AO Wavefront Sensing Detector Developments at ESO

Mark Downing, Johann Kolb, Dietrich Baade, Olaf Iwert, Norbert Hubin, Javier Reyes, Philippe Feautrier, Jean-Luc Gach, Philippe Balard, Christian Guillaume, Eric Stadler, Yves Magnard, Olivier Boissin

ESO’s AO WFS Detector roadmap

Detectors in Production (Today)

Past Successes (Late 1990s onwards)

Future Challenges E-ELT (2018 →)

CCD220
pnCCD
MPI/HLL

CCID-35
MIT/LL
CCD50

27/06/2010
SPIE 2010: AO WFS Detectors
Adaptive Optics (AO) - removing the twinkle of the stars

Wavefronts from astronomical objects are distorted by the Earth’s atmosphere, reducing the spatial resolution of large telescopes to that of a 10 cm telescope.

1. Wavefront Sensor measures deviation of wavefront from a flat (undistorted) wave
2. Control System computes commands for the deformable mirror(s)
3. Adaptive Mirror compensates the distorted wavefront, achieving diffraction-limited resolution
4. Light From Telescope

Control System OFF

Control System ON
AO Wavefront Sensing Detector Developments at ESO

Mark Downing, Johann Kolb, Dietrich Baade, Olaf Iwert, Norbert Hubin, Javier Reyes, Philippe Feautrier, Jean-Luc Gach, Philippe Balard, Christian Guillaume, Eric Stadler, Yves Magnard, Olivier Boissin

ESO’s AO WFS Detector roadmap

Past Successes
128x128 pixels
600 fps
< 5e- RON

Detectors in Production
240x240 pixels
> 1200 fps
< 2e- RON

Future Challenges
E-ELT

Past Successes
CCD220
pnCCD
CCD50
MIT/LL
CCID-35
MPI/HLL

27/06/2010
SPIE 2010: AO WFS Detectors
e2v CCD220:

→ Split frame transfer CCD
→ 240x240 24 µm pixels
→ 8 L3Vision EMCCD outputs
→ << 1 e- RON at 1,200 fps

Metal Buttressed 2Φ 10 Mhz Clocks for fast image to store transfer rates.

8 L3Vision Gain Registers/Outputs Each 15Mpix./s.

Store slanted to allow room for multiple outputs.

Metal Buttressed 2Φ 10 Mhz Clocks for fast image to store transfer rates.
CCD220 Status

- Four science devices in house
- Further 12 Std Si & 4 DD in production (Q4 2010).

Several Test Cameras in operation → built by LAM, LAOG, OHP

- 1st prototype of ESO’s NGC WFS Camera Head is operational
- Planned production of 18 cameras for VLT AO Facility (MUSE & HAWK-I) and SPHERE

Technology transferred
CCD220 Status

Technology transfer to industry

✓ Go along to booth #306
CCD220 Key Test Results

→ devices meet specifications

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Measured</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame Rate:</td>
<td>> 1,300 fps</td>
<td>> 1,200 fps</td>
</tr>
<tr>
<td>Read noise:</td>
<td>< 0.9 e-</td>
<td>< 1.0 e-</td>
</tr>
<tr>
<td>at gain of 1000 & 1300 fps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Image Area Full Well:</td>
<td>> 200 ke-</td>
<td>> 5,000 e-</td>
</tr>
<tr>
<td>Serial Charge Transfer Efficiency</td>
<td>> 0.999999</td>
<td>> 0.9998</td>
</tr>
<tr>
<td>Cosmetic</td>
<td></td>
<td></td>
</tr>
<tr>
<td># of traps, bright/dark defects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dark Current at 1200fps & -40°C:</td>
<td>0.01 e-/pix/frame</td>
<td>< 0.01 e-/pix/frame</td>
</tr>
<tr>
<td>Dark Current at 25fps & -40°C:</td>
<td>0.04 e-/pix/frame</td>
<td>< 0.04 e-/pix/frame</td>
</tr>
</tbody>
</table>

Further optimization under way:

• Test Deep Depletion devices that offer much sought after higher red response.
• Reduce read noise closer to goal of 0.1 e-.
• Increase frame rate to 2,500 fps to extend use to E-ELT XAO (Extreme AO).

See talk Philippe Feautrier Tuesday 2pm session – 7736-34

“OCam and CCD220 - World’s Fastest and Most Sensitive Astronomical Camera”
MPI/HLL pnCCD
(Robert Hartmann, Sebastian Ihle, Heike Soltau, Lothar Strueder)

- Max Planck Institut / Halbleiterlabor
- pnCCD 256x256 pixels 51µm pitch
 - 450µm thick fully depleted
 - Excellent red response & no fringing
 - 300V backside bias for good PSF
- Target: RON < 3 e- at 1,000 fps
- Split frame transfer
- Fast readout → Column Parallel CCD
 → one output amplifier per column
- Total of 528 amplifiers but
 → CAMEX (mux 132 to 1) for easy I/F
 → Only 8 analog output nodes

27/06/2010
pnCCD: Testing at ESO funded by OPTICON FP6
→ Excellent QE, PSF, and low read noise

E:
→ Excellent QE into the “Red” → good for Natural Guide Star applications.
→ 450 µm thick silicon is able to collect the deep penetrating red photons.

SF:
→ Measured < 0.45 pixel over 400-900nm (exceeds specs of < 0.8 pixel).
→ Pixels could be halved in size (51µm/2) and still meet the requirements.

RON:
→ < 2.5 e- rms at 950fps.
AO Wavefront Sensing Detector Developments at ESO

Mark Downing, Johann Kolb, Dietrich Baade, Olaf Iwert, Norbert Hubin, Javier Reyes, Philippe Feautrier, Jean-Luc Gach, Philippe Balard, Christian Guillaume, Eric Stadler, Yves Magnard, Olivier Boissin

ESO’s AO WFS Detector roadmap

Past Successes

Detectors in production

Future Challenges

E-ELT (2018 →)

• Detectors required?
• Top Level Requirements
• Large Visible AO WFS Detector
AO Detector needs for E-ELT

2.5 kHz ultra low-noise detector
✓ possibly reuse CCD220

Low Order AO
Shack Hartmann Quad -Cell

Pyramid
Other WFS...
TipTilt Sensors
Guiding

Existing visible high performance detector (e.g. CCD220)

IR WFS
IR TipTilt sensors

Extreme AO

NGS - Natural Guide Star
NGS Ground Layer AO
NGS Single Conjugate AO

LGS - Laser Guide Star
LGS Multi-Conjugate AO
Laser Tomography AO
LGS Ground Layer AO

Large Visible AO WFS Detector

See talk Gert Finger Wed11:20am session – 7742-57
“Development of high-speed, low-noise NIR HgCdTe avalanche photodiode arrays for adaptive optics and interferometry”
Large Visible AO WFS Detector needed to sample the Laser spot elongation.

- AO systems operate at ~1 kHz frame rate
- Bright "guide stars" are required
- Only 1% of the sky is accessible with natural guide stars
- Sodium layer at 80-90 km altitude can be stimulated to produce artificial guide stars anywhere on the sky
- Pulsed laser can be used to range gate to limit laser spot elongation
Large Visible AO WFS Detector

Top Level Requirements
(developed from very detailed simulations)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Array Format</td>
<td>1680x1680 pixels</td>
<td>Up to 84 x 84 sub-apert. each 20x20 pixels to sample the spot elongation</td>
</tr>
<tr>
<td>Pixel Size</td>
<td>20-28 µm</td>
<td>Large</td>
</tr>
<tr>
<td>Wavelength</td>
<td>460-950nm (NGS) 589nm (LGS)</td>
<td></td>
</tr>
<tr>
<td>Frame Rate</td>
<td>100 to 700 fps</td>
<td>Fast, low latency</td>
</tr>
<tr>
<td>RON</td>
<td>< 3 e- rms</td>
<td>Low noise</td>
</tr>
<tr>
<td>QE</td>
<td>> 80 %</td>
<td>High</td>
</tr>
<tr>
<td>Dark Current</td>
<td>< 0.5 e-/s/pixel</td>
<td>Low</td>
</tr>
<tr>
<td>Storage Capacity</td>
<td>< 4000e-/pixel</td>
<td>Expect few photons</td>
</tr>
<tr>
<td>Cosmetics</td>
<td>< 0.1% bad pixels</td>
<td>Good; very few bad sub-apertures</td>
</tr>
</tbody>
</table>

Ease of use/compact size:
→ low pin count; goal < 200 pins
→ integral Peltier – detector power dissipation < 5W
→ integrated read-out electronics - industry std digital I/F preferred
Large Visible AO WFS Detector Development Plan

(Multi-phase, progressive risk reduction, development)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Several Design Studies</td>
<td></td>
</tr>
<tr>
<td>→ Investigated many different technologies</td>
<td></td>
</tr>
<tr>
<td>→ Most promising - CMOS Imager, APD array and orthogonal EMCCD</td>
<td></td>
</tr>
<tr>
<td>Several Technology Demonstrators</td>
<td></td>
</tr>
<tr>
<td>→ All CMOS Imagers - judged most likely to succeed</td>
<td></td>
</tr>
<tr>
<td>→ Searched for most suitable pixel and test various video processing/ADC concepts</td>
<td></td>
</tr>
<tr>
<td>→ Results of < 3e- RON at required speed have validated the CMOS approach</td>
<td></td>
</tr>
<tr>
<td>→ Further optimization until mid 2011</td>
<td></td>
</tr>
<tr>
<td>→ CMOS Scaled Down Demonstrator</td>
<td></td>
</tr>
<tr>
<td>→ Retire architectural risks by fab. ~ 1/4 imager</td>
<td></td>
</tr>
<tr>
<td>→ Usable for first light E-ELT AO systems</td>
<td></td>
</tr>
</tbody>
</table>
With recent improvements CMOS now rival CCDs

1. **Pinned Photo Diode** → low dark current (10 pA/cm²)
 → 0.5 e-/pix/frame with modest cooling (-10 DegC)

2. **High conversion gains** (200 µV/e-) → low RON of < 2e-
 - by reducing sense node capacitance < 0.8 fF

3. **Buried channel MOSFETs** → reduces/eliminates RTS signal noise

4. **Backside Illumination** → high QE

5. Build from **thicker high resistivity** silicon and ‘**substrate biasing**’
 → low crosstalk and good red response

PLUS the long offered advantages of

1. **Fast frame rates** → highly parallel readout: ultimate of amplifier per pixel.

2. **Low power** → µA instead of mA (CCD) transistor bias currents.

3. **Monolithic integration** of support circuitry; biases, sequencer, clocks, ADCs…
 → Offers a simple, easy-to-use digital interface.
Conceptual Block Diagram of Full Size Device

Highly integrated
- All analog processing on-chip:
 - correlated double sampling (CDS),
 - programmable gain,
 - bandwidth noise reduction,
 - ADCs
- Many rows processed in parallel to slow the read out per pixel and beat down the noise.
 - trade study shows 20-40 to be an optimum number
- Fast digital serial interface to outside world
 - power consumption calculated to be similar to high speed drivers to transport the analog signal off chip
 - better guarantee of achieving and maintaining low noise performance

Natural Guide Star Detector (NGSD)
- scaled down demonstrator
- ~ ¼ of full size → no stitching
Conclusion

- **Current detector developments at ESO are on track to meet current instrument needs.**
 - Measured results show that the CCD220 successfully exceeds the requirements.
 - Production of CCD220s at e2v is almost complete with staggered deliveries till end of year.
 - Development of the ESO WFS camera is very advanced with delivery of first prototype planned mid year, and
 - 18 camera systems will be built and delivered to VLT SPHERE and AOF in 2011 and 2012.

- **Preparation work for the next challenge, the E-ELT, is well under way.**
 - Multi-phase, progressive risk reduction development plan should guarantee that devices are available on-time that meet specifications.
 - Recent improvements make backside illuminated CMOS imagers attractive as wavefront sensors.
 - Measured results from Technology Demonstrators have clearly validated the CMOS imager approach.
THANK YOU
Add more outputs

Achieves lower read noise at fast frame rates by reading through multiple outputs.

Table: Read noise of output amplifier

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Device</th>
<th>Pixel size</th>
<th>Format (pixels)</th>
<th>Frame Rate</th>
<th>Outputs</th>
<th>RON (rms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E2v</td>
<td>CCD50</td>
<td>24μm</td>
<td>128x128</td>
<td>1000 fps</td>
<td>16</td>
<td>5e-</td>
</tr>
<tr>
<td></td>
<td>CCD39</td>
<td>24μm</td>
<td>80x80</td>
<td>1000 fps</td>
<td>4</td>
<td>10e-</td>
</tr>
<tr>
<td>MIT/LL</td>
<td>CCID-26/64</td>
<td>21μm</td>
<td>64x64</td>
<td>600 fps</td>
<td>4</td>
<td>6-7e-</td>
</tr>
<tr>
<td></td>
<td>CCID-26/12</td>
<td>21μm</td>
<td>128x128</td>
<td>1000 fps</td>
<td>16</td>
<td>5e-</td>
</tr>
</tbody>
</table>
Customize the architecture

Achieves lower read noise by minimizing the number of pixels read out by custom designing the architecture to the application.

Polar Co-ordinate CCD - talk about later

- 8x10 subapertures,
- RON < 1.2e- at 4 kfps and QE > 80%,
- Successfully used in upgrade to FlyEyes at CFHT.

See poster Kevin Ho, “Flyeyes: Upgrade of CFHT’s AO System Using an MIT-LL CCID 35 Sensor”

Sub-aperture design

Array design
Mark Downing, Johann Kolb, Dietrich Baade, Olaf Iwert, Norbert Hubin, Javier Reyes.
European Southern Observatory ESO (http://www.eso.org)

Philippe Feautrier, Eric Stadler, David Mouillet.
Domaine Universitaire LOAG (http://www-laog.obs.ujf-grenoble.fr/JRA2)

Jean-Luc GACH, Philippe Balard, Christian Guillaume, Olivier Boissin.
Laboratoire d'Astrophysique de Marseille LAM (http://www.lam.oamp.fr)