News flash: another 28 planets announced at AAS meeting today by Marcy group: now 236 total

Circumstellar disk science with the E-ELT

Mark McCaughrean Astrophysics Group, School of Physics

E-ELT SWG Design Reference Mission meeting, ESO Garching May 29-30 2007

With credit to science cases for:

- ★ MIDIR (Brandl et al.)
- ★ GSMT (Najita, Strom et al.)
- **★**OWL

Circumstellar disks

★ Play crucial role in star and planet formation

- ★ Provide conduit for accretion onto central star
- ★ Provide launch platform for collimated jets and outflows
- ★ Provide medium for agglomeration and accretion into planets

★ Broad range of questions to be addressed by E-ELT

- ★ How is material funnelled onto star (magnetospheric accretion)?
- ★ What is the impact of the central protostar on the disk?
- ★ How are jets collimated and do they rotate?
- ★ Can we understand the formation of planetary systems?

★ A large, filled-aperture E-ELT provides key tools

- ★ Broad optical, near-IR, and mid-IR wavelength coverage
- ★ High spatial resolution, filled u,v-plane imaging
- ★ High sensitivity for high resolution spectroscopy

The Atacama Large Millimetre Array

From cores to disks to planets

Class 0: 10⁴ yrs; 10-10⁴ AU; 10-300 K

10⁵⁻⁶ yrs; 1-1000 AU; 100-3000 K

42m E-ELT diffraction-limited spatial resolution

McCaughrean

Orion 114-426 edge-on silhouette disk

Pure silhouette disks in Orion

Ionised sources near the Trapezium OB stars HST/WFPC-2, [OIII]+Hα+[SII] Bally et al. 1998, AJ

Ionised silhouette disks in Orion

Transition from disks to planetary systems

The formation of planetary systems

★ A complex business

- ★ Wide wavelength range: X-ray to millimetre
- ★ Large range of spatial scales: 0.05-1000 AU
- ★ Physical, astrochemical, and dynamical processes at work
- ★ How is the material assembled?
 - ★ Dust agglomeration, gas accretion
- ★ What are the time scales?
 - ★ Influence of environment on formation of high/low-mass planets
- ★ How do planets interact with disk and each other?
 - ★ Gap formation, orbital migration, dynamical scattering
- ★ Can we understand observed planetary systems?
 - ★ Make predictions of mass, orbital radius, eccentricity distributions

Two core science cases for the DRM

★ High spatial resolution imaging at 2-20µm

- ★ Search for structures in disks indicative of ongoing or completed planet formation: gaps, rings, spiral density waves
- ★ Young, optically-thick disks in star forming regions
- ★ Older, optically-thin dust debris disks in solar neighbourhood
- ★ Diffraction-limited broad/medium/narrow-band imaging
- ★ Single object, small FOV

★ Spectroscopy of gas and dust at 2-20µm

- ★ Tracing dynamics and physical/astrochemical evolution
- ★ Watching the transition to protoplanets at 1-100 Myr
- ★ R=300, 3000, 100 000 spectroscopy
- ★ High Strehl ratio useful to increase sensitivity
- ★ IFU spectroscopy useful to image differential structures in disk

Young disks in scattered light

Planetesimal growth & structure formation

Gas density

10m particles follow gas density

50cm particles more concentrated in spiral density waves

GM Aur: diokabe diskl with . gab

★ Dust agglomeration & processing

- ★ Grain size distribution as a function of radius and time
- ★ Near-IR scattered/transmitted light, thermal-IR imaging/ spectroscopy, all combined with ALMA

★ Gaps, rings, spiral waves, warps due to planets

- ★ Near-IR scattered light, thermal-IR dust in young and debris disks
- **★** SED decomposition → direct imaging of structures

Scattered light imaging of debris disks

Keck (left) & NICMOS (centre, right) near-IR images of three nearby debris disks (Kalas et al 2004; Weinberger et al. 1999; Schneider et al. 1999)

E-ELT versus JWST at 40 parsecs

Simulation of dust density in Vega-like system (Wilner et al. 2002)

JWST MIRI diffraction-limited imaging at 10 µm, 0.4 arcsec FWHM

E-ELT MIDIR diffraction-limited imaging at 10 μm, 0.06 arcsec FWHM

Resonant structures in the Vega debris disk

Planet at few arcsec from Vega: clump orbital time scale of ~300 yrs

Sensitivity and sample size

- ★ Circumstellar disks exhibit a very large range of sizes and surface brightnesses
 - ★ Difficult to make simple estimate of exposure time
 - ★ (Range of numbers contained in DRM proposal)
 - ★ Typically likely to be only minutes in near-IR, ~1 hr in mid-IR
 - ★ Crudely estimate total elapsed time of 5 hr/disk for 5 filters
- ★ Total time required dominated by sample size
 - ★ 10s of known resolved nearby debris disks
 - ★ Likely 100s with known IR excess resolvable with E-ELT
 - ★ 100s of resolved disks in nearby star-forming regions
- ★ Take 40 debris disks, 60 young disks
 - ★ Probe range of ages, stellar masses, environments
 - ★ Total elapsed time ~500 hr / 50 nights

Gas in the inner disk

- ★ Planet-forming region is inner 10 AU
 - ★ Barely resolve with E-ELT at 150pc at 5µm: 4.5 AU diff. limit
- ★ Use high resolution spectroscopy of gas to velocity resolve structures in inner disk
 - ★ R = 100 000 yields 3 km s⁻¹ cf. 30 km s⁻¹ of Earth at 1 AU
- ★ Different probes useful at different radii
 - ★ CO v=2-0 overtone band at 2.3µm: denser, warmer gas
 - ★ CO v=1-0 fundamental band at 4.6µm: lower density, cooler; best probe of terrestrial planet forming region
 - \bigstar H₂ (2, 17, 28µm) and H₂O (2, 10, 20µm) also abundant: many transitions to probe density, temperature in disk: use to trace mass of gas in disk as a function of stellar mass, age, environment

Gas diagnostics in protoplanetary disks

CO fundamental spectroscopy at 4.6µm

CO v=1-0 spectra of T Tauri stars

Model CO v=1-0 line profile for emission from gap induced at 1AU by Jupiter-mass planet R=100 000 spectrum, 8 hr, 30m GSMT

Data: Najita et al. / Simulation: Bryden & Najita

Sensitivity and sample size

- ★ Crude scaling from GSMT calculations (Najita et al.)
- ★ CO v=1-0 4.6µm to detect planet gaps in young disks
 - ★ Classical T Tauri star at 450 pc (Orion)
 - ★ 0.3 AU gap opened at 1 AU by 1 Jupiter mass planet
 - \star S/N = 300 achieved in <10 minutes with 42m E-ELT
 - ★ Including set-up, overheads, calibration, assume 30 min/source
 - ★ Assume only 5-10% of sources form Jupiters
 - ★ Thus need ~1000 sources (hence Orion) in order to yield 50-100
 - ★ Total elapsed time then ~500 hr / 50 nights
- ★ H₂O in disks at 10 & 20µm to gauge gas mass in disks
 - ★ S/N~20 at both wavelengths takes ~1 night/source elapsed
 - ★ 30 sources/cluster, 5 clusters for evolution vs time, environment
 - ★ Thus total of ~150 nights required here

Summary: key drivers for the E-ELT

- ★ Telescope size important but not fundamental (!)
 - **★** Information content ∝ D or perhaps D² but key is > 5x JWST
- ★ Site considerations ironically perhaps not crucial
 - ★ JWST will be more sensitive in any case
- ★ High spatial resolution at 2-20µm
 - ★ Diffraction-limited imaging over 5-10 arcsec FOV
 - ★ 6 mas/pixel at 2µm yields detector size of ~2k x 2k
 - ★ High Strehl ratio important to maximise image "fidelity"
- ★ Low, medium, high spectral resolution at 2-20µm
 - * Resolutions 300 & 3000 at 2-20μm, 100 000 at 5μm
 - ★ Single object: either slit or IFU (5 arcsec FOV?)
- **★** Total time requirements:
 - ★ Imaging: 50 nights; spectroscopy: 50 (200) nights

Things to be done

- ★ Need proper E-ELT ETC calculations
 - ★ ETC presently stops at K
 - ★ Need thermal-IR extensions for both imaging and spectroscopy
- ★ Sources are structured, not just smoothly extended
 - ★ Ideally need imaging spectroscopy exposure time calculations
- ★ Need proper disk models for meaningful results
 - ★ Ideally need radiative transfer models of realistic gas and dust density distributions from SPH and other calculations
 - ★ Need to engage modellers (Wolf, Harries, Dominik, Pinte, Wood)