Some details on the simulations...

Technical data

> J, H, K-band Laser Tomography AO (LTAO) simulated PSFs (DRM technical database):
$D=42 \mathrm{~m}, 6$ LGS, seeing $=0.8$ " at $0.5 \mu \mathrm{~m}, \mathrm{zd}=0(z d=30,60$ only for the K-band)
> Pixel scale: 2, 2.6, 3.5 mas (PSF sampling) and 5 mas

$$
\text { > Fov = 2" } \times 2^{\prime \prime} \text { : }
$$

\checkmark The PSF does not vary in the region
\checkmark No contamination by field stars and galaxies

Technical data

Variable background

Variable background is due to stellar light reflected by dust: unresolved background, variation lenghtscale smaller than the PSF FWHM

additional source of noise

Typical emission nebulosity has blue colors: $(\mathrm{J}-\mathrm{H}) \sim-0.9,(\mathrm{H}-\mathrm{K}) \sim \mathbf{0 . 6}$
Background level of $\mathrm{J} \sim 23.9, \mathrm{H} \sim 24.8$ and $\mathrm{K} \sim 25.4$

Input star catalog:

> Chabrier (2005) Initial-Mass-Function + Baraffe (2003) evolutionary tracks for an age of 5 Myr and solar metallicity:

100 stars from 2 to 0.003 M © uniformly distributed in a circular area with $R \approx 1 \operatorname{arcsec}$

DM0 $=18.5$ (LMC, Freedman et al. 2001)

Scientific inputs

random extinction
from $A v=0$ to 10 mag

10 J -band images

Uniform background

$$
t_{\exp }=1 \mathrm{~h}
$$

Sky = 16 mag/arcsec ${ }^{2}$

Pixel scale = 2 mas

PSF-photometry with DAOPHOTIV (Stetson):

- Analytical + numerical

Moffat function ($\beta=2.5$)

25 H -band images

25 K -band images

Uniform background

$$
t_{\exp }=1 \mathrm{~h}
$$

Sky = 13 mag/arcsec ${ }^{2}$

Pixel scale $=3.5 \mathrm{mas}$

Magnitude scatter: $\quad S=\sqrt{\frac{1}{N} \sum(\text { input }- \text { recov ered })^{2}}$

Band	Pix scale (mas)	Lim. Mag (S/N~4)	Scatter 0.2 mag	Scatter 0.1 mag
Juni	2	30.1	29.5	$\mathbf{2 9 . 0}$
Jvar	2	29.0	28.7	28.0
Jvar	5	26.0	25.5	24.0
Huni	2.6	29.6	29.2	28.0
Hvar	2.6	29.0	28.6	27.3
Hvar	5	27.6	25.8	24.0
Kuni	3.5	29.8	29.3	27.6
Kvar	3.5	29.5	28.8	27.5
Kvar	5	28.4	27.8	26.2
Kzd30	3.5	28.8	28.6	28.6
Kzd60	3.5	28.6	28.3	27.5

Zenith distance

Limit. Magnitude
decreases of ~ 1 mag

Scatter increases for
K > 26 mag

To increase the statistics: $\mathbf{1 0 , 0 0 0}$ stars in a circle of radius 10 "

to preserve the stellar density

Completeness

Recovered fraction of stars at different

magnitudes and masses

Band	90% mag	50% mag	90% MJup	50% MJup
J	29.15	29.4	24	16
H	28.8	29.4	18	12
K	28.6	29.3	17	9

We partly accomplish proposal goal

What we find out with the simulations

How deep can we go in mass?
We reach J ~ 29.4 (16 Mjup), H ~ 29.4 (12 Mjup), K~29.3 (9 Mjup) with $\mathrm{S} / \mathrm{N} \geq 5$ and 50% completeness

Derive optimal parameters (pixel scale...): pixel scale < 5 mas
May or may not be possible depending on the chosen site: increasing to $z d=30$ \& zd $=60$ loose 1 mag in K (*)

Photometric accuracy required at the ~ 0.1 mag level -is it at all possible given the brighter members of the region? Yes, but reach J ~ 29, H ~ 28, K ~ 27.6 mag

Effect of embedding reflection nebulosity: larger in J where loose
1 mag, 0.6 mag in H , almost negligible in K

Does it make sense scientifically?

Yes! We will observe:

> Nearly complete sample of young brown dwarfs
above the deuterium-burning limit (M~13 Mjup) in
LMC and possibly in other galaxies and/or star
cluster;
> Giant planet masses ($\mathrm{M} \leq 10$ MJup) in the LMC in
favorable conditions

