Appendix 8. Optical design – criteria and merit function

<table>
<thead>
<tr>
<th>Requirement / characteristic</th>
<th>Weight (1-5)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diffraction-limited FOV</td>
<td>5</td>
<td>Min. 1 arc minute in the visible.</td>
</tr>
<tr>
<td>Total field of view</td>
<td>5</td>
<td>Min. 8 arc minutes.</td>
</tr>
<tr>
<td>Optical quality at edge of field of view</td>
<td>3</td>
<td>Must be seeing-limited.</td>
</tr>
<tr>
<td>Field curvature</td>
<td>3</td>
<td>Convex in the direction of light propagation preferred.</td>
</tr>
<tr>
<td>Focal ratio</td>
<td>3</td>
<td>Optimal range f/6-f/7.</td>
</tr>
<tr>
<td>Maximum monolithic mirror diameter</td>
<td>5</td>
<td>Maximum allowable is 8.3-m.</td>
</tr>
<tr>
<td>Emissivity (number of surfaces)</td>
<td>5</td>
<td>May be alleviated by high performance coatings.</td>
</tr>
<tr>
<td>Sensitivity to M1-M2 deceters</td>
<td>5</td>
<td>Includes image motion and decentering aberrations.</td>
</tr>
<tr>
<td>Sensitivity to M1-M2 axial despace</td>
<td>5</td>
<td>Lower weight than for M1-M2 deceters because of (presumed) higher local stiffness. Idem.</td>
</tr>
<tr>
<td>Sensitivity to decenters of M3, M4, ...</td>
<td>3</td>
<td>Relevant for wavefront sensing; generous tolerances if several references & wavefront sensors available. Ideally ≤ aperture diameter Ideal structure is (presumably) a cone with 60 degrees angle.</td>
</tr>
<tr>
<td>Sensitivity to axial despace of M3, M4, ...</td>
<td>3</td>
<td>Relevant for wavefront sensing; generous tolerances if several references & wavefront sensors available. Ideally ≤ aperture diameter Ideal structure is (presumably) a cone with 60 degrees angle.</td>
</tr>
<tr>
<td>Central obscuration</td>
<td>3</td>
<td>Relevant for wavefront sensing; generous tolerances if several references & wavefront sensors available. Ideally ≤ aperture diameter Ideal structure is (presumably) a cone with 60 degrees angle.</td>
</tr>
<tr>
<td>Vignetting in the science field</td>
<td>5</td>
<td>Relevant for wavefront sensing; generous tolerances if several references & wavefront sensors available. Ideally ≤ aperture diameter Ideal structure is (presumably) a cone with 60 degrees angle.</td>
</tr>
<tr>
<td>Vignetting outside the science field</td>
<td>2</td>
<td>Relevant for wavefront sensing; generous tolerances if several references & wavefront sensors available. Ideally ≤ aperture diameter Ideal structure is (presumably) a cone with 60 degrees angle.</td>
</tr>
<tr>
<td>M1-M2 separation</td>
<td>5</td>
<td>Large amplitude, low temporal frequency (Active Optics) would over-constrain the adaptive mirror technology. Assumed optimum ~2-3m. Assumed optimum ~2-3m. On-sky calibration is an alternative, albeit an undesirable one. Includes test set-up feasibility. Ideally against one unique reference.</td>
</tr>
<tr>
<td>Structure aspect ratio</td>
<td>4</td>
<td>Large amplitude, low temporal frequency (Active Optics) would over-constrain the adaptive mirror technology. Assumed optimum ~2-3m. Assumed optimum ~2-3m. On-sky calibration is an alternative, albeit an undesirable one. Includes test set-up feasibility. Ideally against one unique reference.</td>
</tr>
<tr>
<td>Built-in IR adaptive optics (SCAO & GLAO)</td>
<td>5</td>
<td>Large amplitude, low temporal frequency (Active Optics) would over-constrain the adaptive mirror technology. Assumed optimum ~2-3m. Assumed optimum ~2-3m. On-sky calibration is an alternative, albeit an undesirable one. Includes test set-up feasibility. Ideally against one unique reference.</td>
</tr>
<tr>
<td>Built-in IR MCAO</td>
<td>5</td>
<td>Large amplitude, low temporal frequency (Active Optics) would over-constrain the adaptive mirror technology. Assumed optimum ~2-3m. Assumed optimum ~2-3m. On-sky calibration is an alternative, albeit an undesirable one. Includes test set-up feasibility. Ideally against one unique reference.</td>
</tr>
<tr>
<td>Separation of active and adaptive functions in different units (correctors)</td>
<td>5</td>
<td>Large amplitude, low temporal frequency (Active Optics) would over-constrain the adaptive mirror technology. Assumed optimum ~2-3m. Assumed optimum ~2-3m. On-sky calibration is an alternative, albeit an undesirable one. Includes test set-up feasibility. Ideally against one unique reference.</td>
</tr>
<tr>
<td>SCAO / GLAO mirror dimensions</td>
<td>5</td>
<td>Large amplitude, low temporal frequency (Active Optics) would over-constrain the adaptive mirror technology. Assumed optimum ~2-3m. Assumed optimum ~2-3m. On-sky calibration is an alternative, albeit an undesirable one. Includes test set-up feasibility. Ideally against one unique reference.</td>
</tr>
<tr>
<td>MCAO mirror(s) dimensions</td>
<td>5</td>
<td>Large amplitude, low temporal frequency (Active Optics) would over-constrain the adaptive mirror technology. Assumed optimum ~2-3m. Assumed optimum ~2-3m. On-sky calibration is an alternative, albeit an undesirable one. Includes test set-up feasibility. Ideally against one unique reference.</td>
</tr>
<tr>
<td>Intermediate focus for AO calibration</td>
<td>2</td>
<td>Large amplitude, low temporal frequency (Active Optics) would over-constrain the adaptive mirror technology. Assumed optimum ~2-3m. Assumed optimum ~2-3m. On-sky calibration is an alternative, albeit an undesirable one. Includes test set-up feasibility. Ideally against one unique reference.</td>
</tr>
<tr>
<td>Number of segmented mirrors</td>
<td>4</td>
<td>Large amplitude, low temporal frequency (Active Optics) would over-constrain the adaptive mirror technology. Assumed optimum ~2-3m. Assumed optimum ~2-3m. On-sky calibration is an alternative, albeit an undesirable one. Includes test set-up feasibility. Ideally against one unique reference.</td>
</tr>
<tr>
<td>Feasibility of secondary mirror</td>
<td>5</td>
<td>Large amplitude, low temporal frequency (Active Optics) would over-constrain the adaptive mirror technology. Assumed optimum ~2-3m. Assumed optimum ~2-3m. On-sky calibration is an alternative, albeit an undesirable one. Includes test set-up feasibility. Ideally against one unique reference.</td>
</tr>
<tr>
<td>Difficulty of fabricating most aspheric mirror(s)</td>
<td>4</td>
<td>Large amplitude, low temporal frequency (Active Optics) would over-constrain the adaptive mirror technology. Assumed optimum ~2-3m. Assumed optimum ~2-3m. On-sky calibration is an alternative, albeit an undesirable one. Includes test set-up feasibility. Ideally against one unique reference.</td>
</tr>
<tr>
<td>Compatibility with serial production & maintenance of segments</td>
<td>5</td>
<td>Large amplitude, low temporal frequency (Active Optics) would over-constrain the adaptive mirror technology. Assumed optimum ~2-3m. Assumed optimum ~2-3m. On-sky calibration is an alternative, albeit an undesirable one. Includes test set-up feasibility. Ideally against one unique reference.</td>
</tr>
<tr>
<td>Segments optical testing</td>
<td>4</td>
<td>Large amplitude, low temporal frequency (Active Optics) would over-constrain the adaptive mirror technology. Assumed optimum ~2-3m. Assumed optimum ~2-3m. On-sky calibration is an alternative, albeit an undesirable one. Includes test set-up feasibility. Ideally against one unique reference.</td>
</tr>
<tr>
<td>Compatibility with lightweight segments</td>
<td>3</td>
<td>Large amplitude, low temporal frequency (Active Optics) would over-constrain the adaptive mirror technology. Assumed optimum ~2-3m. Assumed optimum ~2-3m. On-sky calibration is an alternative, albeit an undesirable one. Includes test set-up feasibility. Ideally against one unique reference.</td>
</tr>
<tr>
<td>Baffling options</td>
<td>2</td>
<td>Large amplitude, low temporal frequency (Active Optics) would over-constrain the adaptive mirror technology. Assumed optimum ~2-3m. Assumed optimum ~2-3m. On-sky calibration is an alternative, albeit an undesirable one. Includes test set-up feasibility. Ideally against one unique reference.</td>
</tr>
<tr>
<td>Allowable design volume for active/adaptive units</td>
<td>2</td>
<td>Large amplitude, low temporal frequency (Active Optics) would over-constrain the adaptive mirror technology. Assumed optimum ~2-3m. Assumed optimum ~2-3m. On-sky calibration is an alternative, albeit an undesirable one. Includes test set-up feasibility. Ideally against one unique reference.</td>
</tr>
<tr>
<td>Allowable design volume for instruments</td>
<td>3</td>
<td>Large amplitude, low temporal frequency (Active Optics) would over-constrain the adaptive mirror technology. Assumed optimum ~2-3m. Assumed optimum ~2-3m. On-sky calibration is an alternative, albeit an undesirable one. Includes test set-up feasibility. Ideally against one unique reference.</td>
</tr>
<tr>
<td>Requirement / characteristic</td>
<td>Weight (1-5)</td>
<td>Remarks</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>Access to gravity-stable platform(s)</td>
<td>3</td>
<td>For critical instrumentation.</td>
</tr>
<tr>
<td>Rapid switch between permanently mounted instruments possible</td>
<td>2</td>
<td>For minimum overheads and maximum operational flexibility.</td>
</tr>
</tbody>
</table>

Table A-4. Function of merit, criteria and relative weights.

Objective / guideline

1. Diffraction-limited (Strehl Ratio $\geq 0.80, \lambda=0.5\mu m$) over at least 1 arc minute FOV.
2. Field aberrations over the science field (3 arc minutes diameter) shall be axisymmetrical or negligible.
3. The field of view (diameter) available for adaptive optics wavefront sensing shall be 6 arc minutes.
4. The design shall provide suitable surfaces for active optics, including deformable mirror(s), active centring, focusing, and field stabilization.
5. Monolithic mirrors shall be less than 8.3m in diameter (useful area).
6. Field stabilization shall be done in a pupil image.
7. The design shall provide a suitably located surface for single-conjugate IR SCAO and GLAO.

Table A-5. Mandatory requirements.

<table>
<thead>
<tr>
<th>Requirement / characteristic</th>
<th>Ratings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Diffraction-limited FOV</td>
<td>0: fails to meet requirements</td>
</tr>
<tr>
<td></td>
<td>1: 60 arc seconds diameter</td>
</tr>
<tr>
<td></td>
<td>2: 90 arc seconds diameter</td>
</tr>
<tr>
<td></td>
<td>3: 120 arc seconds diameter</td>
</tr>
<tr>
<td></td>
<td>4: 150 arc seconds diameter</td>
</tr>
<tr>
<td></td>
<td>5: 180 arc seconds diameter or more.</td>
</tr>
<tr>
<td>2 Total field of view (0.1 arc seconds RMS image quality or unacceptable vignetting, whichever comes first)</td>
<td>0: Less than 6 arc minutes</td>
</tr>
<tr>
<td></td>
<td>1: Up to 7 arc minutes</td>
</tr>
<tr>
<td></td>
<td>2: Up to 8 arc minutes</td>
</tr>
<tr>
<td></td>
<td>3: Up to 9 arc minutes</td>
</tr>
<tr>
<td></td>
<td>4: Up to 10 arc minutes</td>
</tr>
<tr>
<td></td>
<td>5: Up to 11 arc minutes or more.</td>
</tr>
<tr>
<td>3 Optical quality at edge of field of view</td>
<td>0: Larger than 0.2 arc second RMS diameter</td>
</tr>
<tr>
<td></td>
<td>1: Up to 0.15 arc second RMS diameter</td>
</tr>
<tr>
<td></td>
<td>2: Up to 0.10 arc second RMS diameter</td>
</tr>
<tr>
<td></td>
<td>3: Up to 0.08 arc second RMS diameter</td>
</tr>
<tr>
<td></td>
<td>4: Up to 0.06 arc second RMS diameter</td>
</tr>
<tr>
<td></td>
<td>5: Up to 0.04 arc second RMS diameter</td>
</tr>
<tr>
<td>4 Field curvature</td>
<td>0: Up to 1.5-m</td>
</tr>
<tr>
<td></td>
<td>1: Up to 2-m</td>
</tr>
<tr>
<td></td>
<td>2: Up to 3-m</td>
</tr>
<tr>
<td></td>
<td>3: Up to 4-m</td>
</tr>
<tr>
<td></td>
<td>4: Up to 6-m</td>
</tr>
<tr>
<td></td>
<td>5: 10-m or more</td>
</tr>
<tr>
<td></td>
<td>NB: subtract one point if concave in the direction of light propagation.</td>
</tr>
<tr>
<td>5 Focal ratio</td>
<td>0: Less than f/3 or more than f/10</td>
</tr>
<tr>
<td></td>
<td>1: Less than f/4 or more than f/9</td>
</tr>
<tr>
<td></td>
<td>2: Less than f/5 or more than f/8</td>
</tr>
<tr>
<td></td>
<td>3: Less than f/5.5 or more than f/7.5</td>
</tr>
<tr>
<td></td>
<td>4: Less than f/6 or more than f/7</td>
</tr>
<tr>
<td></td>
<td>5: Between f/6 and f/7</td>
</tr>
<tr>
<td>6 Maximum monolithic mirror diameter</td>
<td>0: Larger than 8.3-m</td>
</tr>
<tr>
<td></td>
<td>1: Up to 8.3-m</td>
</tr>
<tr>
<td></td>
<td>2: Up to 7.0-m</td>
</tr>
<tr>
<td></td>
<td>3: Up to 6.0-m</td>
</tr>
<tr>
<td></td>
<td>4: Up to 5.0-m</td>
</tr>
<tr>
<td></td>
<td>5: Up to 4.0-m</td>
</tr>
<tr>
<td>7 Emissivity (number of surfaces)</td>
<td>0: 9 surfaces or more</td>
</tr>
<tr>
<td></td>
<td>1: 8 surfaces</td>
</tr>
<tr>
<td>Requirement / characteristic</td>
<td>Ratings</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>8 Sensitivity to M1-M2 deceners</td>
<td>Qualitative; representative of image motion and decentering aberration induced by gravity load z=0 to z=60 degrees</td>
</tr>
<tr>
<td>9 Sensitivity to M1-M2 axial despace</td>
<td>Qualitative; representative of defocus induced by gravity load z=0 to z=60 degrees</td>
</tr>
<tr>
<td>10 Sensitivity to decenters of M3, M4, ...</td>
<td>Qualitative; representative of the effect of gravity load from z=0 to z=60 degrees, taking into account combined motion of mirrors.</td>
</tr>
<tr>
<td>11 Sensitivity to axial despace of M3, M4, ...</td>
<td>Qualitative; representative of defocus induced by gravity load z=0 to z=60 degrees.</td>
</tr>
<tr>
<td>12 Central obscuration</td>
<td>0: More than 50% (linear) 1: 40% or more 2: 30% or more 3: 20% or more 4: 10% or more 5: Less than 10%</td>
</tr>
<tr>
<td>13 Vignetting in the science field</td>
<td>0: More than 10% (linear) 1: More than 8% 2: More than 6% 3: More than 4% 4: More than 2% 5: Less than 2%</td>
</tr>
<tr>
<td>14 Vignetting outside the science field</td>
<td>0: 50% of more 1: More than 40% 2: More than 30% 3: More than 20% 4: More than 10% 5: Up to 10% Add one score point if 3 wavefront sensors, 2 points if 5 or more.</td>
</tr>
<tr>
<td>15 M1-M2 separation</td>
<td>0: More than 1.4 x D 1: Up to 1.3 x D 2: Up to 1.2 x D 3: Up to 1.1 x D 4: Up to 1.0 x D 5: Up to 0.9 x D</td>
</tr>
<tr>
<td>16 Structure aspect ratio</td>
<td>Qualitative; ideal structure is (presumably) a cone with 60 degrees angle.</td>
</tr>
<tr>
<td>17 Built-in IR adaptive optics (SCAO & GLAO)</td>
<td>0: none or SCAO only (inappropriate conjugate for GLAO) 3: SCAO & some (non-optimal) GLAO capability 5: SCAO & GLAO</td>
</tr>
<tr>
<td>18 Built-in IR MCAO</td>
<td>0: No MCAO 3: Two-layers with optimal (~7-9 km) 2nd conjugate 5: Three-layers with optimal conjugates</td>
</tr>
<tr>
<td>19 Separation of active and adaptive functions in different units (correctors)</td>
<td>0: No separation 3: Active and adaptive functions with different subsystems 5: Field stabilization, active and adaptive functions with different subsystems.</td>
</tr>
<tr>
<td>20 SCAO / GLAO mirror dimensions</td>
<td>0: Less than 1-m or more than 4-m 1: Less than 1.2-m or more than 3.8-m 2: Less than 1.4-m or more than 3.6-m 3: Less than 1.6-m or more than 3.4-m 4: Less than 1.8-m or more than 3.2-m 5: Between 2 and 3-m</td>
</tr>
<tr>
<td>21 MCAO mirrors dimensions</td>
<td>0: Less than 1-m or more than 4-m 1: Less than 1.2-m or more than 3.8-m 2: Less than 1.4-m or more than 3.6-m 3: Less than 1.6-m or more than 3.4-m 4: Less than 1.8-m or more than 3.2-m 5: Between 2 and 3-m</td>
</tr>
<tr>
<td>22 Intermediate focus for AO calibration</td>
<td>0: None 3: Yes, requires aberrations compensation 5: Yes, does not require aberration compensation</td>
</tr>
<tr>
<td>23 Number of segmented mirrors</td>
<td>0: More than two</td>
</tr>
<tr>
<td>Requirement / characteristic</td>
<td>Ratings</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>24 Feasibility of secondary mirror</td>
<td>3: Two
5: One
Qualitative; includes test set-up feasibility.</td>
</tr>
<tr>
<td>25 Difficulty of fabricating most aspheric mirror(s)</td>
<td>Qualitative; includes test set-up feasibility.</td>
</tr>
<tr>
<td>26 Compatibility with serial production & maintenance of segments</td>
<td>Qualitative.</td>
</tr>
<tr>
<td>27 Segments optical testing</td>
<td>Qualitative.</td>
</tr>
<tr>
<td>28 Compatibility with lightweight segments</td>
<td>0: No; 5: Yes.</td>
</tr>
<tr>
<td>29 Baffling options</td>
<td>From 0 (none) to 5 (excellent baffling options)</td>
</tr>
<tr>
<td>30 Allowable design volume for active/adaptive units</td>
<td>Qualitative.</td>
</tr>
<tr>
<td>31 Allowable design volume for instruments</td>
<td>Qualitative.</td>
</tr>
<tr>
<td>32 Access to gravity-stable platform(s)</td>
<td>5: Coude focus
4: Nasmyth-type focus (foci)
0: None of the above.</td>
</tr>
<tr>
<td>33 Rapid switch between permanently mounted instruments possible (without additional relay optics).</td>
<td>5: Yes, 6 instruments or more.
4: Yes, 5 instruments
3: Yes, 4 instruments
2: Yes, 3 instruments
1: Yes, 2 instruments
0: No, only one instrument permanently mounted.</td>
</tr>
</tbody>
</table>

Table A- 6. Merit function; guidelines for ratings.