

Hyper Suprime-Cam

Subaru's next generation wide field Camera

Satoshi Miyazaki National Astronomical Observatory of Japan

ESO Workshop: Imaging at the E-ELT May 29, 2009

HSC Collaboration

National Astronomical Observatory of Japan University of Tokyo (J) KEK (J) ASIAA (Taiwan) Princeton University (US)

Mitsubishi Electric Canon Hamamatsu Photonics

Subaru Prime Focus

M1

Wide field corrector developed by Canon

F/2.0 f = 16400 mm FOV 30 arcmin

8.2 m

Suprime-Cam

Good Image Quality

HST 'wide-I' continuum HST WFPC2 (All FOV) NB816 narrowband

Suprime-Cam (FOV/100)

Hyper Suprime-Cam Overview

- FOV: 1.5 deg in diameter
- Image quality equivalent with SC in r, i, z, Y band
 - Instrumental PSF < 0.4 arcsec FWHM</p>
 - Crucial for weak lensing survey
- Even Higher QE in red

HSC Components

Suprime-Cam and HSC

HSC Components

Wide Field Corrector (WFC) Sensor Filter

Attitude Control Mechanism Telescope Interface Dewar Shutter Filter Changer

Wide Field Corrector

WFC Specifications

80% Encircled Energy Diameter(D80") g filter < 0.5" (420,470,530nm) r filter < 0.3" (570,620,670nm) i filter < 0.3" (710,760,820nm) z filter < 0.3" (870,910,960nm) y filter < 0.4" (970,1020,1070nm)

Nominal designed performance < 0.2" (r,i,z filter), < 0.25"(g,y filter) Manufacturing and fabrication errors < 0.22" (r,i,z filter)

sqrt{(Nominal error)² + (MF error)²} = 0.3"

GL

410mm

Wide Field Corrector

Details of Design

	1845.	300					Glass li	st	
					19) I. Can .	G1 : G2 : ADC1: ADC2: G3 : G4 : G5 :	Silica B3L7Y B3L7Y P8L1Y P8L1Y B3L7Y Silica	
							* :Asphe	rical Surfac	2
· ·			*						
				*	*				
						PLL: + D	ier Iever wlado	-	
68	ADC 1	ADC2	63	64	6ā				
						. 4	GGER .		
General Opt	tical Dat	35							

General Optical D	arae
fooal length	18320mm
image soale	0.0888[mm/aroseo]
image size(1.5deg	Ф 495mm

designed by Canon

Wide Field Corrector

Availability of the glass

 Fused silica:
 Φmax ≥ 820mm, homogeneity ≤ 5ppm (for G1 ≤ 3ppm) Available from Shin-etsu Quartz or Corning

 BSL7Y:
 Φmax ≥ 630mm, homogeneity ≤ 5ppm Available from Ohara or Schott

•<u>PBL1Y</u>:

Фmax ≧ 610mm, homogeneity ≦ 5ppm Available from Ohara or Schott PBL6Y, PBM8Y, PBM18Y, PBL25Y, PBL26Y also

can be ~ 600 mm (t50)

Required common qualities

striae	no visible striae
birefringence	l≦ 5 nm/om
bubble,inclusion	the total cross section of
	bubbles(mm^2/100ml) ≤ 0.1 ~ 0.25
refractive index	±0.00050
Abbe number	±0.5%

WFC Designed Performance

EL-90°

EL-30°

WFC Designed Performance

		Suprime-Cam	HSC
field of view		0.6deg	1.6deg
		480nm > 855 *1	400nm > 80.8% **
transmisaion		646.1 <i>nm</i> > 90≩ [™]	600nm > 89.0% *E
		850nm > 87% **	1050nm > 61.6% *2
	s	0.18	0.18
Defense dogo"	P	0.09	0.15
Ferromanoe,Deu)		0.11	0.15 🔶
66-00	Z	0.15	0.15
	Y	0.17	0.20
	s	0.21	0.20
D. (P	0.13	0.19
FI =30 ^e		0.13	0.19
	Z	0.18	0.19
	Y	0.19	0.22
focus length		16000mm	16320mm
ADO		lateral shift type ADC	isteral shift type ADC
Vignetting		Non	max 25.6k
imege ourveture		Non(Plana Image)	Non(Plans image)
Distartion		+0.8%	+3.19%
lens weight		~57kg	420kg
Chost(Iluminance ratio)		< 1.1E-07	< 5.45-08 **

0".1 in FWHM

*1)measured value "2)designed value "3)not include the ghost between filter surfaces.

Lateral shift type ADC was Invented by the late Dr.Takeshi (the designer of the Suprime-Cam WFC)

consists of two glasses
 BSL7Y + PBL1Y

(not cemented)

Merits

use only two lenses
 (prism ADC uses four glasses)
 userka on on achrometic double

works as an achromatic doublet

This ADC is the best because of the tight weight constraint.

ADC

Lens Barrel Pile of Lens Ring Frames

Image plane

Primary Minor Focus Total weight 893.0kg 218.8 φ818mn φ950mm Last lens surface

Each Lens Element is retained by each lens frame.

The lens frames are stacked and formed the lens barrel assembly.

Lens Frame Material CORDIERITE

Feature

Low CTE (< |0.1| ppm) High Young's modulus (~ 140 Gpa) mass density ~ 2.7 kg/m^3

Flexure of lens Barrel

Deformation under the barrel own weight(EL=30° r-filter)

Fabrication underway

Sensor

CCD Requirements

ltems		Requirement (-100°C)
Padraging	Format (pixel size)	2048×4096 (15 µm□)
	Pizel to Package edge	< 0.5 mm
	(Serial register side)	< 5.0 mm
	Global height variation	$< 25 \ \mu m$ Peak-to-Valley
Č F	400 nm	> 46 %
	660 nm	> 85 %
	850 nm	> 90 %
	770 nm	> 部 %
	920 um	> 80 %
	1000 nm	> 40 %
CTE (per pix)	Parallel direction	> 0.999995 (1600 e)
	Serial direction	> 0.999995 (1600 e)
Dark Current		< a few e/hour/plx
Charge diffusion		$\sigma < 7.5 \ \mu { m m}$ (400 < $\lambda < 1050 \ { m nm}$)
Full well	1 % depature	> 150,000 e
Amp. Responsivity		>4 μV/e
Readout noise	150 kHz readout	< õ e

CCD needs to be thick enough to achieve high QE in red

NAOJ-Hamamatsu Collaboration

1994 - 1996 Back Illuminated small CCD1996 - 1998 2k4k Front illuminated CCD1999 - 2008 BI 2k4k Fully Depleted CCD

1998

HSC

HPK Fully Depleted CCD

Package Structure

10um

flatness

achieved

Quantum Efficiency

Charge Transfer Efficiency

No slope indicates good CTE (>0.999995)

Dark Current

Read noise

Charge Diffusion

Expected Charge diffusion: $\sigma_D = 7\mu m$, $t = 200 \ \mu m$

Suprime-Cam

$\lambda \; [\texttt{nm}]$	focus pos. $[\mu m]$	$\sigma~[\mu { m m}]$	FWHM ["]
700	5.6	6.9	0.21
800	19.2	6.6	0.20
900	43.8	5.8	0.18
1000	84.7	4.5	0.14

lambda of 700 nm results can be adopted for shorter lambda

Sufficiently small charge spread (HSC pixel scale is 15 % smaller)

Measurement

Measurement is consistent with expected value.

Mounted on Subaru

Replacement of MIT/LL CCID-20 July, 2008

Mounted on Subaru

Image size at Subaru

B band

z' band

0.48" FWHM

0.38" FWHM

Cosmetic defects

New Suprime-Cam case (10 CCDs):

No defect

One block of bright columns

Block width: 6 CCD: 2 column 1 CCD: 5 column

3 CCD

7 CCD

Residual Images

Delayed charge emission from the surface traps Pinning clock sequence between exposures fixes this entirely.

CCD Performance

Items		Requirement (-100°C)	Measured
Packaging	Format (pixel size)	2048×4096 (15 μm□)	-
	Pixel to Package edge	< 0.5 mm	0.410 ± 0.023
	(Serial register side)	< 5.0 mm	4.975 ± 0.025
	Clobal height variation	$< 25 \ \mu m$ Peak-to-Valley	
QE	400 mm	> 45	42
	360 ma	> 85	87
	650 пт	> 90	94
	770 ma	> 85	91
	920 nm	> 80	78
	1000 mm	> 40	40
CTE (per pix)	Parallol direction	> 0.999995 (1600 o)	0.000990
	Serial direction	> 0.999995 (1600 c)	0.999998
Dark Current		< a few e/hour/pix	1.4
Charge diffusion		$\sigma_D < 7.5 \ \mu m \ (400 < \lambda < 1050 \ nm)$	7.5
Full well	1 % departure	> 150,000 c	180,000
Amp. Responsivily		>4 μV/e	4.5
Readout noise	150 kHz readout	<āc	4.5

Hamamatsu FDCCD

- Installation on Subaru FOCAS multi object spectrograph underway
- Now Commercially Available
- Gemini GMOS North and South placed an order.

Next Japanese X-ray satellite decided to employ Hamamatsu's FDCCD

HSC Focal Plane

112 + 4 Guides

Filter

Filter Specification

Substrate BK7 Diameter Clear aparture(CA) Thickness 20mm Thickness error Paralleliam Sub aperture(SA) 30mm Wavefront error in SA N/A Peak transmission > 95% Out of band leak Cut-off wavelength arror Uniformity (wave(angth) 0.4% Uniformity (transmission) 15 Ripple of transmission 5%

Suprime-Cam 205x170mm 192x158mm < 0.2mm < 1 arcmin く 0.1% 0.6%-1.0%

Suprime-Cam's spec

Filter Configuration

- "Combination of color glass and interference film" used be traditional.
- No large color glass is available
- Pure Interference filter is the only option for D
 > 50 cm

Two ways of coating

- Vacuum evaporation
- Advantage
- Good uniformity
- Large surface
- Disadvantage
- Porous film
- Low durability
- less number of layer can be accumulated

- Sputter deposition
- Advantage
- Dense film
- Good durability
- more number of layers can be accum.
- Disadvantage
- Difficulty to realize uniformity over large area

Three substrate required

One substrate is enough

Prototypes

- Broad band filter
 - Vacuum evaporation
 - r' band
 - 550-695rm
 - No out-of-band blocking layer

Optics Coating Japan Inc.

- Narrow band filter
 - Sputter deposition
 - λ c= 600nm
 - Band width = 8nm
 - No out-of-band blocking layer

Barr Associates

Broad band prototype

Broadband prototype

	Results	Suprime-Cam(BB)
Subatrate	N/A	BK7
Diameter	600 nn	205x170mm
Clear aperture(CA)	580 nn	192x158mm
Thiokness	1 Onn	15mm (w/o frame)
Thiokness error	N/A	< 0. 2mm
Parallellam	N/A	< 1 aromin
Sub aperture(SA)	N/A	30mm
Wavefront error in SA	NZA	N/A
Peak transmission	94%	> 95%
Out of band leak	0.4%, 0.2%	< 0.1%
Cut-off wavelength	545nm, 692nm	g, r, i, z (example)
Cut-off wavelength error	0.9%, 0.4%	0.6% to 1.0%
Uniformity (wavelength)	0.5%	0.4%
Uniformity (transmission)	15	15
Ripple of transmission	2%	5%

All the performance satisfied Suprime-Cam specification except "out of band leak"

Transmission Measurement

Narrowband prototype

	Results	Suprime-Cam(NB)
Subatrate	N/A	
Dlameter	600min	205x170mm
Clear aperture(CA)	680mn	192x158mm
Thiokness	15 nm	16 mm (w/ o frame)
Thiokness error	N/A	< 0. 2mm
Parallellam	N/A	< 1 aromin
Sub aperture(SA)	N/A	30mm
Wavefront error in SA	N/A	N/A
Peak transmission	90%	84%
Out of band leak	N/A	
Central wavelength(CW)	600 nii	816nm (example)
CW error(r<200mm)	1. 7nn	3nm
CW error(r<250mm)	3nn	
Band-pass width(BW)	8nn	10nm
BW error(r<200mm)	0. 6nm	0. 3nm
BW error (r(250mm)	0.0	
CW error (r<250mm) Band-pass width(BW) BW error (r<200mm) BW error (r<250mm)	3nn 8nn 0. 6nm	10nm 0. 3nm

Only band pass error do not meet the spec.

Direction of HSC Filter development

- Barr's result is much better than originally expected.
- Sputtering deposition seems the most favorable option.
- Development of Sputtering chamber is underway at Asahi Spectra

Barr and/or Asahi would be the likely option for us

HSC Schedule

Antonity Yourne	Set her	i novi Ed-	K 010	8 010	A \$11
Cernin	-	14.0.20			
Devertigings and manufacturing	Stell	19.5.5			
Bistier	21A I	19.5.5			
Filer SR.	21A I	19.5.5		2010/04 Carriers Assembl	le Start
Finalization	25 A B	19.5.5			
000 gammentations less	21A I	19.5.5			
Filer generation (1)	26 e 8	11.0.00			·
Convert According and Isol	NAT	10.5.5			
Nee Field Concern	55.4.5	주초교			
29ms.hotsang	21 A I	19.5.5			
Assembly	NAL	19.7.89			
Test	808	10.5.9		-	
Visite Floors Link	68.43	작소원			
ilisargin, menerisarang & menunary	21 - 1	78.647		2010/09 HS	C System Assembly Start
interest of the second	98696	9.46			·
Perpendian	12.514	*9.5.59			
Tap Unit Maafraken	821	1944			
Challing & disp starts and a light from	1921	··			-
iti iyan	N.O.1	11.95.60		· · · · · · · · · · · · · · · · · · ·	
Assambly and hel	Net	12.12.17			
Burgung is Heatin	82.6	··			
Communication and a second sec	PAL	1501			
PRU Instantion sollo	112.60	··			
Germanne Greenes Rea	1.012	10 10 40			

800 B

Summary

- HSC is being built. (Upgrade of 10 years old Suprime-Cam)
 - featuring superb inst. image quality < 0".4
 - the fastest survey speed ever
- Most of the technical risks have been reduced through prototyping.
- HSC will see the first light in late 2011.

We are happy to share technical information