Cosmic History Big Bang

Studying Galaxy Formation and Evolution with High Resolution Stellar Spectroscopy

Let's look in detail at the stellar populations of the Milky Way and it's satellites

Chemical Tagging

 Light Elements - e.g., O Na Mg Al tracers of deep mixing abundances pa (globular clusters versus field star

- Iron-peak Elements e.g., V Cr Mn Co Ni Cu Zn explosive nucleosynthesis (supernovae
- Heavy Elements (Z > 30) mix of r- and s- process elements
 e.g., s-process e.g., Ba, La (stell r-process e.g., Eu

e.g., McWilliam 1997

Figure 6 Production factors from models of SN II by Woosley & Weaver (1995). Ejected element abundances for various progenitor masses are indicated by *connected symbols*; O and Mg are produced in large quantitiesat high mass (~35 M_{\odot}) but not in the lower mass (15–25 M_{\odot}) SN, which are responsible for most of the Si and Ca production. None of the models give significant enhancements of Ti relative to Fe, contrary to observations of stars in the Galactic bulge and halo. Note that production factor is defined as the ratio of the mass fraction of an isotope in the SN ejecta, divided by its corresponding mass fraction in the Sun. The mass of the progenitor making the indicated elements is given in the key in the upper right.

Milky Way to dSph

compilation by Venn et al. 2004

1.1 Surveys for metal-poor stars

Survey	Hemisph.	Start	Eff. sky	Eff. mag	N < -3.0	N < -5.0	
			coverage	limit	(EMP)	(HMP)	
HES	South	1989	$6400 \mathrm{deg^2}$	B < 17.0	400	4	
SEGUE	North	2005	$1000 \mathrm{deg^2}$	B < 19.0	1000	10	
SSHS	South	2006	$500 \mathrm{deg}^2$	B < 17.0	30	0	
LAMOST	North	2007	$10,000 \mathrm{deg^2}$	B < 19.0	10,000	100	
SSS	South	2007	$20,000 \mathrm{deg}^2$	B < 18.0	5000	50	

Basic requirements:

V~20 R~40000 S/N>100 λ as blue as possible $\Delta\lambda$ >100Å No specific spatial resolution

Constraining early chemical enrichement: EMPS

Constraining the origin of the r-process

r-process enhanced EMPS

How universal is the r-process?

	Owentites	Indiantan	Minium $R = \lambda / \Delta \lambda$			Minium S/N per pixel			Net	
	Quantity	Indicator	G/-5.2	SG/-5.4	r-II giant	G/-5.2	SG/-5.4	r-II giant	note	es
Stell param	$T_{\rm eff}$	$H\alpha$	40,000	40,000	40,000	150	150	150		
	$\log g$	Fe I/Fe II	20,000	20,000	20,000				1	
	$\log g$	Ca I/Ca II	20,000	20,000	20,000					
	ξ_{micr}	Fe I	40,000	60,000	20,000	50	200	30	2	
	$\log \epsilon$ (⁷ Li)	$^{7}\mathrm{Li}~6707.76\mathrm{\AA}$	-	40,000	-	-	120	-	3	•
	$\log \epsilon (C)$	CH	20,000	20,000	20,000					
	$\log \epsilon (N)$	CN	20,000	20,000	20,000			l		
	$\log \epsilon (N)$	NH 3360 Å	40,000	20,000		70	50			
	$\log \epsilon (O)$	OH 3100 Å	40,000	40,000	40,000	30	40			
	$^{12}C/^{13}C$	¹² CH, ¹³ CH	40,000	-	40,000	100				
	$\log \epsilon (Mg)$	Mg I 3838.29 Å	40,000	40,000	20,000	40	40	50		
[Fe/n]<-0.	$\log \epsilon (Mg)$	Mg I 5183.60 Å	40,000	40,000	20,000	100	60	50		
	$\log \epsilon$ (Ca)	Ca I 4226.73Å	40,000	60,000	20,000	60	370	50		
	$\log \epsilon$ (Ca)	Ca II			20,000			50		
	$\log \epsilon$ (Ti)				20,000			50		
	$\log \epsilon (Mn)$				20,000			50		
	$\log \epsilon$ (Fe)	Fe I 3859.91 A	40,000	40,000	20,000	20	200	50		
	$\log \epsilon$ (Fe)	Fe II 3227.74 A	40,000	-	20,000			50		
	$\log \epsilon$ (Co)	Co I			20,000			50		
	$\log \epsilon$ (Ni)				20,000			50		
	$\log \epsilon (Zn)$				20,000			50	_	
	$\log \epsilon (Sr)$	Sr II4077.72 A	-	40,000	20,000	_	200	30		
	$\log \epsilon(\mathbf{Y})$		-	-	20,000			50		
	$\log \epsilon (Zr)$		_	_	20,000			50		
	$\log \epsilon$ (Ba)	Ba II 4554.03 A	-	-	20,000			30		
R-process	$\log \epsilon$ (La)	T. T. (100 TO)	-	-	20,000			50		
	$\log \epsilon$ (Eu)	Eu II 4129.73 A	-	-	20,000			30		
	$\log \epsilon (Os)$		-	-						
	$\log \epsilon (lr)$		-	-						
	$\log \epsilon$ (Pb)		-	-	10.000			50		
	$\log \epsilon$ (Th)		-	-	40,000	-	-	150		
	$\log \epsilon(U)$			-	75,000	-		150		
	INCLES:									

1 - Detection of at least one Fe II line required.

2 - Detection of at least a couple of Fe I lines required.

3 – Assuming an abundance of log ϵ (⁷Li) = 2.2.

Table 3: Data quality requirements for spectroscopic analyses of metal-poor stars.

HR spectroscopy

MOS - 100 stars per local galaxy (min); 500-800nm; R~20000 (min);

fov: 2 arcmin (?), $M_{I} > -3$ SOS - 10s stars per local galaxy (min); 300-500nm; R~40000 (min);

$$M_{T} > -3$$

Spectroscopy: the Ca II Triplet

Kinematic Classification

 $T = (U^2 + W^2)^{1/2}$

Venn et al. 2004

Metallicty of different components

Venn et al. 2004

Looking for Evidence on small scales...

Paul Harding

Belokurov, Zucker, Irwin et al.

VLT/FLAMES results

<)AR

Kinematics & Metallicity

LR spectroscopy

MOS - 1000 stars per local galaxy (min); 800-900nm; R~6000 (min);

fov: 2 arcmin (?), $M_{\tau} > -3$

Leo A

Deepest ever CMD (in absolute mag) for an isolated dwarf irregular.

 $\begin{array}{l} M_{814} \approx \textbf{+3.4} \\ M_{475} \approx \textbf{+4.2} \end{array}$

Results for 2 age binnings, with 1σ random errors on SFR

Cole et al. 2007, ApJL, in press (astro-ph/0702646)