

The E-ELT Science Case

Science Pep Talk #2

9 Prominent Science Cases

"Prominent" science cases are considered to be among the most important scientifically and are useful for defining capabilities of the telescope.

- Planets and Stars
 - From giant to terrestrial exoplanets: detection, characterization and evolution
 - Circumstellar disks
 - Young stellar clusters
- Stars and Galaxies
 - Imaging and spectroscopy of resolved stellar populations in galaxies
 - Black holes and AGN demographics
- Galaxies and Cosmology
 - Physics of high redshift galaxies
 - First light The highest redshift galaxies (z>10)
 - Is the low-density IGM metal-enriched?
 - A dynamical measurement of the expansion history of the Universe

9 Prominent Science Cases

"Prominent" science cases are considered to be among the most important scientifically and are useful for defining capabilities of the telescope.

- Planets and Stars
 - From giant to terrestrial exoplanets: detection, characterization and evolution
 - Circumstellar disks
 - Young stellar clusters
- Stars and Galaxies
 - Imaging and spectroscopy of resolved stellar populations in galaxies
 - Black holes and AGN demographics
- Galaxies and Cosmology
 - Physics of high redshift galaxies
 - First light The highest redshift galaxies (z>10)
 - Is the low-density IGM metal-enriched?
 - A dynamical measurement of the expansion history of the Universe

9 Prominent Science Cases

"Prominent" science cases are considered to be among the most important scientifically and are useful for defining capabilities of the telescope.

- Planets and Stars
 - From giant to terrestrial exoplanets: detection, characterization and evolution
 - Circumstellar disks
 - Young stellar clusters
- Stars and Galaxies
 - Imaging and spectroscopy of resolved stellar populations in galaxies
 - Black holes and AGN demographics
- Galaxies and Cosmology
 - Physics of high redshift galaxies
 - First light The highest redshift galaxies (z>10)
 - Is the low-density IGM metal-enriched?
 - A dynamical measurement of the expansion history of the Universe

What are circumstellar disks?

- Rotating disks of gas and dust around young stars.
- Critical component in the formation of low-mass stars and their planetary systems.
- Supply a conduit for channeling gas onto the forming (proto-) star.
- Provide the reservoir of material from which planets form.
- Provide the launch platform for jets and outflows.

Copyright 1999 John Wiley and Sons, Inc. All rights reserved.

What are circumstellar disks?

- Found around 30-50% of lowmass young stars.
- Sizes = 10-1000 AU
- Over the course of 10-100 Myr the initial gas-rich disks evolve into dusty debris disks.

How do we know circumstellar disks exist?

HST images of young disks silhouetted against the background of the Orion nebula.

How do we know circumstellar disks exist?

Coronographic Keck and HST images of debris disks.

Why do we want to study circumstellar disks?

Circumstellar disks play a crucial role in star formation!

Questions:

- How is material funnelled onto the forming protostar?
- What is the impact of the central proto-star on the disk?
- How are jets collimated and do they rotate?

Why do we want to study circumstellar disks?

Circumstellar disks play a crucial role in planet formation!

Questions:

- How does planet assembly work? (Dust agglomeration, gas accretion)
- What are the timescales?
- What is the influence of environment?
- How do planets interact with each other and with the disk?
- Can we understand observed planetary systems?

High spatial resolution!

JWST diffraction-limited E-ELT diffraction-limited Simulation of a dusty debris disk at 40 pc.

High spatial resolution!

- Direct imaging of structures indicative of ongoing planet formation
- Gaps
- Rings
- Warps
- Spiral density waves

42m E-ELT diffraction-limited spatial resolution				
	Ang	20 pc	150 pc	500 pc
2 μm	12 mas	0.24 AU	1.8 AU	6 AU
5 μm	30 mas	0.6 AU	4.5 AU	15 AU
10 μm	60 mas	1.2 AU	9 AU	30 AU
20 μm	120 mas	2.4 AU	18 AU	60 AU

Wavelength coverage from 2-20 µm!

High sensitivity for high-resolution spectroscopy!

- Tracing dynamical, physical and chemical evolution.
- Probing dust and planetesimal size distributions as a function of radius and time.
- Probing disk structure.

From cores to disks to planets: studying circumstellar disks provides fundamental insights into the formation of stars and their planetary systems.

Excellent example of a research area that will benefit from the synthesis of E-ELT, ALMA and JWST.