NGC
Detector Array Controller Based on
High Speed Serial Link Technology
[IRDT and ODT]

First Light
PICNIC Array Mux
Image of ESO
Messenger Front Page

M. Meyer
June 05
Conventional Approach: Acquisition System (IRACE)
NGC Prototype - Minimum System

Back-End and Front-End (Four Channels)

- NGC is a modular system for IR detector and CCD readout with a Back-end, a basic Front-end unit containing a complete four channel system on one card and additional boards like multi channel ADC units and more...

- There is no processor, no parallel inter-module data bus on the front-end side. Advanced FPGA link technology is used to replace conventional logic.

- Connection between Back and Front-end with high speed fiber links at 2.5GBit/s.

- Connection between Front-end modules with high speed copper links at 2.5GBit/s.

- Power Consumption on this Front-end is less than 10 Watts (Excluding power supply).

- This Front-End system does not require big cooling boxes.
Communication and Data Transfer

- Communication and data transfer is handled with the Virtex Pro FPGA's Gigabit transceivers.
- The communication between all system modules is based on packet transmission over serial links.
- A packet structure is defined to address a function (e.g., a register or memory in a front-end module) for read or write.
- From the Back-End (PCI board) the packets can be routed to and through each board in the Front-End.
- Data are routed with the same structure from the acquisition modules to the Back-End.
Platform Design

- The Front-End System consists of a set of hardware modules like clock module, video data acquisition, telemetry, monitoring ... and VHDL modules for communication, data transfer, data capture and system functions like sequencer, telemetry, voltage set-up ...

- Different modules can replace presently installed modules without change in system connectivity and philosophy

- This makes it possible to build in a short time a new system for completely different applications
Platform for Acquisition Modules

- Connection to Detector ASIC
- Digital Clock Output from Sequencer
- Clock and Trigger Input to Sequencer
- Video In
- High Speed ADC(s)
- Installed Modules
- LVDS
- LVDS
- LVDS
- VIRTEX Pro FPGA
- Video In
Front-End Basic Board
Sequencer Module

- Sequencer is completely contained within the FPGA
- 100MHz design = 10ns resolution
- Firmware interpreter for Sequencer Codes within the FPGA
- Galvanic isolated high speed trigger input and control outputs

Sequencer Codes

000 Stop Interpreter => Stops Pattern Interpretation
001 EXEC Pattern < Number of Pattern, Number of Repetitions >
010 LOOP < Number of Repetitions >
011 LOOP END
100 LOOP INFINITE
101 JUMP SUBROUTINE < Address >
110 RETURN SUBROUTINE
111 Reserved
Applications
and Architectures
Basic System

Front-End
- Basic Module
- Signal Clock Bias
- FPGA

Fiber Duplex Connection

Back-End
- Back-End PCI
- FPGA

RxTx Connection
More Bandwidth

Front-End
- Front-End Basic Module
- Signal Clock Bias
- FPGA
- RxTx

Back-End
- Back-End PCI
- FPGA
- RxTx

Fiber Duplex Connection
More Clocks, Biases / Two Detectors synchronized ...
More Bandwidth and Different Routing
Even more channels
Distribute/Copy Data

Front-End
- Front-End Basic Module
- Signal Clock Bias
- FPGA
- RxTx

Data Distribution Switch
- FPGA
- RxTx

Front-End AQ 32 CH
- Signal
- FPGA
- RxTx

Back-End
- Back-End PCI
- FPGA
- RxTx

Serial Links On Backplane

Applications

Fiber Duplex Connection

RxTx

RxTx
Outlook

Interface to Real Time Processor for Adaptive Optics and Interferometry?

- Rocket I/O high speed (2.5 GBit/s) data links from acquisition modules can feed a fast preprocessor with data required for interferometry or adaptive optics.

- The installed Virtex Pro contains already one Power PC on chip, multiple DSP’s can be implemented for data preprocessing.

- The most recent XILINX chips (V4) have even higher density and higher speed (400MHz). Links are compatible with links of Virtex Pro.

- Data from link enter directly into FPGA memory, ready for processing.

- Because the only input to the board is the data fiber, the board(s) can be installed close to the function.

- Routing of acquisition data can easily be accomplished.

- VME is no more needed!
Engineers
Bad Days
or
The Real
World
How many Errors will be on?
It's a 10 Layer board with BGA's!
Virtex BGA - One Connection too much
Virtex BGA - Missing Connection