pnCCD
First Test Results

Mark Downing, Robert Hartmann, Sebastian Ihle
European Southern Observatory ESO (http://www.eso.org)
Max-Plank-Institut Semiconductor Laboratory (http://www.hll.mpg.de/)

7 Nov 2007
Talk Overview

- Background
- Setup
- Dark Measurement Results
 - Bias stability
 - Dark Current
 - Bright Defects
- Light Measurements
 - Photon Transfer Curve
 - QE
 - PRNU
 - Cosmetics
 - PSF
- Conclusions

Nov 2007
Contract between ESO and MPE/HLL (pnSensor) for:

- Three Test Runs
- Delivery of engineering and science device

Report on first Test Run.

MPE/HLL is a common research facility of the Max-Planck-Institut für Physik in München and the Max-Planck-Institut für extraterrestrische Physik in Garching

Produce pnCCDs for particle physics and X-ray astronomy

- Large pixel size 36-300um
- Thick 300-500um => >80% QE over 450-950nm
- Low ron of 3e
- Fast read out 1000fps
- High speed clocking – non-overlapping aluminum clock lines

Developed 264x264 51µm square pixel size by 450µm thick pnCCD that is interesting for AO WFS for VLT and ELT.
264x264 pnCCD

- 264x264 51um pixel
- 450um thick
- Split frame transfer
- One output amplifier per column
- Total 528 amplifiers
- 1000fps
- RON < 3e
- Integrated with CAMEX
 - Gain
 - Analog DCS signal processing
 - Multiplexing of 132 channel to 1 output

Nov 2007

pnCCD - First Test Results
Provides

- Load for CCD output amplifier
- Gain stages
- Analog DCS that average over several samples
- Multiplexer 132-column amplifiers to 1 output
Reference Pixels

4 Reference Pixels

Pixel closest to image not shielded sufficiently

Top pixel affected by charge leaking from bulk

- Purpose to subtract column to column variations
- Out of four only two are usable
Prescan pixels made by light mask

Image Area

Image Area

Overscan

Ramp on bias image during first few columns

Hot reference pixel [3, 100] causes column fault

Artifact on center two overscan columns

Plot of average of 20 lines

Bias before overscan subtraction

Hot reference pixel [3, 100]
DARK Measurement Results
10 biases taken every 10 minutes for several hours.

- Good long term stability
- Poor short term stability – up to 200ADU (20e) between successive images.
- Can be improved by overscan subtraction but cause should be investigated.
Dark Images

Reference Pixel/Overscan/Bias subtracted

10ms 20ms 50ms

100ms 200ms 500ms

1s 2s

Nov 2007 pnCCD - First Test Results
Darks are dominated by drift in the image area at different exposure times thus dark current is difficult to calculate, but for > 50fps, dark current is very low < 1e/pixel.

Dark Current

<table>
<thead>
<tr>
<th>Amplifier</th>
<th>Frame Rate (Hz)</th>
<th>Dark Current e-/pix/sec</th>
<th>Dark Level e-</th>
<th>Bias Level e-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amp Left Lower</td>
<td>100</td>
<td>-4.3287</td>
<td>-0.048</td>
<td>-0.005</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>-4.9552</td>
<td>-0.079</td>
<td>0.021</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>-1.4866</td>
<td>-0.081</td>
<td>-0.007</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>-1.1484</td>
<td>-0.094</td>
<td>0.021</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>-1.1994</td>
<td>-0.253</td>
<td>-0.013</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-0.5187</td>
<td>-0.276</td>
<td>-0.017</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>-0.3032</td>
<td>-0.316</td>
<td>-0.013</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>0.0358</td>
<td>0.062</td>
<td>-0.01</td>
</tr>
<tr>
<td>Amp Left Upper</td>
<td>100</td>
<td>-11.2398</td>
<td>-0.238</td>
<td>-0.126</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>-10.5436</td>
<td>-0.297</td>
<td>-0.087</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>-7.0603</td>
<td>-0.511</td>
<td>-0.158</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>-8.8803</td>
<td>-1.013</td>
<td>-0.125</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>-10.5697</td>
<td>-2.242</td>
<td>-0.128</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-11.8431</td>
<td>-6.045</td>
<td>-0.123</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>-11.7472</td>
<td>-11.875</td>
<td>-0.127</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>-11.6421</td>
<td>-23.42</td>
<td>-0.135</td>
</tr>
</tbody>
</table>
Bright Defects

<table>
<thead>
<tr>
<th>Frame Rate (Hz)</th>
<th>Hot Pixels > 20e</th>
<th>Hot Pixels > 10e</th>
<th>Hot Pixels > 5e</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>3</td>
<td>18</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>29</td>
<td>638</td>
</tr>
<tr>
<td>1</td>
<td>30</td>
<td>879</td>
<td>5204</td>
</tr>
<tr>
<td>0.5</td>
<td>1258</td>
<td>6312</td>
<td>11967</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0.12</td>
<td>0.6</td>
<td>0.18</td>
<td>2.0</td>
</tr>
<tr>
<td>50</td>
<td>1.2</td>
<td>0.85</td>
<td>1.2</td>
<td>4.2</td>
</tr>
<tr>
<td>20</td>
<td>2.9</td>
<td>2.3</td>
<td>3</td>
<td>11.1</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>4</td>
<td>3.5</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>10.2</td>
<td>11</td>
<td>47.9</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td>23</td>
<td>23</td>
<td>121.5</td>
</tr>
<tr>
<td>1</td>
<td>51</td>
<td>44</td>
<td>48</td>
<td>243</td>
</tr>
<tr>
<td>0.5</td>
<td>103</td>
<td>90</td>
<td>110</td>
<td>478</td>
</tr>
</tbody>
</table>

- Frame rate > 50Hz, no bright defect.
- Hot pixels scale with integration time as expected.

Nov 2007

pnCCD - First Test Results
Light Measurement Results
Photon Transfer Curve

- Poor linearity < 200e and >700e
DC Level Varies with Illumination

- > 700e analog signal chain (CCD output amplifier) saturating
- < 200e the image DC offset level varies with signal and the need to correct

Prescan pixels made by light mask

Overscan Offset level

Mean Signal [ADU]

Time [s]

Overscan Offset level changes

Image Area

Image Area

Overscan

Offset level changes
Care with use of Overscan

Overscan

- Plot of first column of overscan
- Plot of middle column of overscan
- Plot of last column of overscan
PTC Overscan Subtracted

Photon Transfer Curve pnCCD

- Median Signal [ADU]
- Variance

Linearity Curve pnCCD

- Mean Signal [ADU]
- Time [s]

Calculated Gain pnCCD

- Gain [Signal/Variance] [e/ADU]

Signal Non-linearity pnCCD

- % Deviation of Linearity

- Linearity improved

Nov 2007

pnCCD - First Test Results
Good Gain Uniformity

- Could do analysis without worrying about which amplifier pixel read from.

Photon Transfer Curve

Calculated Gain

Nov 2007

pnCCD - First Test Results
Lowering Gain, Full Well of 3200e possible

PTC 1/4 Gain 2nd Amplifier

PTC 1/4 Gain 1st Amplifier

PTC 1/8 Gain 1st Amplifier

Calculated Gain 1/4 Gain 2nd Amplifier

Calculated Gain 1/4 Gain 1st Amplifier

Calculated Gain 1/8 Gain 1st Amplifier

Nov 2007

pnCCD - First Test Results
Spatial Autocorrelation Analysis

- **Bias Image**: Central pixel off scale at 31%
 - Correlation between pixels in %
 - Bias image shows high correlation (5-10%) between pixels in a column due to the subtraction of the reference pixels.
 - This is less noticeable at higher illumination.

- **Flat ~ 400e**: Central pixel off scale at 85%
 - Correlation between pixels in %

- **% of Total Cross-Coupling between pixels**
 - Median Signal [ADU]
 - Saturation
 - Bias image shows high correlation (5-10%) between pixels in a column due to the subtraction of the reference pixels.
 - This is less noticeable at higher illumination.
QE Excellent

- Excellent QE into the “red”.
- Accuracy of results depends on knowing gain and subtracting offset.
PRNU Good; little structure or fringing

Probably due to dark features - long exposure times

Not fringing but dome-ing of image

Nov 2007

pnCCD - First Test Results
- No dark (<50% sensitivity) pixels.
PSF is Excellent

- Requirements ~ < 0.8 pixel
- Pixels size could be reduced to a much smaller size and still meet requirements
Conclusion

- pnCCD has
 - Good long term bias stability,
 - Low dark current (<1e) and no hot pixels for > 50fps and -45DegC,
 - Good gain uniformity between amplifiers and CAMEX,
 - Good PRNU (< 2% peak-to-peak) - little structure or fringing,
 - No dark (< 50% of surrounding) pixels,
 - Excellent red QE > 90% over 600-900nm and > 80% 580-980nm,
 - Excellent PSF of < 0.5pixel FWHM,
 - Low read noise 2-3e at 300fps.
 - Dynamic range of 3200e achievable by reducing CAMEX gain.
 - Spatial Autocorrelation Analysis showed correlation due to reference pixel subtraction and little else up to saturation level.
Challenges

- Poor short term bias stability; bias level can vary $> 20\text{e}$ from image to image. Possible to correct by overscan subtraction.

- Image offset level varies with illumination
 - Problem of accurately determining the offset and correcting for it.
 - For SH WFS maybe ok, need to be verified.
 - For Pyramid (ELT XAO) WFS where most pixels are illuminated could be problem.

- Optical design would have to take into account the larger central pixels (where the split occurs).

- Cause of artifacts in overscan need further investigation.
Suggestions for Improvement/ Further Testing

- Increase reference pixels from 4 to 11. Only need 240 out of 264 rows.
- Test different illumination patterns (e.g. illuminate only a portion of the CCD) to better understand how the offset varies with the level and type (full/partial/spots) of illumination.
- Preclock and/or mask columns to obtain better estimation of prescan offset level. As only need 240 pixels, 11 columns could be masked and used for determining offset.
- Investigate more complicated offset correction techniques; e.g. fit curve between prescan and overscan to obtain better offset estimation of intervening pixels.