Is the low density IGM at high z metal-enriched?

Jacqueline Bergeron

Institut d'Astrophysique de Paris - CNRS

E-ELT SWG 29-30 May 2007 ESO-Garching

Where are the metals at $z \sim 2-3$?

- The missing metals problem
 - at high $z\text{, at least}\sim\!90\%$ of the baryons are in the Ly- α forest
 - only ~40% of the metals expected from star-formation activity in high z galaxies have been measured up to now (in IGM, galaxies, damped Ly α absorbers) expected metallicity: $\langle [Z/H] \rangle \sim -1.5$
- Inhomogeneous metal enrichment of the IGM
 - relative contribution to the cosmic metals of the general IGM vs metal-rich sites? feedback from galactic super-winds: important enough to metal-enrich the underdense IGM?
 - spatial distribution of metals clustering: do they trace large-scale structures?
- main contributor to ionizing radiation field: nuclear burning or accretion?
 - \rightarrow derived metallicity strongly depends on ionization level

(Pettini 1999 & 2006, Theuns et al. 2002, Cen et al. 2004, Aguirre et al. 2005, Ferrara et al. 2005)

Predicted IGM metallicity at $z\sim 3$

- Hydrodynamic simulations
 - wind mass & energy \propto SFR (full & dashed lines)

or

- no superwind: only low mass galaxies $(M < 10^9 M_{\odot})$ loose their metals (dotted line)
- Spread in $\langle Z/Z_{\odot} \rangle$ of ~ 40 at $ho/\langle
 ho
 angle = 1$ - $\langle Z/Z_{\odot}
 angle > 0.01$: $f_{
 m volume} \sim 4\%$
- Higher $\langle {\sf Z} / {\sf Z}_\odot
 angle$ at $\delta = 1$ than previous teams for superwinds

(Aguirre et al. 2001; Cen, Nagamine & Ostriker 2005)

Metallicity of galaxies at $z\sim 2$ -3

- Optical spectroscopy (H II regions)
 - Local starbursts and spirals : correlation luminosity-metallicity
- Near-IR spectroscopy (ionized gas) : $[O II], [O III], H\beta$
 - LBGs at $z \sim 3$ overluminous for their [Z/H] \rightarrow low mass-to-light ratio
 - Massive star-forming galaxies at $z \sim 2$: solar metallicities

(Pettini et al. 2001; Shapley et al. 2003)

The CIV cosmic density

• No clear evidence for evolution of the cosmic metal density at 2 < z < 5 \rightarrow early pollution of the IGM by the first stars and galaxies

• $\Omega_{\rm b}({\rm C\,{\scriptstyle IV}}) = \{H_0 m_C / c \rho_{crit}\}\{\sum N({\rm C\,{\scriptstyle IV}}) / \sum_i \Delta X_i\}$ m_C : carbon atomic mass, ρ_{crit} : critical density, $\sum_i \Delta X_i$: total redshift path (comoving) $\Omega_{\rm b}({\rm C\,{\scriptstyle IV}}) \sim 5 \times 10^{-8}$ at 2 < z < 5 - C IV at z > 5.5 in NIR

(Songaila 2001, Pettini et al. 2003)

IGM metal enrichment at $z \sim 2-3$

• C IV individual systems

 $\begin{array}{l} -\left< [{\rm C}/{\rm H}] \right> = -2.9 & \mbox{at } 2 < z < 5 \\ \mbox{for } 10^{12} < {\sf N}({\sf C}\,{\rm IV}) < 10^{15} \ \mbox{cm}^{-2} & \mbox{(assuming } \left< ({\sf C}\,{\rm IV}/{\sf C}) \right> = 0.30) \end{array}$

• C IV statistical analysis : correlation between H I and C IV mean optical depths

- information only for $\tau({\rm Ly}\alpha$ or ${\rm Ly}\beta){<}$ ln(S/N) \sim 3.5
- good statistics : information at lower au(CIV) than from analysis of individual systems
- median opacities in bins of au

 \rightarrow average over a range of metallicities for each bin of $\tau(HI)$

signal down to log $\tau(C \text{ IV}) \simeq -3.0 \rightarrow \langle N(C \text{ IV}) \rangle \sim 10^{10.3} \text{ cm}^{-2}$ and log $\tau(\text{H I}) \simeq 0.2 \rightarrow \langle N(\text{H I}) \rangle \sim 10^{13.7} \text{ cm}^{-2}$

 $-\langle [C/H] \rangle = -2.8$ with some \searrow of [C/H] with $\searrow N(H_I)$

(Cowie & Songaila 1998; Songaila 2001 & 2005; Pettini et al. 2003; Schaye et al. 2003; Aracil et al. 2004)

Hydrodynamic simulations of the IGM

• The underdense IGM has low N(H I) - overdensity : $\delta \equiv (\rho/\overline{\rho}) \propto N(H I)^{0.7}$ for $\delta = 1$ and z = 3 $\rightarrow \rho = 2 \times 10^{-5} \text{ cm}^{-3}$ $\rightarrow N(H I) \sim 10^{13.5} \text{ cm}^{-2}$

• Hydrostatic equilibrium

- $-t(dyn) \sim t(sound\ crossing\ time)$ $\rightarrow \mathbf{N(H)} \sim n_{\mathbf{H}}L_{\mathbf{Jeans}}$
- to derive N(H I): assumptions on $T_{\rm gas}~(\sim 4 \times 10^4~{\rm K})$ and photoionization rate

$$\begin{split} &-\delta(G) = 4.7 \times 10^{-9} \ \text{N(H I)}^{2/3} ([1+z]/3)^{-3} \\ &\text{for } \delta(G) = 1 \text{ and } z = 3 \\ &\rightarrow \text{N(H I)} \sim 10^{13.1} \text{ cm}^{-2} \end{split}$$

(Davé et al. 1999; Schaye 2001)

Do the low $N(H_{I})$ absorbers only probe of the underdense IGM

No : existence of 2 populations as shown by the analysis of $O\,{\rm VI}$ absorption surveys

• O VI tracer of a high-z hot/highly ionized IGM phase

 $- \text{O VI doublet } (\lambda\lambda 1031, 1037) \rightarrow \text{lies in the Ly}\alpha \text{ forest}$ thus \nearrow blending with Lyman lines for $\nearrow z \rightarrow \text{O VI searches limited to } z < 3.5$ - coupling O VI, and C IV: constrain the ionization level \rightarrow metallicity

• O VI LP-UVES survey

- at good S/N : line widths $b(O VI) < 14 \text{ km s}^{-1}$ or $T < 2 \times 10^5 \text{ K}$ \rightarrow favors a radiative ionization process
- inferred overdensity of detected O VI absorbers : $\delta \equiv (\rho/\overline{\rho}) = 4$ to 80
- O VI subsamples : observational identification criteria derived from photoionization models with [O/H] = -1

* N(O VI)/N(H I) > 0.25 : O VI metal-rich/type 1 subsample * N(C IV)/N(H I) > 0.015 : C IV-only metal-rich/type 1 subsample

(Carswell et al. 2002; Simcoe et al. 2002& 2004; Bergeron et al. 2002; Bergeron & Herbert-Fort 2005)

Metal-poor and metal-rich $O\ensuremath{\,\mathrm{VI}}$ absorbers

Strong N(H I) absorber metal-poorN(O VI)/N(H I) < 0.25 $z \sim 2.1$ (left panel)

Weak N(H I) absorber metal-rich N(O VI)/N(H I) > 0.25 $z \sim 2.1$ (right panel)

Temperatures

- O VI line width distribution
 - absorbers with $b <\!\! 12$ km s $^{-1}$
 - or $T < \!\! 1.4 imes 10^5 \ {\rm K}$
 - * metal-poor : 39%
 high b tail : weak absorbers, low S/N
 * metal-rich : 53%
 - no unambiguously broad absorbers
 - \rightarrow photoionization : dominant process

Gas density

• Radiative ionization process

- assumptions
 - * hard UV metagalactic flux (main contribution at $z \sim 2.5$: QSOs) * O VI and C IV co-spatial (Si IV usually not detected) * [O/C] = 0

• Ionization parameter

- U is fixed by the O VI/C IV ionic ratio gives ρ : the baryonic density at each z(O VI)
- $-\,\delta(U)=4.0\;U^{-1}([1+z]/3)^{-3}$
- if low N(HI) absorbers trace the underdense IGM the assumption of hydrostatic equilibrium should be roughly valid : $\delta(U) \simeq \delta(G) = 4.7 \times 10^{-9} \text{ N}(\text{HI})^{2/3}([1+z]/3)^{-3}$

Overdensity : $\delta(G)$ vs $\delta(U)$

- Metal-poor (type 0) absorbers
 δ(G) and δ(U) are correlated
 with δ(G) somewhat larger than δ(U)
 - Type 0 absorbers probe the IGM hydrostatic equilibrium is roughly valid
- Metal-rich (type 1) absorbers $\delta(G)$ and $\delta(U)$ are uncorrelated
 - hydrostatic equilibrium does not apply Type 1 absorbers do not trace the general IGM, but rather gas outflows in the vicinity of metal-rich sites

Abundances : results

- Photoionization bimodal [O/H] distribution \rightarrow two distinct populations median [O/H] type 0 1 metal-poor metal-rich -2.06 -0.35
- Metal-rich O VI population
 - associated H I $10^{12.5} < {\rm N}({\rm H\,I}) < 10^{15.0}$ cm $^{-2}$ or 0.1 $< \tau({\rm H\,I}) < 30$
 - contributes ${\sim}40\%$ to cosmic [O/H]
 - its $\langle {\rm metallicity}
 angle \sim {\rm [Fe/H]}$ of galaxy clusters at $z \sim 0.3$ -1

(Bergeron & Herbert-Fort 2005, 2007)

$\Omega_{\rm b}({\rm O\,VI})$ and ${\rm O\,VI}$ column density distribution

• O VI cosmic density

$$egin{aligned} &-\Omega_{ ext{b}}(ext{O VI}) = \{H_0 m_O/c
ho_{crit}\}\{\sum N(ext{O VI})/\sum_i \Delta X_i\}\ &= 2.2 imes 10^{-22}\{\sum N(ext{O VI})/\sum_i \Delta X_i\} \end{aligned}$$

cosmological parameters ($\Omega_{\Lambda}, \Omega_{m}, \Omega_{b}, h = 0.7, 0.3, 0.04, 70$) $dX/dz \equiv (1+z)^{2} \{0.7 + 0.3(1+z)^{3}\}^{-0.5} \cong \{(1+z)/0.3\}^{0.5} \text{ when } z > 1 \quad (\text{comoving})$

- result : $\Omega_{
 m b}(
 m O\,{
 m VI})$ = $1.5 imes10^{-7}$
- O VI column density distribution
 - $-f(N)dNdX = \{n/(\Delta N\sum_i \Delta X_i)\}dNdX$

n : number of O VI absorbers in a column density bin ΔN centered on N for a total redshift path $\sum_i \Delta X_i$

- Fit of f(N) used to derive (i) incompleteness correction factor for $\Omega_{\rm b}(0 \text{ VI})$, $\Omega_{\rm b} \propto \int N f(N) dN$ (ii) number of 0 VI absorbers per unit redshift, $dn/dz \propto \int f(N) dN$

Column density distribution of O VI absorbers

- Power law fit : $f(N) = KN^{-lpha}$ $\rightarrow \alpha(\text{O VI}) = 1.83 \pm 0.15$
 - $-\log N(O_{VI}) < 13$: incompleteness $-\log N(O_{VI}) > 14.5$: sample variance

(Bergeron & Herbert-Fort 2007)

- Comparison with $f(N)(\mathbf{C} \text{ iv})$
 - O VI and C IV distributions have similar slopes, but $f(N(O VI))/f(N(C IV))\sim 6$ at log N = 13.5

Cosmic density of O VI absorbers

• $\Omega_{\rm b}({\rm O\,VI})$

 $-\,\Omega_{
m b}=2.20 imes 10^{-22}\int Nf(N)dN$

using the slope and normalization parameter of the power-law fit and restricted to 13.0 < log (N(O VI)) < 15.0
 yields : Ω_b(O VI) ≈ (2.2 ± 0.2) × 10⁻⁷
 → incompleteness correction factor of 1.5 at z=2.2

• $\Omega_{\rm b}({\rm O})$

- with an ionization correction factor : (0 VI/0) = 0.15 $\rightarrow \Omega_{b}(O) = 1.5 \times 10^{-6} \text{ or}$ $\log (\Omega_{b}(O)/\Omega_{b}(O)_{\odot}) \equiv \langle [O/H] \rangle = -2.4$ $- \langle [O/H] \rangle = \langle [C/H] \rangle + 0.5$ for 12.0 $< \log (N(C \text{ IV})) < 15.0$

 \rightarrow if the missing metals are in the IGM : over 2/3 of them are still undetected

– must detect much weaker (including broad) C IV absorbers

Probing IGM metal enrichment with ELTs

- The C IV forest ELT project (1.5 < z < 3.5)
 - the lower density IGM at $z\sim 3$
 - * [Z/H] : hydrodynamic simulations with/without galactic superwinds
 - * at $\delta \sim 1 \to N(C_{IV}) \simeq 10^{10.4}/10^{8.8} \text{ cm}^{-2} \text{ for } [Z/H] \simeq -2.1/-3.7$
 - \rightarrow must gain a factor $\gtrsim 10$ in the detection limit of individual C $_{\rm IV}$ doublets
 - ightarrow spectroscopy at a resolution $~R\sim5 imes10^4~$ and $~{
 m S/N}\simeq1000~$
 - * clustering level of weak CIV absorbers : do they trace large-scale structures?
 - the hotter IGM phase
 - * occurence of broad C IV systems : $b \sim 12-20 \text{ km s}^{-1}$ or $T > 10^5 \text{ K}$ \rightarrow extremely well defined ct level : exquisite correction of order response * could be the reservoir of the missing metals
- Abundances : complementary survey
 - associated Ly α lines : ELT, and VLT for $z<2.15~{\rm C\,{\scriptscriptstyle IV}}$ absorbers
 - * *ionization level* : mainly constrained by O_{VI} (in the forest, at $z < 2.7 \rightarrow VLT$), Si IV and possibly N_V (but $[N/C] \neq 0$ in many cases)

Sample selection

- Minimum number of background targets
 - sample and cosmic variance : at least \sim 20-30 targets
 - target brightness
 - * QSOs with V < 16.5 and 2.2 < z < 4.0 : too few targets in either the north (17) and the south (6)
 - * QSOs with V < 17.0 and 2.2 < z < 4.0 \colon 30 at dec < +20 deg of which only 17(5) at z > 2.4 (3.0)
 - * GRBs : fading too quickly

GBR050904 (z=6.3) would have at z=2.5, 1.0/3.2 hr after burst : AB=15.3/17.0 GRB990123 (z=1.6) had already 1.0 hr after burst : AB=16.4

- implied wavelength range
 - **3800-4200** Å wavelength range mandatory : for obtaining a significant C IV absorber sample (>100-150) at z > 2.0 extrapolating the f(N(C IV)) power law distribution at lower N(C IV)
 - most of the associated Lylpha lines are then detectable with the same ELT spectrograph

Requested observing time

• Setting

- telescope 42 m
- high spectral resolution $R=5 imes 10^4$
- spectrograph : single setting for the whole wavelength range
- equivalent slit width : 300 mas and binning : 2 spectral px
- laser tomography

• Exposure time

- -V(AB) = 17 and $S/N = 1000 \rightarrow t = 18$ hr
- similar result without AO but larger slit width
- Total exposure time (min of 20 targets) : 360 hr

• Abundances

- for IMG regions with $\delta \sim 1$ can probe metallicities down to 1/100 solar 5σ detection limit at z = 2.5: N(C IV) $\simeq 10^{10.3}$ cm⁻² or $w_{\rm obs} = 0.3$ mÅ

* constrain the IGM volume fraction affected by superwinds

Feasibility of the project with a 25-30 m?

• Sample

- targets no fainter than V = 16.5
- for a minimum sample of 10(17) objects at z > 2.5(2.2) and dec > -10 deg and 2(6) objects at z > 2.5(2.2) and dec < +10 deg - implies an all-sky survey in the south, e.g. with VST, to detect all the southern V < 16.5 QSOs
- Exposure time
 - $-~{\rm S/N}$ = 1000 at $R=5\times10^4~~{\rm and}~~{\rm same}$ setting as for the 42 m case
 - exposure time = 22/32 hr for a 30/25 m telescope
- Possible problems
 - overall efficiency : < 25%? (c/ e.g. UVES)
 - S/N : systematics (e.g. detector noise) that may limit the maximum exposure time
- Conclusions
 - science may be not fully feasible with a 25-30 m telescope
 - need more detailed characteristics of the high-resolution spectrograph