Astronomy

- Study of everything beyond the Earth
- Objects far away, hence small and faint
 - Limited information about their nature
 - Need for large instruments: resolution and sensitivity
- Combining different types of observations crucial
 - Images/spectra/time-series
 - Electromagnetic/neutrinos/gravitational waves
 - Visible/IR and radio regimes accessible from ground
Astronomical Research

- Exploration is integral component of this field
 - Large numbers of objects, all different
 - Searches and surveys with small telescopes and follow-up by large telescopes
 - Examples: black holes, exo-planets, dark energy
- Physical science driven by observations
 - Test models versus observations: theory and numerical simulations are crucial
 - Links with physics, chemistry, computer science, laboratory experiments, geophysics, and biology

Astronomy and Technology

- Astronomy benefits from *and* drives advances in technology
- It is now possible to
 - Study objects over 95% of the age of the Universe
 - Detect and study planets around other stars
 - Use particles to study objects in the Universe
 - Explore Solar system objects in situ
- And also to
 - Simulate astrophysical processes
 - Analyze large data streams
Astronomy and Society

- Important for society and culture
 - Navigation, mobile phones
 - Asteroid impacts on Earth
 - Existence of other worlds, development of life

- Important for education
 - Attracts young people to physical sciences
 - Many universities opening astronomy departments

- Many exciting discoveries to come

Predicting the Future

- Key questions in astronomy
 - Nature of dark matter and dark energy
 - Physics in extreme conditions (black holes, GRBs)
 - Formation & evolution of galaxies
 - Formation of stars and planets, and the origin of life
 - How do we (and the Solar System) fit in?

- Amongst most fundamental questions in science
 - Of interest to broad community and general public

- To be answered by
 - Observations with telescopes (ground and space)
 - Combined with interpretation & theory
Ground-based Telescopes

Satellites in Orbit

Also: Chandra, Spitzer, SWIFT, Akari, Spirit/Opportunity, MRO, Messenger, GLAST, …
European astronomy plans through 2025:

- Will need several Ge for new investment/operations
- EU may fund a modest fraction
- Bulk of the support to come from funding agencies

Funding agencies request comprehensive plan:

- Covering all of astronomy, ground and space, including links with neighbouring fields
- Founded ASTRONET to develop plan together with European astronomical community (EU funding)
- Prototype for equivalent of US Decadal Surveys
Three Step Approach

Science Vision (2007)
- Key questions in astronomy for next two decades
- Identifies observations, simulations, lab-experiments, interpretation and theory needed for progress
- Use national plans, ESA’s Cosmic Vision, ESA-ESO studies

Infrastructure Roadmap (2008)
- Identify facilities and infrastructures needed
- Assessment of timeline and costs

Implementation Plan (2009-2010)

Radio Observations

Many radio observatories world-wide
- Powerful single dishes and interferometers
- Linked into VLBI networks
- Rationalization of smaller facilities needed

Short wavelengths
- IRAM, Nobeyama, CARMA mm observatories
- Mauna Kea: CSO, JCMT and eSMA
- Chajnantor: APEX, ASTE, and CMB experiments

Transformational facility under development
- ALMA (global partnership)
ALMA

Science requirements
- Detect CO and [CII] in Milky Way galaxy at z=3 in < 24 hr
- Dust emission, gas kinematics in proto-planetary disks
- Resolution to match HST, JWST and 8-10m with AO

Specifications
- 66 antennas (54x12m, 12x7m)
- 14 km max baseline (< 10mas)
- 30-1000 GHz (0.3–10mm), up to 10 receiver bands

Panchromatic View

Arp 220 at different redshifts z

cm: star-formation, AGN
(sub)mm: dust, molecular gas
near-IR: stars, ionized gas, AGN

Spitzer
JWST
ALMA
PdBI
EVLA
SKA
Line Sensitivity

![Line Sensitivity Graph](image)

ALMA 2008

![ALMA 2008 Images](image)
Beyond ALMA

- SKA Pathfinders being constructed
 - Focus on longer wavelengths
 - ASKAP, ATA, EVLA, LOFAR, LWA, MeerKAT, MWA

- SKA Phase 1 (0.1 km²)
 - To build upon experience with Pathfinders
 - To be located in Southern Hemisphere
 - Organization and funding of global partnership to be defined; ALMA project provides useful lessons

- SKA Phase 2 (1 km²)
 - To follow on longer time-scale
 - Clarify science gain/cost relative to Phase 1
Optical Telescopes

- Many 2-4m telescopes world-wide
- Efforts to integrate/harmonize/rationalize them
 - Access program for European telescopes
 - ReStar initiative in United States (up to 6.5m)
 - Avoid duplication of instruments ⇒ system
- Focus on specific unique science
 - Sloan Digital Sky Survey
 - AO in visible (e.g. WHT, SOAR)
 - Planet searches (e.g. HARPS on 3.6m)
 - Preparation/follow-up spectroscopy for GAIA

Next Steps in Surveys

- Imaging
 - VISTA, VST coherent five-year program of public surveys; builds strong European survey capability
 - PanStarrs and upgrade
 - Giant leap forward by LSST, if funded
- Wide-field spectroscopy
 - 8m class for deep Universe/GAIA
 - Clarify trade-off between FOV and depth
 - If less than 30’, then many options; otherwise Subaru or a dedicated new 8m telescope
 - Link to space missions: JDEM, EUCLID
Solar Telescopes

- Many small telescopes, some with AO
- New flagship: ATST
 - 4m on Maui, to be managed by NSO (AURA/NSF)
 - Design ready, waiting for NSF funding approval
 - Will replace number of smaller US solar telescopes
- Europe
 - Plans for 4m in Canary Islands
 - Funding not identified; governance to be defined

8-10m Telescopes

- Mauna Kea
 - Twin Keck telescopes, Subaru, Gemini-North
 - Opportunity to develop this into powerful system
- Chile
 - Gemini-South, optimized for IR
 - VLT plus Interferometer: fully-integrated system
- Other
 - LBT, including interferometric mode
 - GranTeCan, nearly operational
 - HET (with HETDEX) and SALT
Paranal
The Arsenal

Coverage in λ and R
2nd Generation Instrumentation

- Approved VLT instruments in development
 - X-Shooter – Single object UV-IR spectrograph
 - KMOS – Near IR MOS, deployable IFUs
 - SPHERE – XAO + Near IR/Vis planet finder
 - MUSE – Visible IFU spectrograph (24 modules)

- New VLTI instruments
 - GRAVITY – K Band, 4 telescope, astrometry near GC
 - MATISSE – L, M, N band, 4 telescope image/spec
 - VSI – 4-6 telescope near IR imager/spectrometer

- Additional VLT instruments planned
 - Including ultra-stable high-resolution spectrograph

Long-term Program

- Long range plan
 - Continuous upgrades through at least 2020

- Most instruments built by consortia
 - ESO pays hardware costs (~1/3rd of total)
 - Consortia provide fte’s; paid in Guaranteed Time
 - Typically 250 nights for 2nd generation instruments
 - Used for coherent science programs

- Development program
 - MCAO Demonstrator
 - Laser Guide Star Facility
 - Fully adaptive M2 for UT4
The Next Step: Giant Telescopes

- Exo-planets
 - Imaging and spectroscopy
 - Earth-like planets accessible

- Stellar populations
 - Resolved out to Virgo cluster
 - To high redshift in integrated light

- Cosmology
 - The first stars and galaxies
 - Direct measure of deceleration
 - Evolution of cosmic parameters
 - Dark matter, dark energy

Extremely Large Telescope

- Detailed design study
 - Baseline 42m primary mirror
 - Adaptive optics built-in
 - Fully funded (~62 M€)
 - Site selection ongoing
 - Concludes early 2010

- Project
 - Builds on entire expertise at ESO and in member states
 - Construction 2010-2017
 - Synergy: JWST/ALMA
Global Situation

- **ELT**
 - Highest priority ground-based project in Europe
 - Coherent European effort, led by ESO
 - *Transformational extension of VLT/I system*, which currently already has 4000+ registered users

- **United States: two competing projects**
 - TMT: 30m, many 1.45m segments
 - GMT: 22m, seven 8.4m mirrors on Las Campanas
 - Private initiatives with international partners
 - Part of construction funding identified; NSF to be asked for operations funding (after Decadal Survey)
 - TMT would be ideal addition to *Mauna Kea system*

Curious Symmetries

- **North America**
 - World-leading space science program through NASA
 - Radio astronomy nationally led by NRAO
 - O/IR effort: free market structure, except Solar

- **Europe**
 - High-quality space science program through ESA
 - Radio astronomy: network of institutions
 - World-leading O/IR program through ESO

- **ALMA**
 - Bridges traditional divide between O/IR and radio
 - Best of three worlds: NAOJ, NRAO, ESO
Conclusions

- Answering key science questions requires
 - Best use of existing facilities, including rationalization or specialization of medium-size telescopes
 - Full science harvest of facilities under construction
 - Next generation ground-based telescopes, providing synergy with armada of space missions
 - Supported by theory, simulations and laboratory experiments, and development of enabling technology

- Tremendous scientific & technical opportunities
 - Infrastructure roadmap to be followed by a coherent implementation plan supported by funding agencies
 - Key ESO role in construction of world-class facilities