote galaxies . Some apparent discrepancies that were recently found have led to the discovery of cosmic acceleration. However, this first clearcut observation of explosion asymmetry in a Type Ia supernova means that the exact brightness of such an object will depend on the angle from which it is seen. Since this angle is unknown for any particular supernova, this obviously introduces an amount of uncertainty into this kind of basic distance measurements in the Universe which must be taken into account in the future. Fortunately, the VLT data also show that if you wait a little - which in observational terms makes it possible to look deeper into the expanding fireball - then it becomes more spherical. Distance determinations of supernovae that are performed at this later stage will therefore be more accurate.
Pročitajte više
eso0318 — Naučno saopštenje
Cosmological Gamma-Ray Bursts and Hypernovae Conclusively Linked
18. jun 2003.: A very bright burst of gamma-rays was observed on March 29, 2003 by NASA's High Energy Transient Explorer (HETE-II) , in a sky region within the constellation Leo. Within 90 min, a new, very bright light source (the "optical afterglow") was detected in the same direction by means of a 40-inch telescope at the Siding Spring Observatory (Australia) and also in Japan. The gamma-ray burst was designated GRB 030329 , according to the date. And within 24 hours, a first, very detailed spectrum of this new object was obtained by the UVES high-dispersion spectrograph on the 8.2-m VLT KUEYEN telescope at the ESO Paranal Observatory (Chile). It allowed to determine the distance as about 2,650 million light-years (redshift 0.1685). Continued observations with the FORS1 and FORS2 multi-mode instruments on the VLT during the following month allowed an international team of astronomers [1] to document in unprecedented detail the changes in the spectrum of the optical afterglow of this gamma-ray burst . Their detailed report appears in the June 19 issue of the research journal "Nature". The spectra show the gradual and clear emergence of a supernova spectrum of the most energetic class known, a "hypernova" . This is caused by the explosion of a very heavy star - presumably over 25 times heavier than the Sun. The measured expansion velocity (in excess of 30,000 km/sec) and the total energy released were exceptionally high, even within the elect hypernova class. From a comparison with more nearby hypernovae, the astronomers are able to fix with good accuracy the moment of the stellar explosion. It turns out to be within an interval of plus/minus two days of the gamma-ray burst. This unique conclusion provides compelling evidence that the two events are directly connected. These observations therefore indicate a common physical process behind the hypernova explosion and the associated emission of strong gamma-ray radiation. The team concludes that it is likely to be due to the nearly instantaneous, non-symmetrical collapse of the inner region of a highly developed star (known as the "collapsar" model). The March 29 gamma-ray burst will pass into the annals of astrophysics as a rare "type-defining event", providing conclusive evidence of a direct link between cosmological gamma-ray bursts and explosions of very massive stars.
Pročitajte više
eso0317 — Naučno saopštenje
Curtain-Lifting Winds Allow Rare Glimpse into Massive Star Factory
16. jun 2003.: Based on a vast observational effort with different telescopes and instruments, ESO-astronomer Dieter Nürnberger has obtained a first glimpse of the very first stages in the formation of heavy stars. These critical phases of stellar evolution are normally hidden from the view, because massive protostars are deeply embedded in their native clouds of dust and gas, impenetrable barriers to observations at all but the longest wavelengths. In particular, no visual or infrared observations have yet "caught" nascent heavy stars in the act and little is therefore known so far about the related processes. Profiting from the cloud-ripping effect of strong stellar winds from adjacent, hot stars in a young stellar cluster at the center of the NGC 3603 complex, several objects located near a giant molecular cloud were found to be bona-fide massive protostars, only about 100,000 years old and still growing. Three of these objects, designated IRS 9A-C, could be studied in more detail. They are very luminous (IRS 9A is about 100,000 times intrinsically brighter than the Sun), massive (more than 10 times the mass of the Sun) and hot (about 20,000 degrees). They are surrounded by relative cold dust (about 0°C), probably partly arranged in disks around these very young objects. Two possible scenarios for the formation of massive stars are currently proposed, by accretion of large amounts of circumstellar material or by collision (coalescence) of protostars of intermediate masses. The new observations favour accretion, i.e. the same process that is active during the formation of stars of smaller masses.
Pročitajte više
eso0316 — Naučno saopštenje
Flattest Star Ever Seen
11. jun 2003.: To a first approximation, planets and stars are round. Think of the Earth we live on. Think of the Sun, the nearest star, and how it looks in the sky. But if you think more about it, you realize that this is not completely true. Due to its daily rotation, the solid Earth is slightly flattened ("oblate") - its equatorial radius is some 21 km (0.3%) larger than the polar one. Stars are enormous gaseous spheres and some of them are known to rotate quite fast, much faster than the Earth. This would obviously cause such stars to become flattened. But how flat? Recent observations with the VLT Interferometer (VLTI) at the ESO Paranal Observatory have allowed a group of astronomers [1] to obtain by far the most detailed view of the general shape of a fast-spinning hot star, Achernar (Alpha Eridani) , the brightest in the southern constellation Eridanus (The River). They find that Achernar is much flatter than expected - its equatorial radius is more than 50% larger than the polar one! In other words, this star is shaped very much like the well-known spinning-top toy, so popular among young children. The high degree of flattening measured for Achernar - a first in observational astrophysics - now poses an unprecedented challenge for theoretical astrophysics . The effect cannot be reproduced by common models of stellar interiors unless certain phenomena are incorporated, e.g. meridional circulation on the surface ("north-south streams") and non-uniform rotation at different depths inside the star. As this example shows, interferometric techniques will ultimately provide very detailed information about the shapes, surface conditions and interior structure of stars.
Pročitajte više
eso0313 — Saopštenje organizacije
Sharper and Deeper Views with MACAO-VLTI
13. maj 2003.: On April 18, 2003, a team of engineers from ESO celebrated the successful accomplishment of "First Light" for the MACAO-VLTI Adaptive Optics facility on the Very Large Telescope (VLT) at the Paranal Observatory (Chile). This is the second Adaptive Optics (AO) system put into operation at this observatory, following the NACO facility. The achievable image sharpness of a ground-based telescope is normally limited by the effect of atmospheric turbulence. However, with Adaptive Optics (AO) techniques, this major drawback can be overcome so that the telescope produces images that are as sharp as theoretically possible, i.e., as if they were taken from space. The acronym "MACAO" stands for "Multi Application Curvature Adaptive Optics" which refers to the particular way optical corrections are made which "eliminate" the blurring effect of atmospheric turbulence. The MACAO-VLTI facility was developed at ESO. It is a highly complex system of which four, one for each 8.2-m VLT Unit Telescope, will be installed below the telescopes (in the Coudé rooms). These systems correct the distortions of the light beams from the large telescopes (induced by the atmospheric turbulence) before they are directed towards the common focus at the VLT Interferometer (VLTI). The installation of the four MACAO-VLTI units of which the first one is now in place, will amount to nothing less than a revolution in VLT interferometry. An enormous gain in efficiency will result, because of the associated 100-fold gain in sensitivity of the VLTI. Put in simple words, with MACAO-VLTI it will become possible to observe celestial objects 100 times fainter than now . Soon the astronomers will be thus able to obtain interference fringes with the VLTI of a large number of objects hitherto out of reach with this powerful observing technique, e.g. external galaxies. The ensuing high-resolution images and spectra will open entirely new perspectives in extragalactic research and also in the studies of many faint objects in our own galaxy, the Milky Way. During the present period, the first of the four MACAO-VLTI facilties was installed, integrated and tested by means of a series of observations. For these tests, an infrared camera was specially developed which allowed a detailed evaluation of the performance. It also provided some first, spectacular views of various celestial objects, some of which are shown here.
Pročitajte više
eso0311 — Naučno saopštenje
Glowing Hot Transiting Exoplanet Discovered
22. april 2003.: More than 100 exoplanets in orbit around stars other than the Sun have been found so far. But while their orbital periods and distances from their central stars are well known, their true masses cannot be determined with certainty, only lower limits. This fundamental limitation is inherent in the common observational method to discover exoplanets - the measurements of small and regular changes in the central star's velocity, caused by the planet's gravitational pull as it orbits the star. However, in two cases so far, it has been found that the exoplanet's orbit happens to be positioned in such a way that the planet moves in front of the stellar disk, as seen from the Earth. This "transit" event causes a small and temporary dip in the star's brightness, as the planet covers a small part of its surface, which can be observed. The additional knowledge of the spatial orientation of the planetary orbit then permits a direct determination of the planet's true mass. Now, a group of German astronomers [1] have found a third star in which a planet, somewhat larger than Jupiter, but only half as massive, moves in front of the central star every 28.5 hours . The crucial observation of this solar-type star, designated OGLE-TR-3 [2] was made with the high-dispersion UVES spectrograph on the Very Large Telescope (VLT) at the ESO Paranal Observatory (Chile). It is the exoplanet with the shortest period found so far and it is very close to the star, only 3.5 million km away. The hemisphere that faces the star must be extremely hot, about 2000 °C and the planet is obviously losing its atmosphere at high rate.
Pročitajte više
eso0310 — Naučno saopštenje
Really Hot Stars
9. april 2003.: Quite a few of the most beautiful objects in the Universe are still shrouded in mystery. Even though most of the nebulae of gas and dust in our vicinity are now rather well understood, there are some which continue to puzzle astronomers. This is the case of a small number of unusual nebulae that appear to be the subject of strong heating - in astronomical terminology, they present an amazingly "high degree of excitation." This is because they contain significant amounts of ions, i.e., atoms that have lost one or more of their electrons. Depending on the atoms involved and the number of electrons lost, this process bears witness to the strength of the radiation or to the impact of energetic particles. But what are the sources of that excitation? Could it be energetic stars or perhaps some kind of exotic objects inside these nebulae? How do these peculiar objects fit into the current picture of universal evolution? New observations of a number of such unusual nebulae have recently been obtained with the Very Large Telescope (VLT) at the ESO Paranal Observatory (Chile). In a dedicated search for the origin of their individual characteristics, a team of astronomers - mostly from the Institute of Astrophysics & Geophysics in Liège (Belgium) [1] - have secured the first detailed, highly revealing images of four highly ionized nebulae in the Magellanic Clouds, two small satellite galaxies of our home galaxy, the Milky Way, only a few hundred thousand light-years away. In three nebulae, they succeeded in identifying the sources of energetic radiation and to eludicate their exceptional properties: some of the hottest, most massive stars ever seen, some of which are double. With masses of more than 20 times that of the Sun and surface temperatures above 90 000 degrees, these stars are truly extreme.
Pročitajte više
eso0308 — Saopštenje organizacije
"First Light" for HARPS at La Silla
27. mart 2003.: The initial commissioning period of the new HARPS spectrograph (High Accuracy Radial Velocity Planet Searcher) of the 3.6-m telescope at the ESO La Silla Observatory has been successfully accomplished in the period February 11 - 27, 2003. This new instrument is optimized to detect planets in orbit around other stars ("exoplanets") by means of accurate (radial) velocity measurements with an unequalled precision of 1 meter per second . This high sensitivity makes it possible to detect variations in the motion of a star at this level, caused by the gravitational pull of one or more orbiting planets, even relatively small ones. "First Light" occurred on February 11, 2003, during the first night of tests. The instrument worked flawlessly and was fine-tuned during subsequent nights, achieving the predicted performance already during this first test run. The measurement of accurate stellar radial velocities is a very efficient way to search for planets around other stars. More than one hundred extrasolar planets have so far been detected , providing an increasingly clear picture of a great diversity of exoplanetary system. However, current technical limitations have so far prevented the discovery around solar-type stars of exoplanets that are much less massive than Saturn, the second-largest planet in the solar system. HARPS will break through this barrier and will carry this fundamental exploration towards detection of exoplanets with masses like Uranus and Neptune. Moreover, in the case of low-mass stars - like Proxima Centauri - HARPS will have the unique capability to detect big "telluric" planets with only a few times the mass of the Earth. The HARPS instrument is being offered to the research community in the ESO member countries, already from October 2003.
Pročitajte više
eso0305 — Naučno saopštenje
Distant World in Peril Discovered from La Silla
22. januar 2003.: When, in a distant future, the Sun begins to expand and evolves into a "giant" star, the surface temperature on the Earth will rise dramatically and our home planet will eventually be incinerated by that central body. Fortunately for us, this dramatic event is several billion years away. However, that sad fate will befall another planet, just discovered in orbit about the giant star HD 47536, already within a few tens of millions of years. At a distance of nearly 400 light-years from us, it is the second-remotest planetary system discovered to date [1]. This is an interesting side-result of a major research project, now carried out by a European-Brazilian team of astronomers [2]. In the course of a three-year spectroscopic survey, they have observed about 80 giant stars in the southern sky with the advanced FEROS spectrograph on the 1.52-m telescope installed at the ESO La Silla Observatory (Chile). It is one of these stars that has just been found to host a giant planet. This is only the fourth such case known and with a diameter of about 33 million km (or 23.5 times that of our Sun), HD 47536 is by far the largest of those giant stars [1]. The distance of the planet from the star is still of the order of 300 million km (or twice the distance of the Earth from the Sun), a safe margin now, but this will not always be so. The orbital period is 712 days, i.e., somewhat less than two Earth years, and the planet's mass is 5 - 10 times that of Jupiter. The presence of exoplanets in orbit around giant stars, some of which will eventually perish into their central star (be "cannibalized"), provides a possible explanation of the anomalous abundance of certain chemical elements that is observed in the atmospheres of some stars. This interesting discovery bodes well for coming observations of exoplanetary systems with new, more powerful instruments, like HARPS to be installed next year at the ESO 3.6-m telescope on La Silla, and also the Very Large Telescope Interferometer (VLTI) now being commissioned at Paranal.
Pročitajte više
eso0304 — Naučno saopštenje
Isolated Star-Forming Cloud Discovered in Intracluster Space
16. januar 2003.: At a distance of some 50 million light-years, the Virgo Cluster is the nearest galaxy cluster. It is located in the zodiacal constellation of the same name (The Virgin) and is a large and dense assembly of hundreds of galaxies. The "intracluster" space between the Virgo galaxies is permeated by hot X-ray emitting gas and, as has become clear recently, by a sparse "intracluster population of stars". So far, stars have been observed to form in the luminous parts of galaxies. The most massive young stars are often visible indirectly by the strong emission from surrounding cocoons of hot gas, which is heated by the intense radiation from the embedded stars. These "HII regions" (pronounced "Eitch-Two" and so named because of their content of ionized hydrogen) may be very bright and they often trace the beautiful spiral arms seen in disk galaxies like our own Milky Way. New observations by the Japanese 8-m Subaru telescope and the ESO Very Large Telescope (VLT) have now shown that massive stars can also form in isolation, far from the luminous parts of galaxies [1]. During a most productive co-operation between astronomers working at these two world-class telescopes, a compact HII region has been discovered at the very boundary between the outer halo of a Virgo cluster galaxy and Virgo intracluster space. This cloud is illuminated and heated by a few hot and massive young stars. The estimated total mass of the stars in the cloud is only a few hundred times that of the Sun. Such an object is rare at the present epoch. However, there may have been more in the past, at which time they were perhaps responsible for the formation of a fraction of the intracluster stellar population in clusters of galaxies. Massive stars in such isolated HII regions will explode as supernovae at the end of their short lives, and enrich the intracluster medium with heavy elements. Observations of two other Virgo cluster galaxies, Messier 86 and Messier 84, indicate the presence of other isolated HII regions, thus suggesting that isolated star formation may occur more generally in galaxies. If so, this process may provide a natural explanation to the current riddle why some young stars are found high up in the halo of our own Milky Way galaxy, far from the star-forming clouds in the main plane.
Pročitajte više
eso0303 — Naučno saopštenje
Discovery of Nearest Known Brown Dwarf
13. januar 2003.: A team of European astronomers [1], [2] has discovered a Brown Dwarf object (a 'failed' star) less than 12 light-years from the Sun. It is the nearest yet known. Now designated Epsilon Indi B, it is a companion to a well-known bright star in the southern sky, Epsilon Indi (now "Epsilon Indi A"), previously thought to be single. The binary system is one of the twenty nearest stellar systems to the Sun. The brown dwarf was discovered from the comparatively rapid motion across the sky which it shares with its brighter companion : the pair move a full lunar diameter in less than 400 years. It was first identified using digitised archival photographic plates from the SuperCOSMOS Sky Surveys (SSS) and confirmed using data from the Two Micron All Sky Survey (2MASS). Follow-up observations with the near-infrared sensitive SOFI instrument on the ESO 3.5-m New Technology Telescope (NTT) at the La Silla Observatory confirmed its nature and has allowed measurements of its physical properties. Epsilon Indi B has a mass just 45 times that of Jupiter, the largest planet in the Solar System, and a surface temperature of only 1000 °C. It belongs to the so-called 'T dwarf' category of objects which straddle the domain between stars and giant planets. Epsilon Indi B is the nearest and brightest T dwarf known. Future studies of the new object promise to provide astronomers with important new clues as to the formation and evolution of these exotic celestial bodies, at the same time yielding interesting insights into the border zone between planets and stars.
Pročitajte više
eso0236 — Saopštenje organizacije
New Vistas Open with MIDI at the VLT Interferometer
18. decembar 2002.: Following several weeks of around-the-clock work, a team of astronomers and engineers from Germany, the Netherlands, France and ESO [2] has successfully performed the first observations with the MID-Infrared interferometric instrument (MIDI), a new, extremely powerful instrument just installed in the underground laboratory of the VLT Interferometer (VLTI) at the Paranal Observatory (Chile). In the early morning of December 15, 2002, two of the 8.2 m VLT unit telescopes (ANTU and MELIPAL) were pointed towards the southern star Epsilon Carinae and the two light beams were directed via the complex intervening optics system towards MIDI. After a few hours of tuning and optimization, strong and stable interferometric fringes were obtained, indicating that all VLTI components - from telescopes to the new instrument - were working together perfectly. Two more stars were observed before sunrise, further proving the stability of the entire system. The first observations with MIDI mark one more important step towards full and regular operation of the VLT Interferometer [3]. They are a result of five years of determined efforts within a concerted technology project, based on a close collaboration between ESO and several European research institutes (see below). Now opening great research vistas, they also represent several "firsts" in observational astrophysics, together amounting to a real breakthrough in the field of astronomical interferometry.
Pročitajte više
eso0234 — Naučno saopštenje
Deepest Infrared View of the Universe
11. decembar 2002.: An international team of astronomers [2] has made the deepest-ever near-infrared Ks-band image of the sky, using the ISAAC multi-mode instrument on the 8.2-m VLT ANTU telescope. For this, the VLT was pointed for more than 100 hours under optimal observing conditions at the Hubble Deep Field South (HDF-S) and obtained images in three near-infrared filters. The resulting images reveal extremely distant galaxies, which appear at infrared wavelengths, but are barely detected in the deepest optical images acquired with the Hubble Space Telescope (HST). Astronomer Marijn Franx from the University of Leiden and leader of the team concludes: "These results demonstrate that very deep observations in the near-infrared are essential to obtain a proper census of the earliest phases of the universe. The new VLT images have opened a new research domain which has not been observationally accessible before". The HDF-S is a tiny field on the sky in the southern constellation Tucana (The Toucan) - only about 1% of the area of the full moon. The NASA/ESA Hubble Space Telescope (HST) observed it with a total exposure time of about 1 week, yielding the deepest optical images ever taken of the sky, similar to those made earlier on the Hubble Deep Field North (HDF-N). The VLT infrared images of the same field were obtained in the course of a major research project, the Faint InfraRed Extragalactic Survey (FIRES). They were made at wavelengths up to 2.3 µm where the HST is not competitive.
Pročitajte više
Prikaz od 701 do 800 od 1266